Microchip Technology - PIC16LF722-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5КВ (2К х 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf722-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Page
Bank 0											
00h ⁽²⁾	INDF	Addressing	this location	uses conten	ts of FSR to a	address data	memory (not	a physical re	gister)	XXXX XXXX	29,37
01h	TMR0	Timer0 Mod	lule Register							XXXX XXXX	105,37
02h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Signific	ant Byte					0000 0000	28,37
03h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	25,37
04h ⁽²⁾	FSR	Indirect Data	a Memory Ad	ddress Point	er					XXXX XXXX	29,37
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXX XXXX	51,37
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	60,37
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	70,37
08h ⁽³⁾	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX XXXX	77,37
09h	PORTE	—	—	_	—	RE3	RE2 ⁽³⁾	RE1 ⁽³⁾	RE0 ⁽³⁾	xxxx	81,37
0Ah ^(1, 2)	PCLATH	—	—	_	Write Buffer	for the upper	5 bits of the F	Program Cou	nter	0 0000	28,37
0Bh ⁽²⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	x000 000x	44,37
0Ch	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	47,37
0Dh	PIR2	—	—	—	—	—	-	—	CCP2IF	0	48,37
0Eh	TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								XXXX XXXX	113,37
0Fh	TMR1H	Holding Reg	gister for the	Most Signific	cant Byte of th	ne 16-bit TMF	1 Register			XXXX XXXX	113,37
10h	T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR10N	0000 00-0	117,37
11h	TMR2	Timer2 Mod	lule Register							0000 0000	120,37
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	121,37
13h	SSPBUF	Synchronou	is Serial Port	Receive Bu	ffer/Transmit	Register				XXXX XXXX	161,37
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	178,37
15h	CCPR1L	Capture/Co	mpare/PWM	Register (L	SB)					XXXX XXXX	130,37
16h	CCPR1H	Capture/Co	mpare/PWM	Register (M	SB)					XXXX XXXX	130,37
17h	CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	129,37
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	148,37
19h	TXREG	USART Transmit Data Register								0000 0000	147,37
1Ah	RCREG	G USART Receive Data Register							0000 0000	145,37	
1Bh	CCPR2L	Capture/Compare/PWM Register 2 (LSB)							XXXX XXXX	130,37	
1Ch	CCPR2H	Capture/Co	mpare/PWM	Register 2 (MSB)					XXXX XXXX	130,37
1Dh	CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	129,37
1Eh	ADRES	A/D Result I	Register						-	xxxx xxxx	100,37
1Fh	ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	99,37

TABLE 2-1: PIC16(L)F722/3/4/6/7 SPECIAL FUNCTION REGISTER SUMMARY

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter. These registers can be addressed from any bank. These registers/bits are not implemented on PIC16F722/723/726/PIC16LF722/723/726 devices, read as '0'. Accessible only when SSPM<3:0> = 1001. Accessible only when SSPM<3:0> \neq 1001. This bit is always '1' as RE3 is input-only. Note 1:

2:

3:

4:

5:

6:

2.2.2.2 OPTION register

The OPTION register, shown in Register 2-2, is a readable and writable register, which contains various control bits to configure:

- Timer0/WDT prescaler
- External RB0/INT interrupt
- Timer0
- Weak pull-ups on PORTB

Note:	To achieve a 1:1 prescaler assignment for
	Timer0, assign the prescaler to the WDT
	by setting the PSA bit of the
	OPTION_REG register to '1'. Refer to
	Section 11.1.3 "Software
	Programmable Prescaler".

REGISTER 2-2: OPTION_REG: OPTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual bits in the WPUB register					
bit 6	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin					
bit 5	TOCS: Timer0 Clock 1 = Transition on R/ 0 = Internal instruction	TOCS: Timer0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (Fosc/4)				
bit 4	T0SE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin					
bit 3	PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module					
bit 2-0	PS<2:0>: Prescaler	Rate Select b	oits			
	Bit Value	Timer0 Rate	WDT Rate			
	000 001 010 011 100 101	1:2 1:4 1:8 1:16 1:32 1:64	1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32			

1:128

1:256

1:64

1 : 128

110

111

4.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1 and PIE2 registers)

The INTCON, PIR1 and PIR2 registers record individual interrupts via Interrupt Flag bits. Interrupt Flag bits will be set, regardless of the status of the GIE, PEIE and individual Interrupt Enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- · PC is loaded with the interrupt vector 0004h

The ISR determines the source of the interrupt by polling the Interrupt Flag bits. The Interrupt Flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any

FIGURE 4-2: INT PIN INTERRUPT TIMING

interrupt that occurs while executing the ISR will be recorded through its Interrupt Flag, but will not cause the processor to redirect to the interrupt vector.

The ${\tt RETFIE}$ instruction exits the ISR by popping the previous address from the stack and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual Interrupt Flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

4.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three instruction cycles. For asynchronous interrupts, the latency is three to four instruction cycles, depending on when the interrupt occurs. See Figure 4-2 for timing details.

- 4: For minimum width of INT pulse, refer to AC specifications in Section 23.0 "Electrical Specifications".
- **5:** INTF is enabled to be set any time during the Q4-Q1 cycles.

3: CLKOUT is available only in INTOSC and RC Oscillator modes.

PIC16(L)F722/3/4/6/7

PIC16(L)F722/3/4/6/7

REGISTER 6-15: PORTE: PORTE REGISTER

U-0	U-0	U-0	U-0	R-x	R/W-x	R/W-x	R/W-x
—	—	—	—	RE3	RE2 ⁽¹⁾	RE1 ⁽¹⁾	RE0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4	Unimplemented: Read as '0'
bit 3-0	RE<3:0>: PORTE I/O Pin bits ⁽¹⁾
	1 = Port pin is > VIH
	0 = Port pin is < VIL

Note 1: RE<2:0> are not implemented on the PIC16F722/723/726/PIC16LF722/723/726. Read as '0'.

REGISTER 6-16: TRISE: PORTE TRI-STATE REGISTER

U-0	U-0	U-0	U-0	R-1	R/W-1	R/W-1	R/W-1
_	—	_	—	TRISE3	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4Unimplemented: Read as '0'bit 3TRISE3: RE3 Port Tri-state Control bit

This bit is always '1' as RE3 is an input onlybit 2-0TRISE<2:0>: RE<2:0> Tri-State Control bits(1)1 = PORTE pin configured as an input (tri-stated)0 = PORTE pin configured as an output

Note 1: TRISE<2:0> are not implemented on the PIC16F722/723/726/PIC16LF722/723/726. Read as '0'.

12.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 12-1 displays the Timer1 enable selections.

TABLE 12-1: TIMER1 ENABLE SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

12.2 Clock Source Selection

The TMR1CS<1:0> and T1OSCEN bits of the T1CON register are used to select the clock source for Timer1. Table 12-2 displays the clock source selections.

12.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

12.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI or the capacitive sensing oscillator signal. Either of these external clock sources can be synchronized to the microcontroller system clock or they can run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated internal oscillator circuit.

Note:	In Counter mode, a falling edge must be
	registered by the counter prior to the first
	incrementing rising edge after any one or
	more of the following conditions:

- Timer1 enabled after POR reset
- Write to TMR1H or TMR1L
- Timer1 is disabled
- Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON= 1) when T1CKI is low.

TMR1CS1	TMR1CS0	T10SCEN	Clock Source				
0	1	x	System Clock (FOSC)				
0	0	x	Instruction Clock (Fosc/4)				
1	1	x	Capacitive Sensing Oscillator				
1	0	0	External Clocking on T1CKI Pin				
1	0	1	Oscillator Circuit on T1OSI/T1OSO Pins				

TABLE 12-2: CLOCK SOURCE SELECTIONS

12.6 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 Gate circuitry. This is also referred to as Timer1 Gate Count Enable.

Timer1 Gate can also be driven by multiple selectable sources.

12.6.1 TIMER1 GATE COUNT ENABLE

The Timer1 Gate is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate (T1G) input is active, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate input is inactive, no incrementing will occur and Timer1 will hold the current count. See Figure 12-3 for timing details.

TABLE 12-3: TIMER1 GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation
\uparrow	0	0	Counts
1	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts

12.6.2 TIMER1 GATE SOURCE SELECTION

The Timer1 Gate source can be selected from one of four different sources. Source selection is controlled by the T1GSS bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T1GPOL bit of the T1GCON register.

TABLE 12-4: TIMER1 GATE SOURCES

T1GSS	Timer1 Gate Source
00	Timer1 Gate Pin
01	Overflow of Timer0 (TMR0 increments from FFh to 00h)
10	Timer2 match PR2 (TMR2 increments to match PR2)
11	Count Enabled by WDT Overflow (Watchdog Time-out interval expired)

12.6.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 Gate Control. It can be used to supply an external source to the Timer1 Gate circuitry.

12.6.2.2 Timer0 Overflow Gate Operation

When Timer0 increments from FFh to 00h, a low-to-high pulse will automatically be generated and internally supplied to the Timer1 Gate circuitry.

12.6.2.3 Timer2 Match Gate Operation

The TMR2 register will increment until it matches the value in the PR2 register. On the very next increment cycle, TMR2 will be reset to 00h. When this Reset occurs, a low-to-high pulse will automatically be generated and internally supplied to the Timer1 Gate circuitry.

12.6.2.4 Watchdog Overflow Gate Operation

The Watchdog Timer oscillator, prescaler and counter will be automatically turned on when TMR1GE = 1 and T1GSS selects the WDT as a gate source for Timer1 (T1GSS = 11). TMR1ON does not factor into the oscillator, prescaler and counter enable. See Table 12-5.

The PSA and PS bits of the OPTION register still control what time-out interval is selected. Changing the prescaler during operation may result in a spurious capture.

Enabling the Watchdog Timer oscillator does not automatically enable a Watchdog Reset or Wake-up from Sleep upon counter overflow.

Note:	When using the WDT as a gate source for
	limer1, operations that clear the Watchdog
	Timer (CLRWDT, SLEEP instructions) will
	affect the time interval being measured for
	capacitive sensing. This includes waking
	from Sleep. All other interrupts that might
	wake the device from Sleep should be
	disabled to prevent them from disturbing
	the measurement period.

As the gate signal coming from the WDT counter will generate different pulse widths depending on if the WDT is enabled, when the CLRWDT instruction is executed, and so on, Toggle mode must be used. A specific sequence is required to put the device into the correct state to capture the next WDT counter interval.

12.11 Timer1 Control Register

The Timer1 Control register (T1CON), shown in Register 12-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR1ON
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	TMR1CS<1:0>: Timer1 Clock Source Select bits
	11 = Timer1 clock source is Capacitive Sensing Oscillator (CAPOSC)
	10 = Timer1 clock source is pin or oscillator:
	$\underline{\text{If } \text{T1OSCEN} = 0}$
	External clock from T1CKI pin (on the rising edge)
	$\frac{\text{If } 110\text{SUEN} = 1}{\text{Crustel excillator on T10SUT10SO pine}}$
	01 – Timer1 clock source is system clock (FOSC)
	00 = Timer1 clock source is instruction clock (FOSC/4)
bit 5-4	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits
	11 = 1.8 Prescale value
	10 = 1:4 Prescale value
	01 = 1:2 Prescale value
	00 = 1:1 Prescale value
bit 3	T1OSCEN: LP Oscillator Enable Control bit
	1 = Dedicated Timer1 oscillator circuit enabled
	0 = Dedicated Timer1 oscillator circuit disabled
bit 2	T1SYNC: Timer1 External Clock Input Synchronization Control bit
	<u>TMR1CS<1:0> = $1X$</u>
	1 = Do not synchronize external clock input
	0 = Synchronize external clock input with system clock (FOSC)
	TMR1CS<1:0> = 0X
	This bit is ignored. Timer1 uses the internal clock when TMR1CS<1:0> = $1X$.
bit 1	Unimplemented: Read as '0'
bit 0	TMR10N: Timer1 On bit
	1 = Enables Timer1
	0 = Stops Timer1
	Clears Timer1 Gate flip-flop

15.2 Compare Mode

In Compare mode, the 16-bit CCPRx register value is constantly compared against the TMR1 register pair value. When a match occurs, the CCPx module may:

- Toggle the CCPx output
- Set the CCPx output
- Clear the CCPx output
- Generate a Special Event Trigger
- Generate a Software Interrupt

The action on the pin is based on the value of the CCPxM<3:0> control bits of the CCPxCON register.

All Compare modes can generate an interrupt.

FIGURE 15-2: COMPARE MODE OPERATION BLOCK DIAGRAM

- Special Event Trigger will:
- Clear TMR1H and TMR1L registers.
- NOT set interrupt flag bit TMR1IF of the PIR1 register.
 Set the GO/DONE bit to start the ADC conversion
- (CCP2 only).

15.2.1 CCPx PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Either RC1 or RB3 can be selected as the CCP2 pin. Refer to **Section 6.1** "Alternate Pin Function" for more information.

Note:	Clearing the CCPxCON register will force									
	the CCPx compare output latch to the									
	default low level. This is not the PORT I/O									
	data latch.									

15.2.2 TIMER1 MODE SELECTION

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode. Note: Clocking Timer1 from the system clock (Fosc) should not be used in Compare mode. For the Compare operation of the TMR1 register to the CCPRx register to occur, Timer1 must be clocked from the Instruction Clock (Fosc/4) or from an external clock source.

15.2.3 SOFTWARE INTERRUPT MODE

When Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the CCPxIF bit in the PIRx register is set and the CCPx module does not assert control of the CCPx pin (refer to the CCPxCON register).

15.2.4 SPECIAL EVENT TRIGGER

When Special Event Trigger mode is chosen (CCPxM<3:0> = 1011), the CCPx module does the following:

- Resets Timer1
- Starts an ADC conversion if ADC is enabled (CCP2 only)

The CCPx module does not assert control of the CCPx pin in this mode (refer to the CCPxCON register).

The Special Event Trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPRxH, CCPRxL register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. This allows the CCPRxH, CCPRxL register pair to effectively provide a 16-bit programmable period register for Timer1.

Note 1: The Special Event Trigger from the CCP module does not set interrupt flag bit TMR1IF of the PIR1 register.

2: Removing the match condition by changing the contents of the CCPRxH and CCPRxL register pair, between the clock edge that generates the Special Event Trigger and the clock edge that generates the Timer1 Reset, will preclude the Reset from occurring.

15.2.5 COMPARE DURING SLEEP

The Compare Mode is dependent upon the system clock (Fosc) for proper operation. Since Fosc is shut down during Sleep mode, the Compare mode will not function properly during Sleep.

16.1 AUSART Asynchronous Mode

The AUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VOL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is 8 bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. Refer to Table 16-5 for examples of baud rate Configurations.

The AUSART transmits and receives the LSb first. The AUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

16.1.1 AUSART ASYNCHRONOUS TRANSMITTER

The AUSART transmitter block diagram is shown in Figure 16-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXREG register.

16.1.1.1 Enabling the Transmitter

The AUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other AUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXSTA register enables the transmitter circuitry of the AUSART. Clearing the SYNC bit of the TXSTA register configures the AUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the AUSART and automatically configures the TX/CK I/O pin as an output.

- Note 1: When the SPEN bit is set the RX/DT I/O pin is automatically configured as an input, regardless of the state of the corresponding TRIS bit and whether or not the AUSART receiver is enabled. The RX/ DT pin data can be read via a normal PORT read but PORT latch data output is precluded.
 - **2:** The TXIF transmitter interrupt flag is set when the TXEN enable bit is set.

16.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREG until the Stop bit of the previous character has been transmitted. The pending character in the TXREG is then transferred to the TSR in one TCY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXREG.

16.1.1.3 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set whenever the AUSART transmitter is enabled and no character is being held for transmission in the TXREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXREG. The TXIF flag bit is not cleared immediately upon writing TXREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXREG is empty, regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXREG.

R/W-	0 R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0
CSRO	C TX9	TXEN ⁽¹⁾	SYNC	—	BRGH	TRMT	TX9D
bit 7		·				·	bit 0
Legend:							
R = Read	lable bit	W = Writable	bit	U = Unimple	emented bit, rea	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unk	nown
bit 7	CSRC: Clock Asynchronou Don't care Synchronous 1 = Master f 0 = Slave m	x Source Select <u>is mode</u> : <u>s mode</u> : mode (clock ge node (clock from	bit nerated intern n external sou	ally from BRC	G)		
bit 6	TX9: 9-bit Tra 1 = Selects 0 = Selects	ansmit Enable k 9-bit transmissi 8-bit transmissi	bit ion ion				
bit 5	TXEN: Trans 1 = Transmit 0 = Transmit	mit Enable bit ⁽¹ t enabled t disabled)				
bit 4	SYNC: AUSA 1 = Synchro 0 = Asynchro	ART Mode Sele nous mode onous mode	ct bit				
bit 3	Unimplemer	nted: Read as '	0'				
bit 2	BRGH: High Asynchronou 1 = High spe 0 = Low spe Synchronous Unused in thi	Baud Rate Sele is mode: eed ed <u>s mode:</u> is mode	ect bit				
bit 1	TRMT: Trans 1 = TSR em 0 = TSR full	mit Shift Regist pty	er Status bit				
bit 0	TX9D: Ninth Can be addre	bit of Transmit ess/data bit or a	Data a parity bit.				
Note 1:	SREN/CREN over	rrides TXEN in 3	Svnchronous	mode.			

REGISTER 16-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

17.2 I²C Mode

The SSP module, in I^2C mode, implements all slave functions, except general call support. It provides interrupts on Start and Stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the I^2C Standard mode specifications:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- Start and Stop bit interrupts enabled to support firmware Master mode
- Address masking

Two pins are used for data transfer; the SCL pin (clock line) and the SDA pin (data line). The user must configure the two pin's data direction bits as inputs in the appropriate TRIS register. Upon enabling I^2C mode, the I^2C slew rate limiters in the I/O pads are controlled by the SMP bit of SSPSTAT register. The SSP module functions are enabled by setting the SSPEN bit of SSPCON register.

Data is sampled on the rising edge and shifted out on the falling edge of the clock. This ensures that the SDA signal is valid during the SCL high time. The SCL clock input must have minimum high and low times for proper operation. Refer to **Section 23.0** "**Electrical Specifications**".

FIGURE 17-7: I²C MODE BLOCK DIAGRAM

FIGURE 17-8: TYPICAL I²C

CONNECTIONS

The SSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. They are:

- SSP Control (SSPCON) register
- SSP Status (SSPSTAT) register
- Serial Receive/Transmit Buffer (SSPBUF) register
- SSP Shift Register (SSPSR), not directly accessible
- SSP Address (SSPADD) register
- SSP Address Mask (SSPMSK) register

17.2.1 HARDWARE SETUP

Selection of I^2C mode, with the SSPEN bit of the SSPCON register set, forces the SCL and SDA pins to be open drain, provided these pins are programmed as inputs by setting the appropriate TRISC bits. The SSP module will override the input state with the output data, when required, such as for Acknowledge and slave-transmitter sequences.

Note: Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I²C module

PIC16(L)F722/3/4/6/7

17.2.10 CLOCK SYNCHRONIZATION

When the CKP bit is cleared, the SCL output is held low once it is sampled low. therefore, the CKP bit will not stretch the SCL line until an external I^2C master device has already asserted the SCL line low. The SCL output will remain low until the CKP bit is set and all other devices on the I^2C bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (Figure 17-14).

17.2.11 SLEEP OPERATION

While in Sleep mode, the I^2C module can receive addresses of data, and when an address match or complete byte transfer occurs, wake the processor from Sleep (if SSP interrupt is enabled).

FIGURE 17-14: CLOCK SYNCHRONIZATION TIMING

23.2 DC Characteristics: PIC16(L)F722/3/4/6/7-I/E (Industrial, Extended) (Continued)

PIC16LF722/3/4/6/7			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
PIC16F722/3/4/6/7			$\begin{array}{l} \mbox{Standard Operating Conditions (unlet Operating temperature} & -40^{\circ}C \leq TA \\ -40^{\circ}C \leq TA \end{array}$				less otherwise stated) A ≤ +85°C for industrial A ≤ +125°C for extended		
Param	Device	Min	Tynt	Max	Units		Conditions		
No.	Characteristics		.961	maxi	enne	Vdd	Note		
	Supply Current (IDD) ^{(1,}	2)							
D014			290	330	μA	1.8	Fosc = 4 MHz		
			460	500	μA	3.0	EC Oscillator mode		
D014		_	300	430	μA	1.8	Fosc = 4 MHz		
			450	655	μA	3.0	EC Oscillator mode (Note 5)		
			500	730	μA	5.0			
D015			100	130	μA	1.8	Fosc = 500 kHz		
			120	150	μA	3.0	MFINTOSC mode		
D015			115	195	μA	1.8	Fosc = 500 kHz		
			135	200	μA	3.0	MFINTOSC mode (Note 5)		
			150	220	μA	5.0			
D016			650	800	μΑ	1.8	Fosc = 8 MHz		
			1000	1200	μA	3.0	HFINTOSC mode		
D016			625	850	μA	1.8	Fosc = 8 MHz		
			1000	1200	μΑ	3.0	HFINTOSC mode (Note 5)		
		_	1100	1500	μA	5.0			
D017			1.0	1.2	mA	1.8	Fosc = 16 MHz		
		—	1.5	1.85	mA	3.0	HFINTOSC mode		
D017			1	1.2	mA	1.8	Fosc = 16 MHz		
			1.5	1.7	mA	3.0	HFINTOSC mode (Note 5)		
			1.7	2.1	mA	5.0			
D018			210	240	μA	1.8	Fosc = 4 MHz		
		—	340	380	μA	3.0	EXTRC mode (Note 3, Note 5)		
D018			225	320	μA	1.8	Fosc = 4 MHz		
			360	445	μA	3.0	EXTRC mode (Note 3, Note 5)		
			410	650	μA	5.0			
D019			1.6	1.9	mA	3.0	Fosc = 20 MHz		
			2.0	2.8	mA	3.6	HS Oscillator mode		
D019			1.6	2	mA	3.0	Fosc = 20 MHz		
		—	1.9	3.2	mA	5.0	HS Oscillator mode (Note 5)		

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 0.1 μF capacitor on VCAP (RA0).

23.4 DC Characteristics: PIC16(L)F722/3/4/6/7-I/E (Continued)

	DC C	HARACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature -40°C \le TA \le +85°C for industrial} \\ \mbox{-40°C \le TA \le +125°C for extended} \end{array}$					
Param No.	aram Sym. Characteristic		Min.	Тур†	Max.	Units	Conditions	
D130	Eр	Cell Endurance	100	1k	—	E/W	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D131		VDD for Read	Vmin	—	—	V		
		Voltage on MCLR/VPP during Erase/Program	8.0	_	9.0	V	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
		VDD for Bulk Erase	2.7	3	_	V	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D132	VPEW	VDD for Write or Row Erase	2.7	_	_	V	VMIN = Minimum operating voltage VMAX = Maximum operating voltage	
	IPPPGM	Current on MCLR/VPP during Erase/Write	—	_	5.0	mA	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
	IDDPGM	Current on VDD during Erase/ Write	_		5.0	mA	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D133	TPEW	Erase/Write cycle time	_		2.8	ms	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D134	TRETD	Characteristic Retention	40	_	—	Year	Provided no other specifications are violated	
		VCAP Capacitor Charging						
D135		Charging current	_	200		μA		
D135A		Source/sink capability when charging complete	_	0.0	_	mA		

Legend: TBD = To Be Determined

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

TABLE 23-9: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions
US120	TCKH2DTV	SYNC XMIT (Master and Slave) Clock high to data-out valid	3.0-5.5V	—	80	ns	
			1.8-5.5V	—	100	ns	
US121	TCKRF	Clock out rise time and fall time (Master mode)	3.0-5.5V	—	45	ns	
			1.8-5.5V	—	50	ns	
US122	TDTRF	Data-out rise time and fall time	3.0-5.5V	_	45	ns	
			1.8-5.5V	_	50	ns	

FIGURE 23-15: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

10

15

ns

ns

TABLE 23-10: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Data-hold before $CK \downarrow (DT hold time)$

Data-hold after $CK \downarrow (DT hold time)$

Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C ≤ TA ≤ +125°C Param. Symbol Characteristic Min. Max. Units Conditions US125 TDTV2CKL SYNC RCV (Master and Slave) Image: Condition state s

US126

TCKL2DTL

Package Marking Information (Continued)

44-Lead QFN

28-Lead SOIC

28-Lead SSOP

44-Lead TQFP

Example

Example

Example

Example

