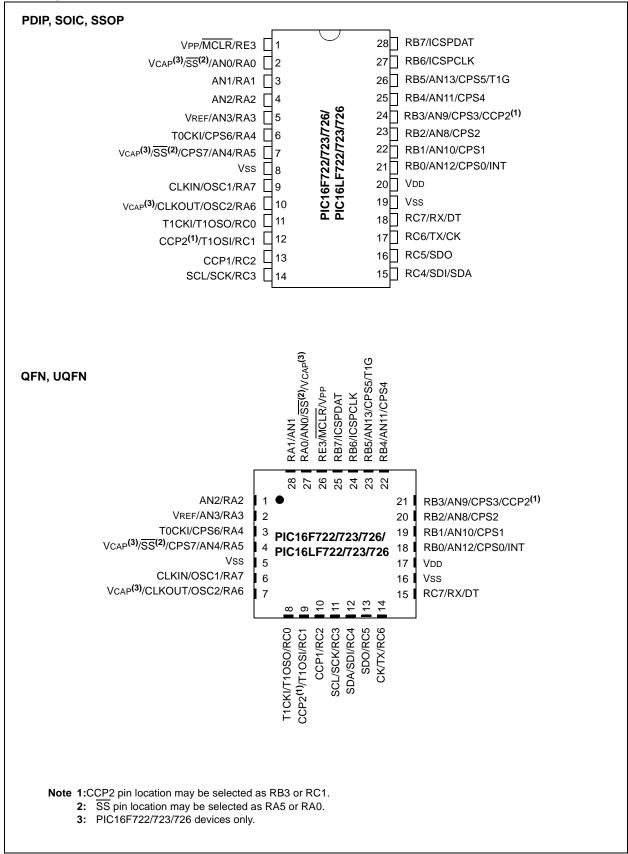


Welcome to E-XFL.COM

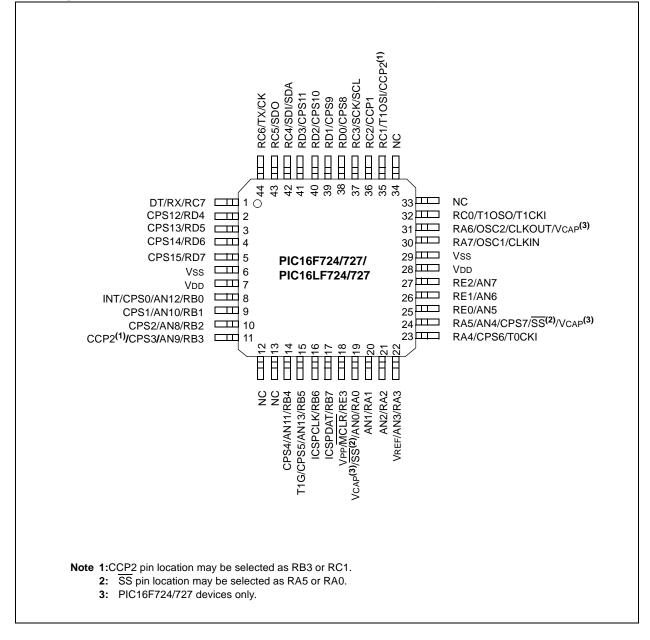
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

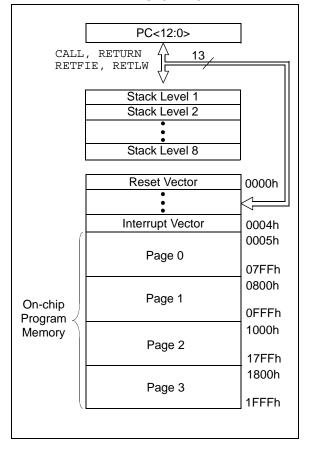

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 14x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f727t-i-mv


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams - 28-PIN PDIP/SOIC/SSOP/QFN/UQFN (PIC16F722/723/726/PIC16LF722/723/726)



Pin Diagrams – 44-PIN TQFP (PIC16F724/727/PIC16LF724/727)

FIGURE 2-3:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16F726/LF726 AND PIC16F727/LF727

2.2 Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers (GPRs) and the Special Function Registers (SFRs). Bits RP0 and RP1 are bank select bits.

<u>RP1</u>	<u>RP0</u>

0	0	\rightarrow	Bank 0 is selected
0	1	\rightarrow	Bank 1 is selected
1	0	\rightarrow	Bank 2 is selected
1	1	\rightarrow	Bank 3 is selected

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are the General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank are mirrored in another bank for code reduction and quicker access.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 128 x 8 bits in the PIC16F722/LF722, 192 x 8 bits in the PIC16F723/LF723 and PIC16F724/LF724, and 368 x 8 bits in the PIC16F726/LF726 and PIC16F727/LF727. Each register is accessed either directly or indirectly through the File Select Register (FSR), (Refer to **Section 2.5** "Indirect Addressing, INDF and FSR Registers").

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (refer to Table 2-1). These registers are static RAM.

The Special Function Registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

2.2.2.1 STATUS Register

The STATUS register, shown in Register 2-1, contains:

- the arithmetic status of the ALU
- · the Reset status
- the bank select bits for data memory (SRAM)

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to **Section 21.0** "Instruction Set Summary").

Note 1: The <u>C</u> and <u>DC</u> bits operate as Borrow and <u>Digit</u> Borrow out bits, respectively, in subtraction.

REGISTER 2-1: STATUS: STATUS REGISTER

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:							
R = Readable bit		W = Writable bit	U = Unimplemented bit,	read as '0'			
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 7	•	ster Bank Select bit (used for	or indirect addressing)				
		2, 3 (100h-1FFh) 0, 1 (00h-FFh)					
bit 6-5		Register Bank Select bits (used for direct addressing)				
		< 0 (00h-7Fh)					
		< 1 (80h-FFh)					
		k 2 (100h-17Fh)					
		< 3 (180h-1FFh)					
		-out bit					
		1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time out occurred					
		er-down bit					
			instruction				
		 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction 					
bit 2	Z: Zero bi						
	1 = The re	esult of an arithmetic or logi	c operation is zero				
		esult of an arithmetic or logi	•				
bit 1	DC: Digit	DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾					
		ry out from the 4th low-orde					
		rry-out from the 4th low-ord		. (4)			
bit 0	C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾						
			ant bit of the result occurred icant bit of the result occurred				
	0 = 100 Ca						
			traction is executed by adding				
ę	second operan	d. For rotate (RRF, RLF) inst	ructions, this bit is loaded with	either the high-order or low-ord			

bit of the source register.

2.2.2.3 PCON Register

The Power Control (PCON) register contains flag bits (refer to Table 3-2) to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

The PCON register also controls the software enable of the BOR.

The PCON register bits are shown in Register 2-3.

REGISTER 2-3: PCON: POWER CONTROL REGISTER

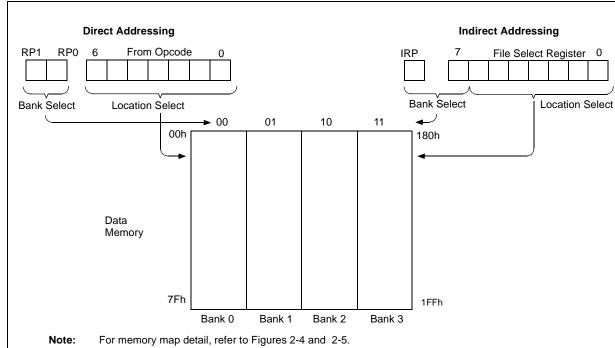
U-0	U-0	U-0	U-0	U-0	U-0	R/W-q	R/W-q
—	_	_	_	_	_	POR	BOR
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
q = Value depends on co	ondition		

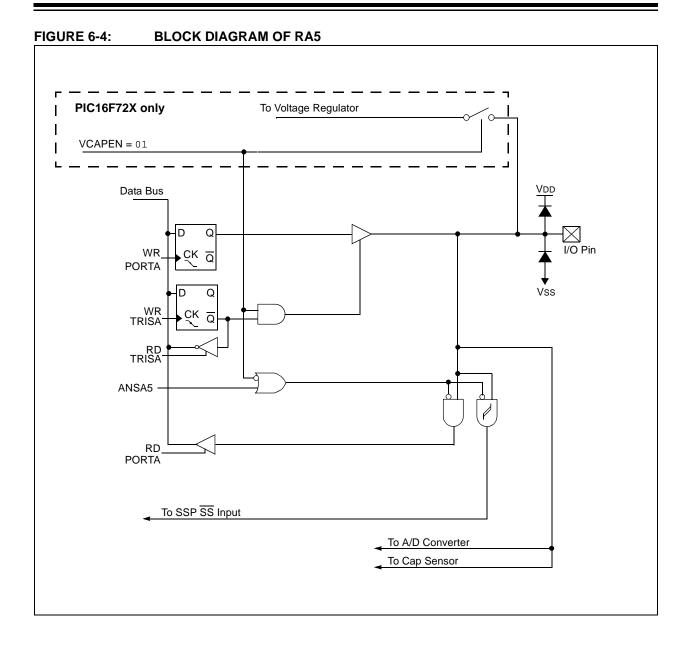
bit 7-2	Unimplemented: Read as '0'
bit 1	POR: Power-on Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit
	1 = No Brown-out Reset occurred
	 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs)

Note 1: Set BOREN<1:0> = 01 in the Configuration Word register for this bit to control the $\overline{\text{BOR}}$.

2.5 Indirect Addressing, INDF and FSR Registers


The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit of the STATUS register, as shown in Figure 2-8.


A simple program to clear RAM location 020h-02Fh using indirect addressing is shown in Example 2-2.

EXAMPLE 2-2: INDIRECT ADDRESSING

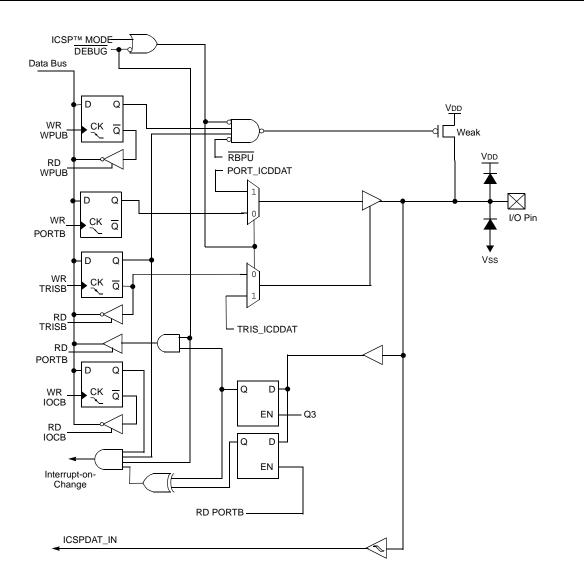

	MOVLW MOVWF BANKISEL	020h FSR 020h	;initialize pointer ;to RAM
NEXT	CLRF INCF	INDF FSR	;clear INDF register ;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONT	INUE		;yes continue

FIGURE 2-8: DIRECT/INDIRECT ADDRESSING

FIGURE 6-12: BLOCK DIAGRAM OF RB7

9.2.7 ADC REGISTER DEFINITIONS

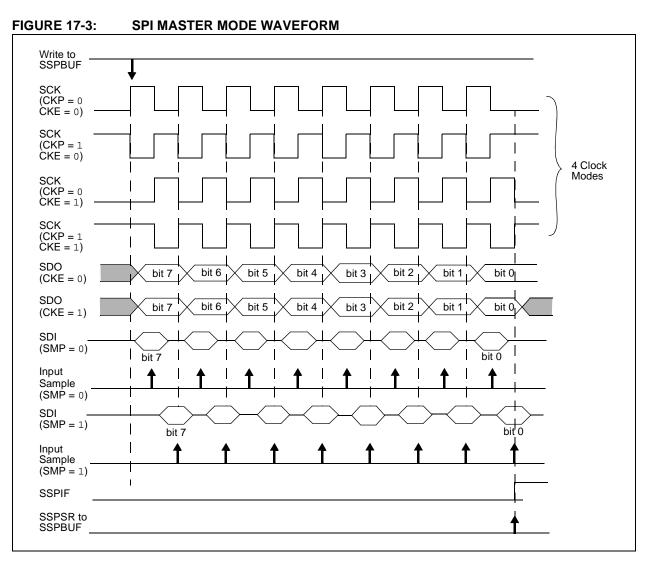
The following registers are used to control the operation of the ADC.

REGISTER 9-1: ADCON0: A/D CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'


bit 5-2 CHS<3:0>: Analog Channel Select bits

	0000 = ANO
	0001 = AN1
	0010 = AN2
	0011 = AN3
	0100 = AN4
	0101 = AN5
	0110 = AN6
	0111 = AN7
	1000 = AN8
	1001 = AN9
	1010 = AN10
	1011 = AN11
	1100 = AN12
	1101 = AN13
	1110 = Reserved
	1111 = Fixed Voltage Reference (FVREF)
bit 1	GO/DONE: A/D Conversion Status bit
	 1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle. This bit is automatically cleared by hardware when the A/D conversion has completed.
	0 = A/D conversion completed/not in progress
bit 0	ADON: ADC Enable bit
	1 = ADC is enabled

0 = ADC is disabled and consumes no operating current

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x			
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D			
bit 7							bit (
Legend:										
R = Readable		W = Writable		-	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own			
L :4 7		Deut Frieklach	.(1)							
bit 7	SPEN: Serial Port Enable bit ⁽¹⁾									
	 1 = Serial port enabled (configures RX/DT and TX/CK pins as serial port pins) 0 = Serial port disabled (held in Reset) 									
bit 6	RX9: 9-bit Re	ceive Enable b	bit							
	1 = Selects 9-bit reception									
bit 5	 0 = Selects 8-bit reception SREN: Single Receive Enable bit 									
	Asynchronous mode:									
	Don't care									
	Synchronous mode – Master:									
	1 = Enables single receive									
	 0 = Disables single receive This bit is cleared after reception is complete. 									
	Synchronous mode – Slave:									
	Don't care									
bit 4	CREN: Continuous Receive Enable bit									
	Asynchronous mode:									
	1 = Enables receiver									
	0 = Disables receiver Synchronous mode:									
	<u>1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)</u>									
		continuous rea								
bit 3	ADDEN: Address Detect Enable bit									
	Asynchronous mode 9-bit (RX9 = 1):									
	1 = Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set									
	0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit <u>Asynchronous mode 8-bit (RX9 = 0)</u> :									
	Don't care									
	Synchronous	mode:								
	Must be set to	o '0'								
bit 2	FERR: Frami	-								
	1 = Framing 0 = No framir		pdated by rea	ading RCREG I	egister and rec	eive next valid l	oyte)			
bit 1	OERR: Overr	un Error bit								
	1 = Overrun 0 = No overru	•	leared by clea	aring bit CREN)					
bit 0		bit of Received	Data							
	This can be address/data bit or a parity bit and must be calculated by user firmware.									
	he AUSART m RISx = 1.	odule automa	tically change	es the pin fro	m tri-state to o	drive as neede	ed. Configur			

REGISTER 16-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

EXAMPLE 17-1: LOADING THE SSPBUF (SSPSR) REGISTER

	BANKSEL	SSPSTAT	;
LOOP	BTFSS	SSPSTAT, BF	;Has data been received(transmit complete)?
	GOTO	LOOP	; No
	BANKSEL	SSPBUF	;
	MOVF	SSPBUF, W	;WREG reg = contents of SSPBUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF	TXDATA, W	;W reg = contents of TXDATA
	MOVWF	SSPBUF	;New data to xmit

22.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
 Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit[™] 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

22.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

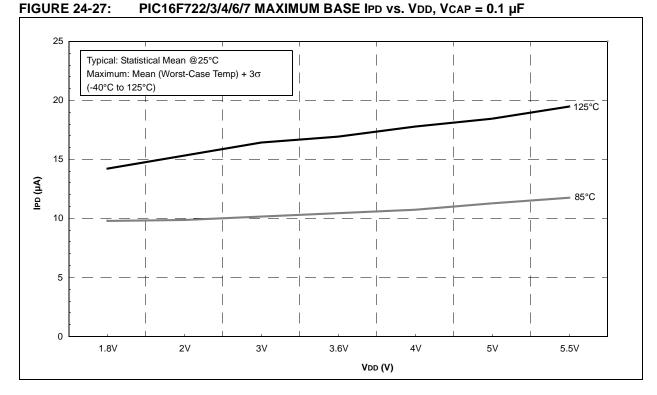
With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

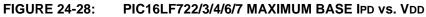
Feature-Rich Editor:

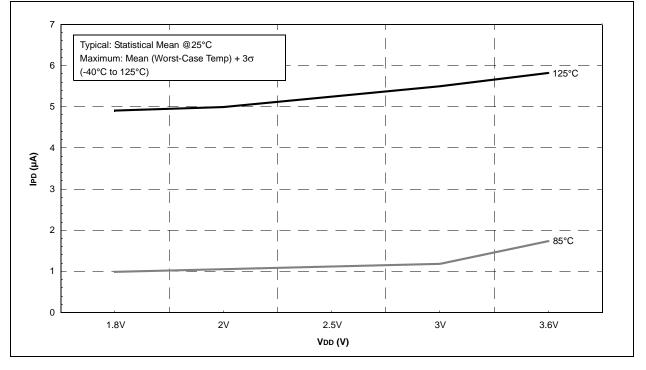
- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- Built-in support for Bugzilla issue tracker


Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	—	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μs	Device must operate at a minimum of 10 MHz
			SSP Module	1.5Tcy	_		
SP101* TLOW		Clock low time	100 kHz mode	4.7	_	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μS	Device must operate at a minimum of 10 MHz
			SSP Module	1.5Tcy	_		
SP102* TR	SDA and SCL rise time	100 kHz mode	—	1000	ns		
		400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10-400 pF	
SP103*	TF	SDA and SCL fall time	100 kHz mode	—	250	ns	
			400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF
SP106*	THD:DAT	Data input hold time	100 kHz mode	0		ns	
			400 kHz mode	0	0.9	μs	-
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250		ns	(Note 2)
			400 kHz mode	100		ns	-
SP109*	ΤΑΑ	A Output valid from clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	_		ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7	_	μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission can start
SP111	Св	Bus capacitive loading	—	400	pF		

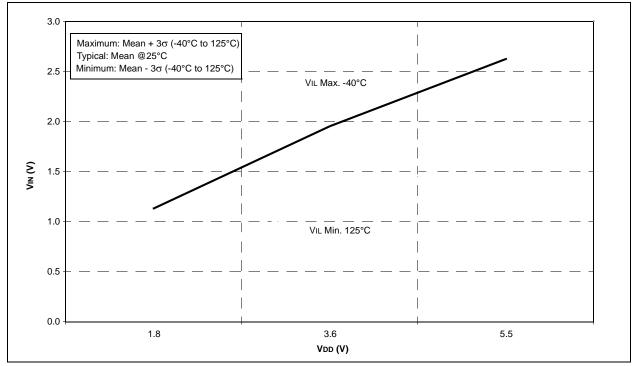
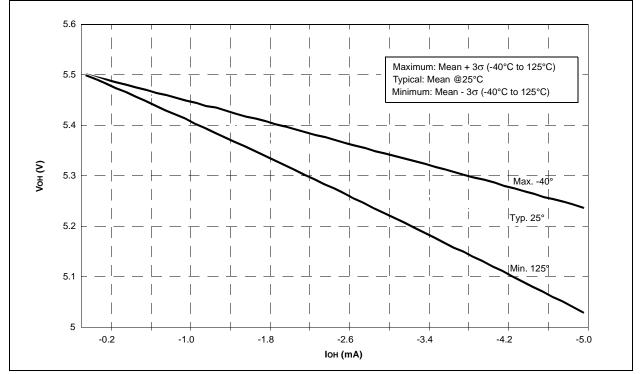

TABLE 23-13: I²C BUS DATA REQUIREMENTS

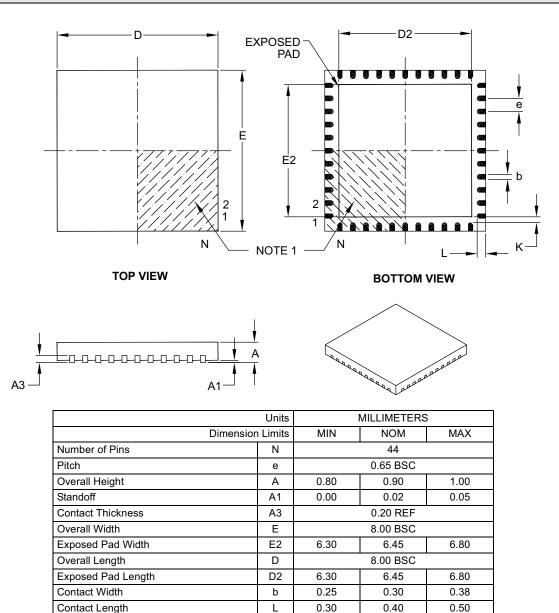

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

© 2007-2015 Microchip Technology Inc.


FIGURE 24-51: SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Κ

0.20

_

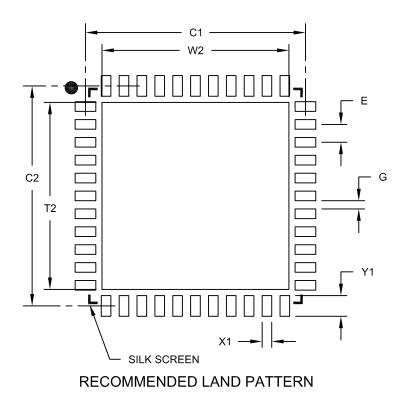
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.

Contact-to-Exposed Pad

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

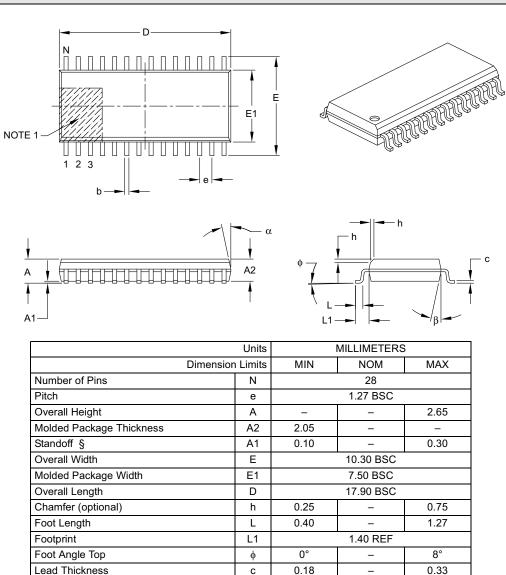
_

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensior	MIN	NOM	MAX		
Contact Pitch E		0.65 BSC			
Optional Center Pad Width	W2			6.80	
Optional Center Pad Length	T2			6.80	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.80	
Distance Between Pads	G	0.25			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A

28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

b

α

β

0.31

5°

5°

_

_

_

4. Dimensioning and tolerancing per ASME Y14.5M.

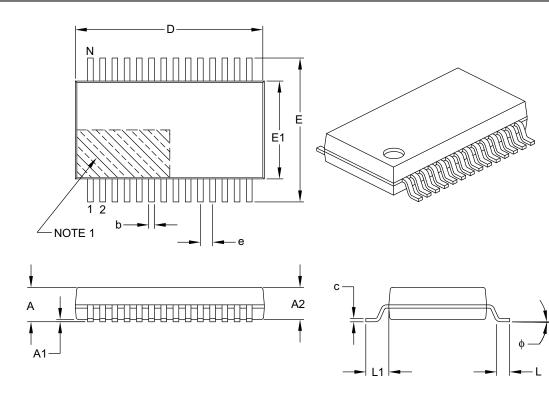
Lead Width

Mold Draft Angle Top

Mold Draft Angle Bottom

- BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B


0.51

15°

15°

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

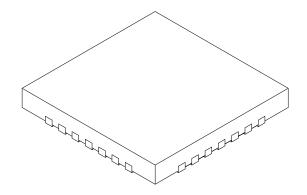
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6	
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		28		
Pitch	е		0.65 BSC		
Overall Height	Α	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint L1		1.25 REF			
Lead Thickness	с	0.09	-	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	ILLIMETER	S	
Dimensio	MIN	NOM	MAX		
Number of Pins	Ν	28			
Pitch	е		0.40 BSC		
Overall Height	Α	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.127 REF			
Overall Width	E	4.00 BSC			
Exposed Pad Width	E2	2.55	2.65	2.75	
Overall Length	D	4.00 BSC			
Exposed Pad Length	D2	2.55	2.65	2.75	
Contact Width	b	0.15	0.20	0.25	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2