

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf722-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams - 28-PIN PDIP/SOIC/SSOP/QFN/UQFN (PIC16F722/723/726/PIC16LF722/723/726)

FIGURE 1-2: PIC16F724/727/PIC16LF724/727 BLOCK DIAGRAM

Register	Address	Power-on Reset/ Brown-out Reset ⁽¹⁾	MCLR Reset/ WDT Reset	Wake-up from Sleep through Interrupt/Time out
W	—	xxxx xxxx	սսսս սսսս	սսսս սսսս
INDF	00h/80h/ 100h/180h	XXXX XXXX	XXXX XXXX	uuuu uuuu
TMR0	01h/101h	xxxx xxxx	սսսս սսսս	սսսս սսսս
PCL	02h/82h/ 102h/182h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h/83h/ 103h/183h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾
FSR	04h/84h/ 104h/184h	XXXX XXXX	սսսս սսսս	uuuu uuuu
PORTA	05h	XXXX XXXX	XXXX XXXX	uuuu uuuu
PORTB	06h	XXXX XXXX	XXXX XXXX	uuuu uuuu
PORTC	07h	XXXX XXXX	XXXX XXXX	uuuu uuuu
PORTD ⁽⁶⁾	08h	XXXX XXXX	XXXX XXXX	uuuu uuuu
PORTE	09h	xxxx	xxxx	uuuu
PCLATH	0Ah/8Ah/ 10Ah/18Ah	0 0000	0 0000	u uuuu
INTCON	0Bh/8Bh/ 10Bh/18Bh	0000 000x	0000 000x	uuuu uuuu ⁽²⁾
PIR1	0Ch	0000 0000	0000 0000	uuuu uuuu (2)
PIR2	0Dh	0	0	u
TMR1L	0Eh	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR1H	0Fh	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1CON	10h	0000 00-0	uuuu uu-u	uuuu uu-u
TMR2	11h	0000 0000	0000 0000	սսսս սսսս
T2CON	12h	-000 0000	-000 0000	-uuu uuuu
SSPBUF	13h	XXXX XXXX	XXXX XXXX	սսսս սսսս
SSPCON	14h	0000 0000	0000 0000	սսսս սսսս
CCPR1L	15h	xxxx xxxx	XXXX XXXX	սսսս սսսս
CCPR1H	16h	xxxx xxxx	XXXX XXXX	սսսս սսսս
CCP1CON	17h	00 0000	00 0000	uu uuuu
RCSTA	18h	x000 0000	0000 000x	սսսս սսսս
TXREG	19h	0000 0000	0000 0000	սսսս սսսս
RCREG	1Ah	0000 0000	0000 0000	սսսս սսսս
CCPR2L	1Bh	xxxx xxxx	XXXX XXXX	սսսս սսսս
CCPR2H	1Ch	xxxx xxxx	XXXX XXXX	սսսս սսսս
CCP2CON	1Dh	00 0000	00 0000	uu uuuu
ADRES	1Eh	xxxx xxxx	uuuu uuuu	սսսս սսսս
ADCON0	1Fh	00 0000	00 0000	uu uuuu
OPTION_REG	81h/181h	1111 1111	1111 1111	<u>uuuu</u> uuuu
TRISA	85h	1111 1111	1111 1111	<u>uuuu</u> uuuu
TRISB	86h	1111 1111	1111 1111	uuuu uuuu
TRISC	87h	1111 1111	1111 1111	<u>uuuu</u> uuuu
TRISD ⁽⁶⁾	88h	1111 1111	1111 1111	<u>uuuu</u> uuuu
TRISE	89h	1111	1111	uuuu
PIE1	8Ch	0000 0000	0000 0000	<u>uuuu</u> uuuu
PIE2	8Dh	0	0	u

TABLE 3-4: INITIALIZATION CONDITION FOR REGISTERS

 $\label{eq:Legend: Legend: Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition.$

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 and PIR2 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 3-5 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

6: PIC16F724/727/PIC16LF724/727 only.

6.2.2 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTA pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the A/D Converter (ADC), refer to the appropriate section in this data sheet.

6.2.2.1 RA0/AN0/SS/VCAP

Figure 6-1 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- a slave select input for the SSP⁽¹⁾
- a Voltage Regulator Capacitor pin (PIC16F72X only)

Note: SS pin location may be selected as RA5 or RA0.

6.2.2.2 RA1/AN1

Figure 6-2 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC

6.2.2.3 RA2/AN2

Figure 6-2 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC

6.2.2.4 RA3/AN3/VREF

Figure 6-2 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- · an analog input for the ADC
- a voltage reference input for the ADC

6.2.2.5 RA4/CPS6/T0CKI

Figure 6-3 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- · a capacitive sensing input
- a clock input for Timer0

The Timer0 clock input function works independently of any TRIS register setting. Effectively, if TRISA4 = 0, the PORTA4 register bit will output to the pad and Clock Timer0 at the same time.

6.2.2.6 RA5/AN4/CPS7/SS/VCAP

Figure 6-4 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- · an analog input for the ADC
- a capacitive sensing input
- a slave select input for the SSP⁽¹⁾
- a Voltage Regulator Capacitor pin (PIC16F72X only)

Note: SS pin location may be selected as RA5 or RA0.

6.2.2.7 RA6/OSC2/CLKOUT/VCAP

Figure 6-5 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- a crystal/resonator connection
- · a clock output
- a Voltage Regulator Capacitor pin (PIC16F72X only)

6.2.2.8 RA7/OSC1/CLKIN

Figure 6-6 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- a crystal/resonator connection
- a clock input

9.2.6 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 9.3 "A/D Acquisition Requirements".

EXAMPLE 9-1: A/D CONVERSION

;This code block configures the ADC
;for polling, Vdd reference, Frc clock
;and AN0 input.
;

;Conversion start & polling for completion ; are included.

,		
BANKSEL	ADCON1	;
MOVLW	B'01110000'	;ADC Frc clock,
		;VDD reference
MOVWF	ADCON1	;
BANKSEL	TRISA	;
BSF	TRISA,0	;Set RA0 to input
BANKSEL	ANSELA	;
BSF	ANSELA,0	;Set RA0 to analog
BANKSEL	ADCON0	;
MOVLW	B'0000001'	;AN0, On
MOVWF	ADCON0	;
CALL	SampleTime	;Acquisiton delay
BSF	ADCON0,GO	;Start conversion
BTFSC	ADCON0,GO	;Is conversion done?
GOTO	\$-1	;No, test again
BANKSEL	ADRES	;
MOVF	ADRES,W	;Read result
MOVWF	RESULT	;store in GPR space

9.3 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 9-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 9-3. The maximum recommended impedance for analog sources is 10 k Ω . As the source

impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 9-1 may be used. This equation assumes that 1/2 LSb error is used (256 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 9-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V VDD$
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$
The value for TC can be approximated with the following equations:
 $V_{APPLIED}\left(1 - \frac{1}{1-1}\right) = V_{CHOLD}$
 $:[11VCHOLD charged to within 1/2 lsb$

$$(2^{n+1}) - 1'$$

$$V_{APPLIED}\left(1 - e^{\frac{-TC}{RC}}\right) = V_{CHOLD}$$
;[2] V_{CHOLD charge response to V_{APPLIED}}

$$V_{APPLIED}\left(1-e^{\frac{-ic}{RC}}\right) = V_{APPLIED}\left(1-\frac{1}{(2^{n+1})-l}\right) \quad (combining [1] and [2])$$

Note: Where n = number of bits of the ADC.

Solving for TC:

$$T_{C} = -C_{HOLD}(R_{IC} + R_{SS} + R_{S}) \ln(1/511)$$

= $-10pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.001957)$
= $1.12\mu s$
$$c_{O} = 2M_{S} + 1.12M_{S} + [(50^{\circ}C - 25^{\circ}C)(0.05M_{S}/^{\circ}C)]$$

Therefore:

$$TACQ = 2MS + 1.12MS + [(50°C-25°C)(0.05MS/°C)]$$

= 4.42MS

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

R/W-1	R/W-1	R/W	/-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
RBPU	INTEDG	тос	s	T0SE	PSA	PS2	PS1	PS0	
bit 7			·					bit 0	
Legend:									
R = Readable I	bit	W = W	itable bit		U = Unimpler	mented bit, rea	d as '0'		
-n = Value at P	OR	'1' = Bi	is set		'0' = Bit is cle	ared	x = Bit is unkı	nown	
bit 7 RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port latch values									
bit 6	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of INT pin 0 = Interrupt on falling edge of INT pin								
bit 5	TOCS: TMR0 1 = Transition 0 = Internal in	Clock S on T0C	ource Sele KI pin or C n cycle cloc	ct bit PSOSC si k (Fosc/4)	gnal)				
bit 4	TOSE: TMR0 1 = Incremen 0 = Incremen	Source t on high t on low-	Edge Seleo -to-low trai to-high trai	ct bit nsition on ⁻ nsition on ⁻	T0CKI pin T0CKI pin				
bit 3	PSA: Prescal 1 = Prescaler 0 = Prescaler	er Assig is assig is assig	nment bit ned to the ned to the	WDT Timer0 mo	dule				
bit 2-0	PS<2:0>: Pre	escaler R	ate Select	bits					
	BIT	VALUE -	MR0 RATE	WDT RATE	E				
	0 0 0 1 1 1 1	00 01 10 11 00 01 10 11	1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256	1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128	_				
TABLE 11-1:	SUMMAR	Y OF RI	EGISTER	S ASSOC		H TIMER0			

REGISTER 11-1: OPTION_REG: OPTION REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CPSCON0	CPSON	_	_		CPSRNG1	CPSRNG0	CPSOUT	T0XCS	0 0000	0 0000
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
TMR0	Timer0 Module Register									uuuu uuuu
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module.

14.6 Operation during Sleep

The capacitive sensing oscillator will continue to run as long as the module is enabled, independent of the part being in Sleep. In order for the software to determine if a frequency change has occurred, the part must be awake. However, the part does not have to be awake when the timer resource is acquiring counts. One way to acquire the Timer1 counts while in Sleep is to have Timer1 gated with the overflow of the Watchdog Timer. This can be accomplished using the following steps:

- 1. Configure the Watchdog Time-out overflow as the Timer1's gate source T1GSS<1:0> = 11.
- 2. Set Timer1 Gate to toggle mode by setting the T1GTM bit of the T1GCON register.
- 3. Set the TMR1GE bit of the T1GCON register.
- 4. Set TMR1ON bit of the T1CON register.
- 5. Enable capacitive sensing module with the appropriate current settings and pin selection.
- 6. Clear Timer1.
- 7. Put the part to Sleep.
- 8. On the first WDT overflow, the capacitive sensing oscillator will begin to increment Timer1. Then put the part to Sleep.
- 9. On the second WDT overflow Timer1 will stop incrementing. Then run the software routine to determine if a frequency change has occurred.

Refer to Section 12.0 "Timer1 Module with Gate Control" for additional information.

- Note 1: When using the WDT to set the interval on Timer1, any other source that wakes the part up early will cause the WDT overflow to be delayed, affecting the value captured by Timer1.
 - 2: Timer0 does not operate when in Sleep, and therefore cannot be used for capacitive sense measurements in Sleep.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own
bit 7	SPEN: Serial	l Port Enable bi	t(1)				
	1 = Serial po	ort enabled (cor	figures RX/D	T and TX/CK p	oins as serial po	rt pins)	
Lik O	0 = Serial pc	ort disabled (hel	d in Reset)				
DIT 6		eceive Enable c	DIT				
	1 = Selects $3 = 0 = $ Selects $3 = 0 = 0 = 0$	B-bit reception					
bit 5	SREN: Single	e Receive Enat	ole bit				
	Asynchronou	<u>is mode</u> :					
	Don't care						
	Synchronous	mode – Maste	<u>r</u> :				
	1 = Enables	single receive					
	This bit is cle	ared after recei	otion is compl	ete.			
	Synchronous	mode – Slave:					
	Don't care						
bit 4	CREN: Conti	nuous Receive	Enable bit				
	Asynchronou	<u>is mode</u> :					
	1 = Enables 0 = Disables	receiver					
	Synchronous	<u>mode</u> :					
	1 = Enables	continuous rec	eive until enal	ole bit CREN is	s cleared (CRE	N overrides SRE	N)
	0 = Disables	continuous rec	eive				
bit 3	ADDEN: Add	Iress Detect En	able bit				
	1 – Enables	address detect	<u>(⊼9 = ⊥)</u> : ion_enable in	terrupt and loa	d the receive b	uffer when PSP.	-8- is sot
	0 = Disables	address detect	tion, all bytes	are received a	and ninth bit car	be used as pari	ity bit
	<u>Asynchronou</u>	<u>is mode 8-bit (R</u>	<u> X9 = 0)</u> :				•
	Don't care						
	Synchronous Must be set t	<u>s mode</u> :					
hit 2	FEPD. Frami	ing Error bit					
	1 = Framing	error (can be u	pdated by rea	idina RCREG	register and reg	eive next valid b	ovte)
	0 = No frami	ng error		gee			, , , , , , , , , , , , , , , , , , , ,
bit 1	OERR: Over	run Error bit					
	1 = Overrun	error (can be c	leared by clea	ring bit CREN)		
	0 = No overr	un error					
bit 0	RX9D: Ninth	bit of Received	Data	and much be		oor firmusee	
	i nis can de a	audress/data bit	or a parity bit	and must de	calculated by U	ser firmware.	
Note 1:	The AUSART m TRISx = 1.	nodule automat	tically change	es the pin fro	m tri-state to	drive as neede	d. Configure

REGISTER 16-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

	SYNC = 0, BRGH = 1											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_	_	—				_		_	300	0.16	207
1200	—	—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	—
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—	—	—	57.60k	0.00	3	—	—	—
115.2k	—	—	_	—	_	—	115.2k	0.00	1	_	_	—

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES

16.3 AUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The AUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

16.3.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the AUSART for Synchronous Master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the AUSART.

16.3.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/ CK line. The TX/CK pin output driver is automatically enabled when the AUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

16.3.1.2 Synchronous Master Transmission

Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the AUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXREG register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note: The TSR register is not mapped in data memory, so it is not available to the user.

16.3.1.3 Synchronous Master Transmission Setup:

- Initialize the SPBRG register and the BRGH bit to achieve the desired baud rate (refer to Section 16.2 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TXREG register.

R/W-	0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WCO	L SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0		
bit 7	·	•	•	·	•	•	bit 0		
Levent									
Legena: $P = P_{aa} dable bit$ $W = Writeble bit$ $U = Unimplemented bit read as '0'$									
		41° = Rit is set	DIL	$0^{\circ} = \text{Orimpler}$	ared	v – Bitic unk	2014/2		
		1 - Dit 13 36t							
bit 7	WCOL: Write	Collision Dete	ct bit						
	1 = The SSP software)	BUF register is	s written while	e it is still transr	nitting the previ	ous word (mus	t be cleared in		
	0 = No collisi	ion							
bit 6	SSPOV: Rece	eive Overflow I	ndicator bit						
	1 = A new by overflow, the SSP overflow SSPBUF 0 = No overfl	yte is received the data in SS BUF, even if o bit is not set s register.	while the SS PSR is lost. (only transmitt ince each ne	PBUF register Overflow can or ing data, to a w reception (a	is still holding hly occur in Slav void setting ov nd transmission	the previous da ve mode. The u erflow. In Mas) is initiated by	ata. In case of user must read ter mode, the writing to the		
bit 5	SSPEN: Sync	chronous Seria	I Port Enable	bit					
	1 = Enables s 0 = Disables s	serial port and o serial port and	configures SC configures the	CK, SDO and S ese pins as I/O	DI as serial por port pins	t pins ⁽¹⁾			
bit 4	CKP: Clock P	olarity Select b	bit						
	1 = Idle state 0 = Idle state	for clock is a h for clock is a lo	igh level ow level						
bit 3-0	SSPM<3:0>:	Synchronous S	Serial Port Mo	de Select bits					
	0000 = SPI M 0001 = SPI M 0010 = SPI M 0011 = SPI M 0100 = SPI S 0101 = SPI S	Master mode, cl Master mode, cl Master mode, cl Master mode, cl Slave mode, clo Slave mode, clo	ock = Fosc/4 ock = Fosc/1 ock = Fosc/6 ock = TMR2 ck = SCK pin ck = SCK pin	4 6 64 0 <u>utput/2</u> 1. <u>SS</u> pin contro 1. SS pin contro	l enabled I disabled. SS c	an be used as	I/O pin.		
Note 1:	When enabled, the	ese pins must b	e properly co	onfigured as inp	out or output.				

REGISTER 17-1: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (SPI MODE)

REGISTER 17-2: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (SPI MODE)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/Ā	Р	S	R/W	UA	BF
bit 7							bit 0

R = Reada	ble bit	W = Writable bit	U = Unimplemented bit.	. read as '0'						
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknowr						
bit 7	SMP: SF	PI Data Input Sample Phase	bit							
	SPI Mas	ter mode:								
	1 = Input	t data sampled at end of data	a output time							
	0 = Inpui SPI Slav	0 = input data sampled at middle of data output time SPI Slave mode:								
	SMP mu	st be cleared when SPI is us	sed in Slave mode							
bit 6	CKE: SP	PI Clock Edge Select bit								
	<u>SPI mod</u>	<u>SPI mode, CKP = 0:</u>								
	1 = Data	1 = Data stable on rising edge of SCK								
	0 = Data SPI mod	stable on falling edge of SC	К							
	1 = Data	stable on falling edge of SC	ĸ							
	0 = Data	stable on rising edge of SC	K							
bit 5	D/A: Dat	a/Address bit								
	Used in I	² C mode only.								
bit 4	P: Stop b	bit								
	Used in I	¹² C mode only.								
bit 3	S: Start b	pit								
	Used in I	² C mode only.								
bit 2	R/W: Re	ad/Write Information bit								
	Used in I	² C mode only.								
bit 1	UA: Upd	ate Address bit								
	Used in I	² C mode only.								
bit 0	BF: Buffe	er Full Status bit								
	1 = Rece	eive complete, SSPBUF is fu								

	DC CI	HARACTERISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended				
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
	VIL	Input Low Voltage					
		I/O PORT:					
D030		with TTL buffer	—		0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D030A			—		0.15 Vdd	V	$1.8V \leq V\text{DD} \leq 4.5V$
D031		with Schmitt Trigger buffer	—		0.2 Vdd	V	$2.0V \leq V\text{DD} \leq 5.5V$
		with I ² C levels	—		0.3 Vdd	V	
D032		MCLR, OSC1 (RC mode) ⁽¹⁾	—	_	0.2 Vdd	V	
D033A		OSC1 (HS mode)	—	_	0.3 Vdd	V	
	Vih	Input High Voltage					
		I/O ports:		_	_		
D040		with TTL buffer	2.0		—	V	$4.5V \leq VDD \leq 5.5V$
D040A			0.25 VDD+ 0.8	_	_	V	$1.8V \le V\text{DD} \le 4.5V$
D041		with Schmitt Trigger buffer	0.8 Vdd	—	—	V	$2.0V \leq V\text{DD} \leq 5.5V$
		with I ² C levels	0.7 Vdd	_	—	V	
D042		MCLR	0.8 Vdd	_	—	V	
D043A		OSC1 (HS mode)	0.7 Vdd	_	—	V	
D043B		OSC1 (RC mode)	0.9 Vdd	_	—	V	(Note 1)
	lı∟	Input Leakage Current ⁽²⁾					
D060		I/O ports	—	± 5	± 125	nA	Vss \leq VPIN \leq VDD, Pin at high- impedance, 85°C
		(2)		± 5	± 1000	nA	125°C
D061	-	MCLR ⁽³⁾	_	± 50	± 200	nA	$VSS \leq VPIN \leq VDD, 85^{\circ}C$
	IPUR	PORTB Weak Pull-up Current			1	1	
D070*			25	100	200	•	VDD = 3.3V, VPIN = VSS
	1/2:	O	25	140	300	μΑ	VDD = 5.0V, VPIN = VSS
Daga	VOL		1				
D080		I/O ports	—	—	0.6	V	IOL = 8MA, VDD = 5V IOL = 6MA, VDD = 3.3V IOL = 1.8MA, VDD = 1.8V
	Voh	Output High Voltage ⁽⁴⁾					
D090		I/O ports	Vdd - 0.7	_	_	V	IOH = 3.5mA, VDD = 5V IOH = 3mA, VDD = 3.3V IOH = 1mA, VDD = 1.8V
		Capacitive Loading Specs on	Output Pins				
D101*	COSC2	OSC2 pin	_		15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101A*	Сю	All I/O pins	—	—	50	pF	
		Program Flash Memory					

23.4 DC Characteristics: PIC16(L)F722/3/4/6/7-I/E

Legend: TBD = To Be Determined

^t These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

FIGURE 24-3: PIC16F722/3/4/6/7 TYPICAL IDD vs. Fosc OVER VDD, EC MODE, VCAP = 0.1 µF

FIGURE 24-9: PIC16F722/3/4/6/7 MAXIMUM IDD vs. Fosc OVER VDD, HS MODE, VCAP = 0.1 µF

FIGURE 24-33: PIC16F722/3/4/6/7 BOR IPD vs. VDD, VCAP = 0.1 µF

