

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf722t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

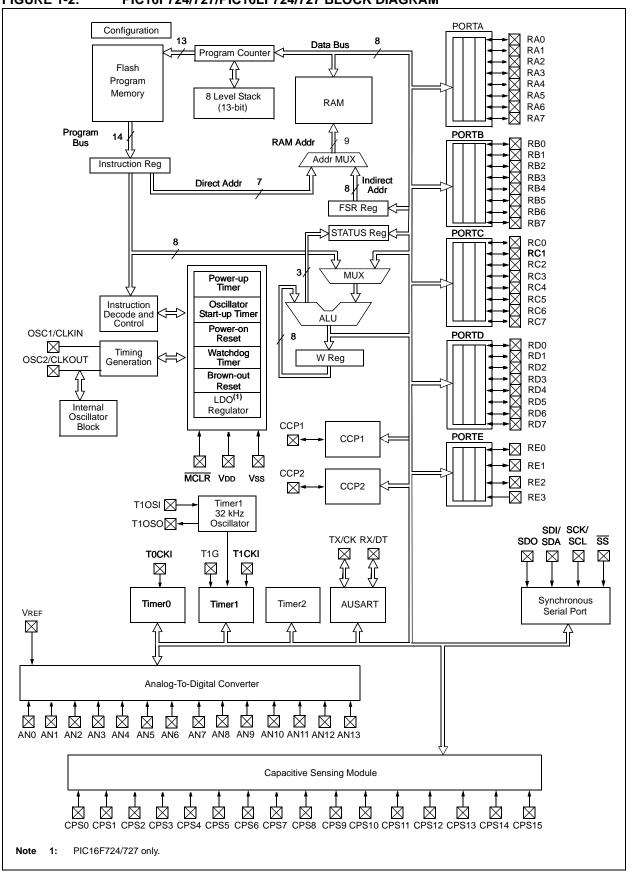
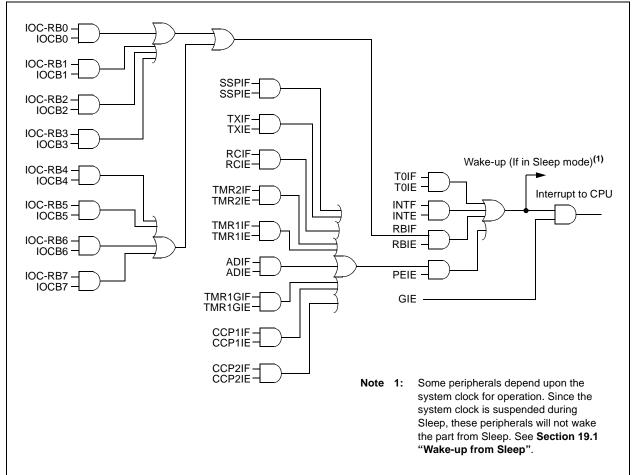


FIGURE 1-2: PIC16F724/727/PIC16LF724/727 BLOCK DIAGRAM


4.0 INTERRUPTS

The PIC16(L)F722/3/4/6/7 device family features an interruptible core, allowing certain events to preempt normal program flow. An Interrupt Service Routine (ISR) is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

The PIC16(L)F722/3/4/6/7 device family has 12 interrupt sources, differentiated by corresponding interrupt enable and flag bits:

- Timer0 Overflow Interrupt
- External Edge Detect on INT Pin Interrupt
- PORTB Change Interrupt
- Timer1 Gate Interrupt
- A/D Conversion Complete Interrupt
- AUSART Receive Interrupt
- AUSART Transmit Interrupt
- SSP Event Interrupt
- CCP1 Event Interrupt
- · Timer2 Match with PR2 Interrupt
- Timer1 Overflow Interrupt
- CCP2 Event Interrupt

A block diagram of the interrupt logic is shown in Figure 4-1.

FIGURE 4-1: INTERRUPT LOGIC

6.5.6 RD4/CPS12

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

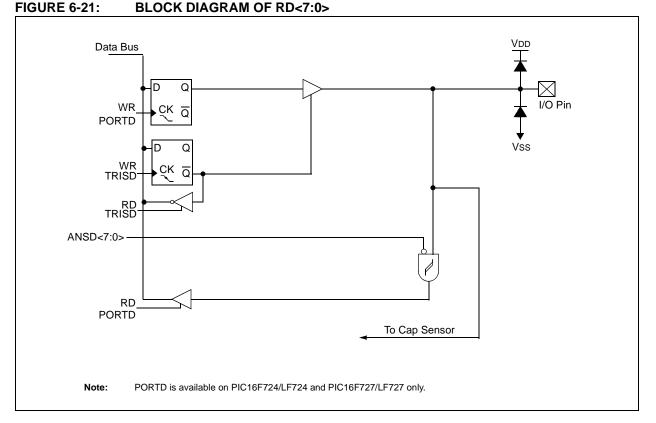
- a general purpose I/O
- · a capacitive sensing input

6.5.7 RD5/CPS13

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

- a general purpose I/O
- a capacitive sensing input

6.5.8 RD6/CPS14


Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

- a general purpose I/O
- · a capacitive sensing input

6.5.9 RD7/CPS15

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

- a general purpose I/O
- · a capacitive sensing input

TABLE 6-4: SUMM	IARY OF REGISTERS ASSOCIATED WITH PORTD ⁽¹⁾
-----------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	1111 1111	1111 1111
CPSCON0	CPSON	—	—	—	CPSRNG1	CPSRNG0	CPSOUT	TOXCS	0 0000	0 0000
CPSCON1		—	—	_	CPSCH3	CPSCH2	CPSCH1	CPSCH0	0000	0000
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX XXXX	xxxx xxxx
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTD.**Note 1:**These registers are not implemented on the PIC16F722/723/726/PIC16LF722/723/726 devices, read as '0'.

© 2007-2015 Microchip Technology Inc.

DS40001341F-page 79

6.6.1 RE0/AN5⁽¹⁾

Figure 6-22 shows the diagram for this pin. This pin is configurable to function as one of the following:

• a general purpose I/O

• an analog input for the ADC

Note 1:	RE0/AN5 is available on
	PIC16F724/LF724 and
	PIC16F727/LF727 only.

6.6.2 RE1/AN6⁽¹⁾

Figure 6-22 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC

Note 1:	RE0/AN5 is available on
	PIC16F724/LF724 and
	PIC16F727/LF727 only.

6.6.3 RE2/AN7⁽¹⁾

Figure 6-22 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC

Note 1: RE0/AN5 is available on PIC16F724/LF724 and PIC16F727/LF727 only.

6.6.4 RE3/MCLR/VPP

Figure 6-23 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose input
- as Master Clear Reset with weak pull-up
- · a programming voltage reference input

8.0 DEVICE CONFIGURATION

Device Configuration consists of Configuration Word 1 and Configuration Word 2 registers, Code Protection and Device ID.

8.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 register at 2007h and Configuration Word 2 register at 2008h. These registers are only accessible during programming.

REGISTER 8-1: CONFIG1: CONFIGURATION WORD REGISTER 1

		R/P-1	R/P-1	U-1 ⁽⁴⁾	R/P-1	R/P-1	R/P-1
—	_	DEBUG	PLLEN	_	BORV	BOREN1	BOREN0
bit 15							bit 8

U-1 ⁽⁴⁾	R/P-1						
—	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0
bit 7							bit 0

Legend:	P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 13	DEBUG: In-Circuit Debugger Mode bit 1 = In-Circuit Debugger disabled, RB6/ICSPCLK and RB7/ICSPDAT are general purpose I/O pins 0 = In-Circuit Debugger enabled, RB6/ICSPCLK and RB7/ICSPDAT are dedicated to the debugger	
bit 12	PLLEN: INTOSC PLL Enable bit 0 = INTOSC Frequency is 500 kHz 1 = INTOSC Frequency is 16 MHz (32x)	
bit 11	Unimplemented: Read as '1'	
bit 10	BORV: Brown-out Reset Voltage selection bit 0 = Brown-out Reset Voltage (VBOR) set to 2.5 V nominal 1 = Brown-out Reset Voltage (VBOR) set to 1.9 V nominal	
bit 9-8	BOREN<1:0>: Brown-out Reset Selection bits ⁽¹⁾ 0x = BOR disabled (Preconditioned State) 10 = BOR enabled during operation and disabled in Sleep 11 = BOR enabled	
bit 7	Unimplemented: Read as '1'	
bit 6	CP : Code Protection bit ⁽²⁾ 1 = Program memory code protection is disabled 0 = Program memory code protection is enabled	
bit 5	MCLRE: <u>RE3/MCLR</u> pin function select bit ⁽³⁾ 1 = RE3/ <u>MCLR</u> pin function is MCLR 0 = RE3/MCLR pin function is digital input, MCLR internally tied to VDD	
Note 1: 2: 3:	Enabling Brown-out Reset does not automatically enable Power-up Timer. The entire program memory will be erased when the code protection is turned off. When \overline{MCLR} is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.	

4: MPLAB[®] X IDE masks unimplemented Configuration bits to '0'.

9.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC interrupt flag is the ADIF bit in the PIR1 register. The ADC interrupt enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

- **Note 1:** The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled.
 - **2:** The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INT-CON register are enabled, execution will switch to the Interrupt Service Routine.

Please refer to **Section 9.1.5** "Interrupts" for more information.

9.2 ADC Operation

9.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note: The GO/DONE bit should not be set in the same instruction that turns on the ADC. Refer to Section 9.2.6 "A/D Conversion Procedure".

9.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRES register with new conversion result

9.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRES register will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note:	A device Reset forces all registers to their
	Reset state. Thus, the ADC module is
	turned off and any pending conversion is
	terminated.

9.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

9.2.5 SPECIAL EVENT TRIGGER

The Special Event Trigger of the CCP module allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

Using the Special Event Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

Refer to Section 15.0 "Capture/Compare/PWM (CCP) Module" for more information.

12.6 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 Gate circuitry. This is also referred to as Timer1 Gate Count Enable.

Timer1 Gate can also be driven by multiple selectable sources.

12.6.1 TIMER1 GATE COUNT ENABLE

The Timer1 Gate is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate (T1G) input is active, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate input is inactive, no incrementing will occur and Timer1 will hold the current count. See Figure 12-3 for timing details.

TABLE 12-3: TIMER1 GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation
\uparrow	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts

12.6.2 TIMER1 GATE SOURCE SELECTION

The Timer1 Gate source can be selected from one of four different sources. Source selection is controlled by the T1GSS bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T1GPOL bit of the T1GCON register.

TABLE 12-4: TIMER1 GATE SOURCES

T1GSS	Timer1 Gate Source				
00	Timer1 Gate Pin				
01	Overflow of Timer0 (TMR0 increments from FFh to 00h)				
10	Timer2 match PR2 (TMR2 increments to match PR2)				
11	Count Enabled by WDT Overflow (Watchdog Time-out interval expired)				

12.6.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 Gate Control. It can be used to supply an external source to the Timer1 Gate circuitry.

12.6.2.2 Timer0 Overflow Gate Operation

When Timer0 increments from FFh to 00h, a low-to-high pulse will automatically be generated and internally supplied to the Timer1 Gate circuitry.

12.6.2.3 Timer2 Match Gate Operation

The TMR2 register will increment until it matches the value in the PR2 register. On the very next increment cycle, TMR2 will be reset to 00h. When this Reset occurs, a low-to-high pulse will automatically be generated and internally supplied to the Timer1 Gate circuitry.

12.6.2.4 Watchdog Overflow Gate Operation

The Watchdog Timer oscillator, prescaler and counter will be automatically turned on when TMR1GE = 1 and T1GSS selects the WDT as a gate source for Timer1 (T1GSS = 11). TMR1ON does not factor into the oscillator, prescaler and counter enable. See Table 12-5.

The PSA and PS bits of the OPTION register still control what time-out interval is selected. Changing the prescaler during operation may result in a spurious capture.

Enabling the Watchdog Timer oscillator does not automatically enable a Watchdog Reset or Wake-up from Sleep upon counter overflow.

Note:	When using the WDT as a gate source for Timer1, operations that clear the Watchdog
	Timer (CLRWDT, SLEEP instructions) will
	affect the time interval being measured for
	capacitive sensing. This includes waking
	from Sleep. All other interrupts that might
	wake the device from Sleep should be
	disabled to prevent them from disturbing
	the measurement period.

As the gate signal coming from the WDT counter will generate different pulse widths depending on if the WDT is enabled, when the CLRWDT instruction is executed, and so on, Toggle mode must be used. A specific sequence is required to put the device into the correct state to capture the next WDT counter interval.

12.7 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

12.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- PEIE bit of the INTCON register must be set
- TISYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured
- T1OSCEN bit of the T1CON register must be configured
- TMR1GIE bit of the T1GCON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine (0004h).

12.9 CCP Capture/Compare Time Base

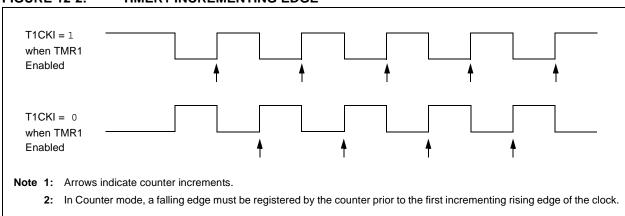
The CCP module uses the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be a Special Event Trigger.

For more information, see Section 15.0 "Capture/Compare/PWM (CCP) Module".

12.10 CCP Special Event Trigger


When the CCP is configured to trigger a special event, the trigger will clear the TMR1H:TMR1L register pair. This special event does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair becomes the period register for Timer1.

Timer1 should be synchronized to the Fosc/4 to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with a Special Event Trigger from the CCP, the write will take precedence.

For more information, see Section 9.2.5 "Special Event Trigger".

FIGURE 12-2: TIMER1 INCREMENTING EDGE

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R-0	R/W-0	
CPSON	—	—	—	CPSRNG1	CPSRNG0	CPSOUT	TOXCS	
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable I	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own	
 bit 7 CPSON: Capacitive Sensing Module Enable bit 1 = Capacitive sensing module is operating 0 = Capacitive sensing module is shut off and consumes no operating current 								
bit 6-4	Unimplement	ted: Read as 'd)'					
bit 3-2	CPSRNG<1:0>: Capacitive Sensing Oscillator Range bits 00 = Oscillator is Off. 01 = Oscillator is in low range. Charge/discharge current is nominally 0.1 μA. 10 = Oscillator is in medium range. Charge/discharge current is nominally 1.2 μA. 11 = Oscillator is in high range. Charge/discharge current is nominally 18 μA.							
bit 1	CPSOUT: Capacitive Sensing Oscillator Status bit 1 = Oscillator is sourcing current (Current flowing out the pin) 0 = Oscillator is sinking current (Current flowing into the pin)							
bit 0	TOXCS: Timer0 External Clock Source Select bit $\frac{\text{If TOCS} = 1}{\text{The T0XCS bit controls which clock external to the core/Timer0 module supplies Timer0:}$ $1 = \text{Timer0 Clock Source is the capacitive sensing oscillator}$ $0 = \text{Timer0 Clock Source is the T0CKI pin}$ $\frac{\text{If T0CS} = 0}{\text{Timer0 clock source is controlled by the core/Timer0 module and is Fosc/4.}}$							

REGISTER 14-1: CPSCON0: CAPACITIVE SENSING CONTROL REGISTER 0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111
APFCON	_	_	_	_	_	_	SSSEL	CCP2SEL	00	00
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
CCPRxL	Capture/Con	npare/PWM R	egister X Lov	v Byte					XXXX XXXX	uuuu uuuu
CCPRxH	Capture/Con	npare/PWM R	egister X Hig	h Byte					XXXX XXXX	uuuu uuuu
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIE2	—	_			—			CCP2IE	0	0
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIR2	—	—	-	-	—	-	—	CCP2IF	0	0
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR10N	0000 00-0	uuuu uu-u
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	00x0 0x00	0000 0x00
TMR1L	IR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register									uuuu uuuu
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register								xxxx xxxx	uuuu uuuu
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELA	—	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	11 1111	11 1111
APFCON	—	—	_	—	_	_	SSSEL	CCP2SEL	00	00
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PR2	Timer2 Peri	iod Register	•	•				•	1111 1111	1111 1111
SSPBUF	Synchronou	us Serial Port	Receive But	fer/Transmit	Register				XXXX XXXX	uuuu uuuu
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000

TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.

17.2.7 CLOCK STRETCHING

During any SCL low phase, any device on the I^2C bus may hold the SCL line low and delay, or pause, the transmission of data. This "stretching" of a transmission allows devices to slow down communication on the bus. The SCL line must be constantly sampled by the master to ensure that all devices on the bus have released SCL for more data.

Stretching usually occurs after an ACK bit of a transmission, delaying the first bit of the next byte. The SSP module hardware automatically stretches for two conditions:

- After a 10-bit address byte is received (update SSPADD register)
- Anytime the CKP bit of the SSPCON register is cleared by hardware

The module will hold SCL low until the CKP bit is set. This allows the user slave software to update SSPBUF with data that may not be readily available. In 10-bit addressing modes, the SSPADD register must be updated after receiving the first and second address bytes. The SSP module will hold the SCL line low until the SSPADD has a byte written to it. The UA bit of the SSPSTAT register will be set, along with SSPIF, indicating an address update is needed.

17.2.8 FIRMWARE MASTER MODE

Master mode of operation is supported in firmware using interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits of the SSPSTAT register are cleared from a Reset or when the SSP module is disabled (SSPEN cleared). The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I²C bus may be taken when the P bit is set or the bus is Idle and both the S and P bits are clear.

In Firmware Master mode, the SCL and SDA lines are manipulated by setting/clearing the corresponding TRIS bit(s). The output level is always low, irrespective of the value(s) in the corresponding PORT register bit(s). When transmitting a '1', the TRIS bit must be set (input) and a '0', the TRIS bit must be clear (output).

The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt will occur if enabled):

- Start condition
- Stop condition
- Data transfer byte transmitted/received

Firmware Master Mode of operation can be done with either the Slave mode Idle (SSPM<3:0 > = 1011), or with either of the Slave modes in which interrupts are enabled. When both master and slave functionality is enabled, the software needs to differentiate the source(s) of the interrupt. Refer to Application Note AN554, Software Implementation of $l^2 C^{TM}$ Bus Master (DS00554) for more information.

17.2.9 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allow the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I²C bus may be taken when the P bit of the SSPSTAT register is set or when the bus is Idle, and both the S and P bits are clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the Stop condition occurs.

In Multi-Master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRIS bits). There are two stages where this arbitration of the bus can be lost. They are the Address Transfer and Data Transfer stages.

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed, an \overrightarrow{ACK} pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

Refer to Application Note AN578, Use of the SSP Module in the $l^2 C^{TM}$ Multi-Master Environment (DS00578) for more information.

19.2 Wake-up Using Interrupts

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will not be cleared, the TO bit will not be set and the PD bit will not be cleared.
- If the interrupt occurs **during or after** the execution of a SLEEP instruction, the device will immediately wake-up from Sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

FIGURE 19-1: WAKE-UP FROM SLEEP THROUGH INTERRUPT

: 1 02 03 04;01 02 03 04;01 : : : : : : : : : : : : : : : : : : :	Q4
	<u> </u>
INT pin	
INTF flag (INTCON reg.)	
GIE bit (INTCON reg.), Sleep	
PC V PC + 1 V PC + 2 V PC + 2 V PC + 2 V O005h Instruction Fetched Inst(PC) = Sleep Inst(PC + 1) Inst(PC + 2) Inst(0004h) Inst(0005h)	h)
Instruction Inst(PC - 1) Sleep Inst(PC + 1) Dummy Cycle Dummy Cycle Inst(000	h)

Note 1: XT, HS or LP Oscillator mode assumed.

2: TOST = 1024 Tosc (drawing not to scale). This delay does not apply to EC and RC Oscillator modes.

4: CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
IOCB	IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	IOCB0	0000 0000	0000 0000
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 0000	0000 0000
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIE2	_	_	_	_	—	_	_	CCP2IE	0	0
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIR2	—		_	-	—	—	_	CCP2IF	0	0

TABLE 19-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used in Power-Down mode.

^{3:} GIE = 1 assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = 0, execution will continue in-line.

Mnemonic, Operands		Description	Cycles		14-Bit	Opcode	Status	Natas		
		Description		MSb			LSb	Affected	Notes	
	BYTE-ORIENTED FILE REGISTER OPERATIONS									
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	1, 2	
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1, 2	
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2	
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z		
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1, 2	
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1, 2	
DECFSZ	f, d	Decrement f, Skip if 0	1 (2)	00	1011	dfff	ffff		1, 2, 3	
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1, 2	
INCFSZ	f, d	Increment f, Skip if 0	1 (2)	00	1111	dfff	ffff		1, 2, 3	
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1, 2	
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1, 2	
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		-	
NOP	-	No Operation	1	00	0000	0xx0	0000			
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1, 2	
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1, 2	
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	1, 2	
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1, 2	
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1, 2	
		BIT-ORIENTED FILE R	EGISTER OPER	RATIO	NS					
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1, 2	
BSF	f, b	Bit Set f	1	01		bfff	ffff		1, 2	
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3	
		LITERAL AND CON	ITROL OPERAT	IONS						
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C, DC, Z		
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk			
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk			
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z		
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk			
RETFIE	-	Return from interrupt	2	00	0000	0000	1001			
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000			
SLEEP	_	Go into Standby mode	1	00	0000	0110	0011	TO, PD		
SUBLW	k	Subtract W from literal	1	11		kkkk		C, DC, Z		
XORLW	k	Exclusive OR literal with W	1	11		kkkk		Z		
Noto 1		1/O register is modified as a function of itself		I				I	l	

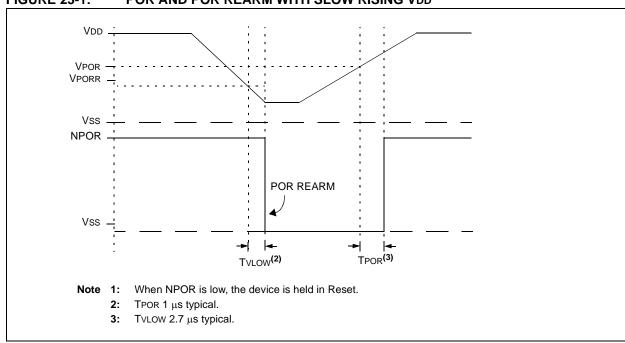
TABLE 21-2: PIC16(L)F722/3/4/6/7 INSTRUCTION SET

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTA, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

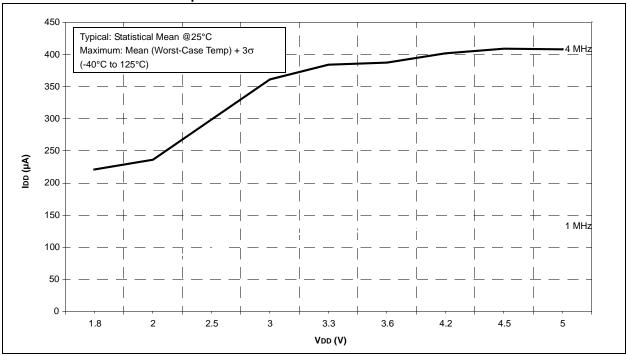
3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

PIC16LF	722/3/4/6	71	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$						
PIC16F7	22/3/4/6/7	7		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
D001	Vdd	Supply Voltage							
		PIC16LF722/3/4/6/7	1.8 1.8 2.3 2.5		3.6 3.6 3.6 3.6	V V V V	Fosc \leq 16 MHz: HFINTOSC, EC Fosc \leq 4 MHz Fosc \leq 20 MHz, EC Fosc \leq 20 MHz, HS		
D001		PIC16F722/3/4/6/7	1.8 1.8 2.3 2.5		5.5 5.5 5.5 5.5	V V V V	Fosc \leq 16 MHz: HFINTOSC, EC Fosc \leq 4 MHz Fosc \leq 20 MHz, EC Fosc \leq 20 MHz, HS		
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾							
		PIC16LF722/3/4/6/7	1.5		_	V	Device in Sleep mode		
D002*		PIC16F722/3/4/6/7	1.7	_	_	V	Device in Sleep mode		
	VPOR*	Power-on Reset Release Voltage	_	1.6	_	V			
	VPORR*	Power-on Reset Rearm Voltage							
		PIC16LF722/3/4/6/7	_	0.8	_	V	Device in Sleep mode		
		PIC16F722/3/4/6/7		1.7	—	V	Device in Sleep mode		
D003	Vfvr	Fixed Voltage Reference Voltage, Initial Accuracy	-8 -8 -8	 	6 6 6	% % %	$ \begin{array}{l} {\sf VFVR} = 1.024{\sf V}, {\sf VDD} \geq 2.5{\sf V} \\ {\sf VFVR} = 2.048{\sf V}, {\sf VDD} \geq 2.5{\sf V} \\ {\sf VFVR} = 4.096{\sf V}, {\sf VDD} \geq 4.75{\sf V}; \\ {\sf -40} \leq {\sf TA} \leq 85^{\circ}{\sf C} \end{array} $		
			-8 -8 -8		6 6 6	% % %	$ \begin{array}{l} V{\sf FVR} = 1.024V, \ V{\sf DD} \geq 2.5V \\ V{\sf FVR} = 2.048V, \ V{\sf DD} \geq 2.5V \\ V{\sf FVR} = 4.096V, \ V{\sf DD} \geq 4.75V; \\ -40 \leq {\sf TA} \leq 125^{\circ}{\sf C} \end{array} $		
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms	See Section 3.2 "Power-on Reset (POR)" for details.		

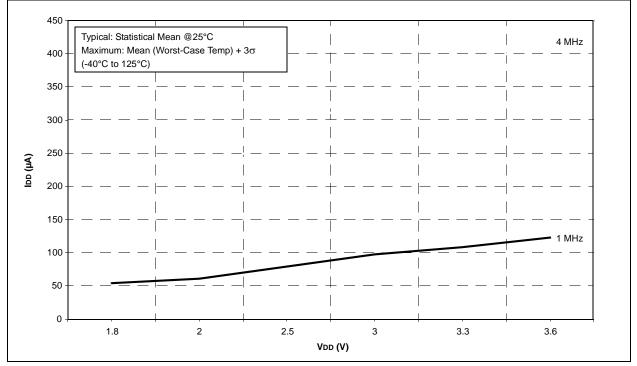

23.1 DC Characteristics: PIC16(L)F722/3/4/6/7-I/E (Industrial, Extended)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

PIC16(L)F722/3/4/6/7



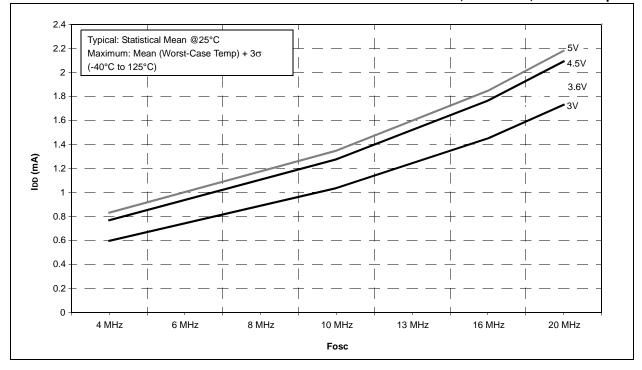
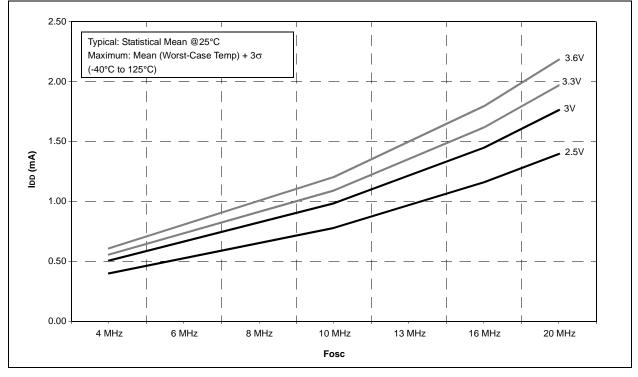
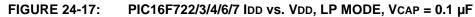
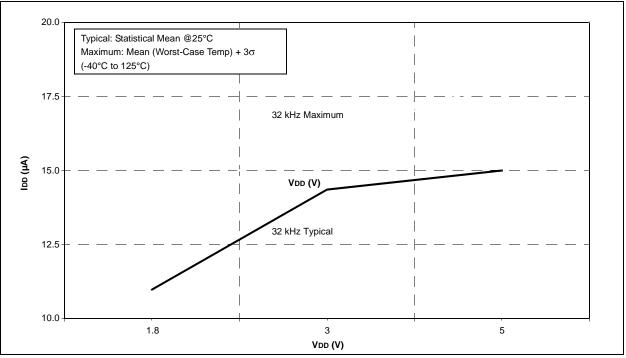
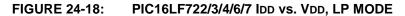

FIGURE 23-1: POR AND POR REARM WITH SLOW RISING VDD

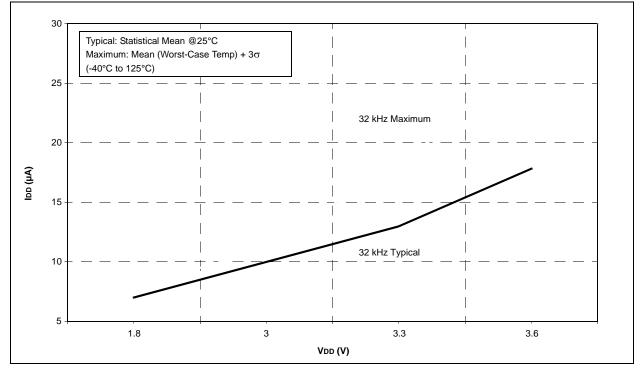
FIGURE 24-7: PIC16F722/3/4/6/7 TYPICAL IDD vs. VDD OVER Fosc, EXTRC MODE, VCAP = 0.1μ F








FIGURE 24-9: PIC16F722/3/4/6/7 MAXIMUM IDD vs. Fosc OVER VDD, HS MODE, VCAP = 0.1 µF



APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (12/2007)

Original release.

Revision B (08/2008)

Electrical Specification updates; Package Drawings; miscellaneous updates.

Revision C (04/2009)

Revised data sheet title; Revised Low-Power Features section; Revised Section 6.2.2.4 RA3/AN3/VREF; Revised Figure 16-8 Synchronous Reception.

Revision D (07/2009)

Removed the Preliminary Label; Updated the "Electrical Characteristics" section; Added charts in the "Char. Data" section; Deleted "Based 8-Bit CMOS" from title; Updated the "Special Microcontroller Features" section and the "Peripheral Features" section; Changed the title of the "Low Power Features" section into "Extreme Low-Power Management PIC16LF72X with nanoWatt XLP" and updated this section; Inserted new section – "Analog Features" (page 1); Changed the title of the "Peripheral Features" section into "Peripheral Highlights" and updated the section.

Revision E (10/2009)

Added paragraph to section 5.0 (LDO Voltage Regulator); Updated the Electrical Specifications section (Added another absolute Maximum Rating; Updated section 23.1 and Table 23-4); Updated the Pin Diagrams with the UQFN package; Updated Table 1, adding UQFN; Updated section 23.5 (Thermal Considerations); Updated the Packaging Information section adding the UQFN Package; Updated the Product Identification System section.

Revision F (12/2015)

Updated Table 2; Updated 23.1, 23.3 and 9.2.4 Sections; Updated Figure 23-9; Other minor corrections.

APPENDIX B: MIGRATING FROM OTHER PIC® DEVICES

This discusses some of the issues in migrating from other $\text{PIC}^{\textcircled{B}}$ devices to the PIC16F72X family of devices.

B.1 PIC16F77 to PIC16F72X

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F77	PIC16F727
Max. Operating Speed	20 MHz	20 MHz
Max. Program Memory (Words)	8K	8K
Max. SRAM (Bytes)	368	368
A/D Resolution	8-bit	8-bit
Timers (8/16-bit)	2/1	2/1
Oscillator Modes	4	8
Brown-out Reset	Y	Y
Internal Pull-ups	RB<7:0>	RB<7:0>
Interrupt-on-change	RB<7:4>	RB<7:0>
Comparator	0	0
USART	Y	Y
Extended WDT	Ν	N
Software Control Option of WDT/BOR	N	N
INTOSC Frequencies	None	500 kHz - 16 MHz
Clock Switching	Ν	Ν