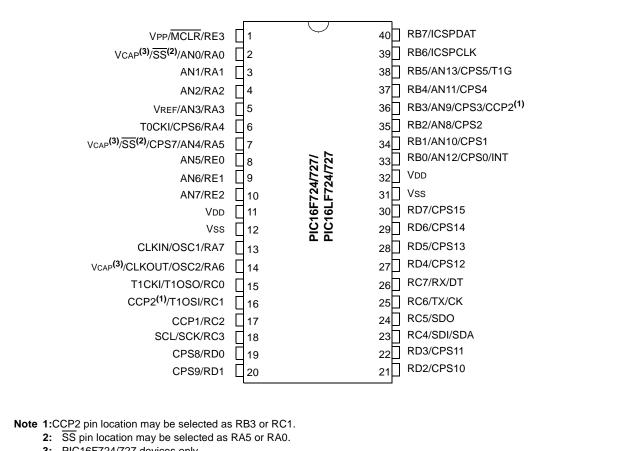


Welcome to E-XFL.COM

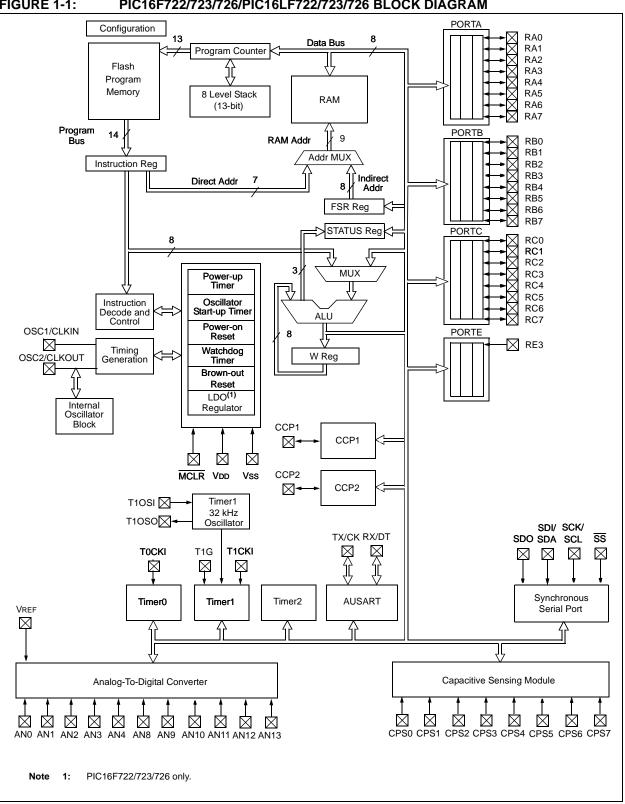
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf722t-i-ss


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams - 40-PIN PDIP (PIC16F724/727/PIC16LF724/727)

3: PIC16F724/727 devices only.

Name	Function	Input Type	Output Type	Description		
RD3/CPS11	RD3	ST	CMOS	General purpose I/O.		
	CPS11	AN	—	Capacitive sensing input 11.		
RD4/CPS12	RD4	ST	CMOS	General purpose I/O.		
	CPS12	AN	—	Capacitive sensing input 12.		
RD5/CPS13	RD5	ST	CMOS	General purpose I/O.		
	CPS13	AN	—	Capacitive sensing input 13.		
RD6/CPS14	RD6	ST	CMOS	General purpose I/O.		
	CPS14	AN	_	Capacitive sensing input 14.		
RD7/CPS15	RD7	ST	CMOS	General purpose I/O.		
	CPS15	AN	_	Capacitive sensing input 15.		
RE0/AN5	RE0	ST	CMOS	General purpose I/O.		
	AN5	AN	—	A/D Channel 5 input.		
RE1/AN6	RE1	ST	CMOS	General purpose I/O.		
	AN6	AN	—	A/D Channel 6 input.		
RE2/AN7	RE2	ST	CMOS	General purpose I/O.		
	AN7	AN	_	A/D Channel 7 input.		
RE3/MCLR/Vpp	RE3	TTL	—	General purpose input.		
	MCLR	ST	_	Master Clear with internal pull-up.		
	Vpp	ΗV	—	Programming voltage.		
VDD	Vdd	Power	—	Positive supply.		
Vss	Vss	Power	_	Ground reference.		
Legend: AN = Analog input or TTL = TTL compatible HV = High Voltage	input ST		nitt Trigger	ble input or output OD = Open Drain input with CMOS levels I^2C = Schmitt Trigger input with I^2C		

TABLE 1-1: PIC16(L)F722/3/4/6/7 PINOUT DESCRIPTION (CONTINUED)

Note: The PIC16F722/3/4/6/7 devices have an internal low dropout voltage regulator. An external capacitor must be connected to one of the available VCAP pins to stabilize the regulator. For more information, see **Section 5.0 "Low Dropout (LDO) Voltage Regulator**". The PIC16LF722/3/4/6/7 devices do not have the voltage regulator and therefore no external capacitor is required.

2.2.2.2 OPTION register

The OPTION register, shown in Register 2-2, is a readable and writable register, which contains various control bits to configure:

- Timer0/WDT prescaler
- External RB0/INT interrupt
- Timer0
- Weak pull-ups on PORTB

Note:	To achieve a 1:1 prescaler assignment for							
	Timer0, assign the prescaler to the WDT							
	by setting the PSA bit of the							
	OPTION_REG register to '1'. Refer to							
	Section 11.1.3 "Software							
	Programmable Prescaler".							

REGISTER 2-2: OPTION_REG: OPTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7	RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual bits in the WPUB register
bit 6	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin
bit 5	T0CS: Timer0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (Fosc/4)
bit 4	T0SE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin
bit 3	PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module
bit 2-0	PS<2:0>: Prescaler Rate Select bits
	Bit Value Timer0 Rate WDT Rate
	000 1:2 1:1 001 1:4 1:2 010 1:8 1:4 011 1:16 1:8 100 1:32 1:16 101 1:64 1:32

1:128

1:256

1:64

1 : 128

110

111

6.3.4 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTB pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the SSP, l^2C or interrupts, refer to the appropriate section in this data sheet.

6.3.4.1 RB0/AN12/CPS0/INT

Figure 6-7 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- · a capacitive sensing input
- an external edge triggered interrupt

6.3.4.2 RB1/AN10/CPS1

Figure 6-8 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- · a capacitive sensing input

6.3.4.3 RB2/AN8/CPS2

Figure 6-8 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- · a capacitive sensing input

6.3.4.4 RB3/AN9/CPS3/CCP2

Figure 6-9 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- a capacitive sensing input
- a Capture 2 input, Compare 2 output, and PWM2 output

Note:	CCP2 pin location may be selected as
	RB3 or RC1.

6.3.4.5 RB4/AN11/CPS4

Figure 6-8 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- · a capacitive sensing input

6.3.4.6 RB5/AN13/CPS5/T1G

Figure 6-10 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- a capacitive sensing input
- a Timer1 gate input

6.3.4.7 RB6/ICSPCLK

Figure 6-11 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- In-Circuit Serial Programming clock

6.3.4.8 RB7/ICSPDAT

Figure 6-12 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- In-Circuit Serial Programming data

REGISTER	19-2. ADCO		ITROL REG									
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0					
_	ADCS2	ADCS1	ADCS0	_	_	ADREF1	ADREF0					
bit 7							bit 0					
Legend:												
R = Readabl	le bit	W = Writable bi	t	U = Unimpleme	ented bit, read as	s 'O'						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkno	wn					
bit 7	Unimplemente	ed: Read as '0'										
bit 6-4	ADCS<2:0>: A	/D Conversion C	lock Select bits									
	000 = Fosc/2	000 = Fosc/2										
	001 = Fosc/8	001 = FOSC/8										
		010 = Fosc/32										
	011 = FRC (clock supplied from a dedicated RC oscillator)											
		100 = Fosc/4 101 = Fosc/16										
		101 = FOSC/16 110 = FOSC/64										
		, ock supplied from	a dedicated RC	coscillator)								
bit 3-2	Unimplemente	••		,								
bit 1-0	ADREF<1:0>:	Voltage Referend	e Configuration	bits								
		0x = VREF is connected to VDD										
	10 = VREF is c	connected to exte	rnal VREF (RA3	/AN3)								
			nal Fixed Voltag									

REGISTER 9-2: ADCON1: A/D CONTROL REGISTER 1

REGISTER 9-3: ADRES: ADC RESULT REGISTER

R/W-x	x R/W-x R/W-x		N-x R/W-x R/W		R/W-x	R/W-x	R/W-x
ADRES7	ADRES6	ADRES5	ADRES4	ADRES3	ADRES2	ADRES1	ADRES0
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-0 **ADRES<7:0>**: ADC Result Register bits 8-bit conversion result.

							-	-	-	-
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0	_		CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	00 0000
ADCON1	_	ADCS2	ADCS1	ADCS0	_	_	ADREF1	ADREF0	-00000	-00000
ANSELA	_	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	11 1111	11 1111
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111
ANSELE	_	_	_	_	_	ANSE2	ANSE1	ANSE0	111	111
ADRES				A/D Result	Register Byte	Э			xxxx xxxx	uuuu uuuu
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
FVRCON	FVRRDY	FVREN	_	_	_	_	ADFVR1	ADFVR0	q000	q000
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
TRISE	_	_	_	_	TRISE3	TRISE2	TRISE1	TRISE0	1111	1111

TABLE 9-2: SUMMARY OF ASSOCIATED ADC REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for ADC module.

REGISTER 14-2: CPSCON1: CAPACITIVE SENSING CONTROL REGISTER 1

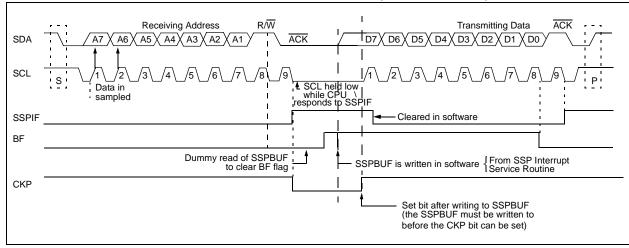
U-0	U-0	U-0	U-0	R/W-0 ⁽²⁾	R/W-0	R/W-0	R/W-0		
—	—	—	_	CPSCH3	CPSCH2	CPSCH1	CPSCH0		
bit 7							bit 0		
Legend:									
				U = Unimplemented bit, read as '0'					
R = Readable	bit	W = Writable I	oit	U = Unimplen	nented bit, read	l as '0'			

bit 7-4	Unimplemented: Read as '0'
bit 3-0	CPSCH<3:0>: Capacitive Sensing Channel Select bits
	If CPSON = 0:
	These bits are ignored. No channel is selected.
	<u>If CPSON = 1</u> :
	0000 = channel 0, (CPS0)
	0001 = channel 1, (CPS1)
	0010 = channel 2, (CPS2)
	0011 = channel 3, (CPS3)
	0100 = channel 4, (CPS4)
	0101 = channel 5, (CPS5)
	0110 = channel 6, (CPS6)
	0111 = channel 7, (CPS7)
	1000 = channel 8, (CPS8 ⁽¹⁾)
	1001 = channel 9, (CPS9 ⁽¹⁾)
	1010 = channel 10, (CPS10 ⁽¹⁾)
	1011 = channel 11, (CPS11 ⁽¹⁾)
	1100 = channel 12, (CPS12(1))
	$1101 = \text{ channel } 13, (CPS13^{(1)})$
	1110 = channel 14, (CPS14(1))
	1111 = channel 15, (CPS15 ⁽¹⁾)

Note 1: These channels are not implemented on the PIC16F722/723/726/PIC16LF722/723/726.

2: This bit is not implemented on PIC16F722/723/726/PIC16LF722/723/726, Read as '0'

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPACITIVE SENSIN	G
--	---


Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELA	_	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	11 1111	11 1111
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	1111 1111	1111 1111
OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	0000 00-0	0000 00-0
T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the capacitive sensing module.

17.2.6 TRANSMISSION

When the R/W bit of the received address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set and the slave will respond to the master by reading out data. After the address match, an ACK pulse is generated by the slave hardware and the SCL pin is held low (clock is automatically stretched) until the slave is ready to respond. See **Section 17.2.7 "Clock Stretching"**. The data the slave will transmit must be loaded into the SSPBUF register, which sets the BF bit. The SCL line is released by setting the CKP bit of the SSPCON register.

An SSP interrupt is generated for each transferred data byte. The SSPIF flag bit of the PIR1 register initiates an SSP interrupt, and must be cleared by software before the next byte is transmitted. The BF bit of the SSPSTAT register is cleared on the falling edge of the eighth received clock pulse. The SSPIF flag bit is set on the falling edge of the ninth clock pulse. Following the eighth falling clock edge, control of the SDA line is released back to the master so that the master can acknowledge or not acknowledge the response. If the master sends a not acknowledge, the slave's transmission is complete and the slave must monitor for the next Start condition. If the master acknowledges, control of the bus is returned to the slave to transmit another byte of data. Just as with the previous byte, the clock is stretched by the slave, data must be loaded into the SSPBUF and CKP must be set to release the clock line (SCL).

FIGURE 17-12: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

19.0 POWER-DOWN MODE (SLEEP)

The Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If the Watchdog Timer is enabled:

- WDT will be cleared but keeps running.
- PD bit of the STATUS register is cleared.
- TO bit of the STATUS register is set.
- Oscillator driver is turned off.
- Timer1 oscillator is unaffected
- I/O ports maintain the status they had before SLEEP was executed (driving high, low or highimpedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD or VSs, with no external circuitry drawing current from the I/O pin. I/O pins that are high-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSs for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level when external $\overline{\text{MCLR}}$ is enabled.

Note: A Reset generated by a WDT time out does not drive MCLR pin low.

19.1 Wake-up from Sleep

The device can wake up from Sleep through one of the following events:

- 1. External Reset input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer wake-up (if WDT was enabled).
- 3. Interrupt from RB0/INT pin, PORTB change or a peripheral interrupt.

The first event will cause a device Reset. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of device Reset. The PD bit, which is set on power-up, is cleared when Sleep is invoked. TO bit is cleared if WDT wake-up occurred.

The following peripheral interrupts can wake the device from Sleep:

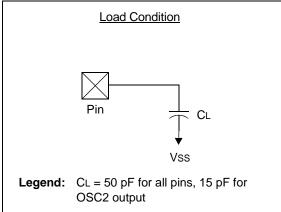
- 1. TMR1 Interrupt. Timer1 must be operating as an asynchronous counter.
- USART Receive Interrupt (Synchronous Slave mode only)
- 3. A/D conversion (when A/D clock source is RC)
- 4. Interrupt-on-change
- 5. External Interrupt from INT pin
- 6. Capture event on CCP1 or CCP2
- 7. SSP Interrupt in SPI or I²C Slave mode

Other peripherals cannot generate interrupts since during Sleep, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction, then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GIE is cleared), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from Sleep. The SLEEP instruction is completely executed.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.


23.6 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

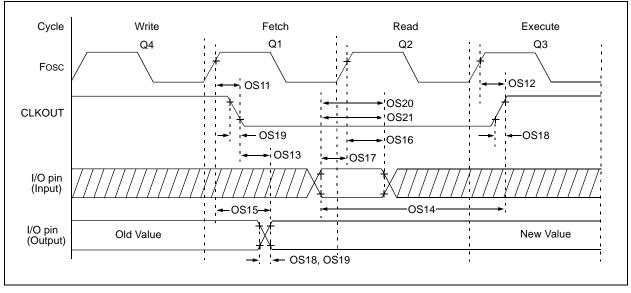
2. Tpp3			
т			
F	Frequency	Т	Time
Lowerc	case letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O PORT	t1	T1CKI
mc	MCLR	wr	WR
Upperc	case letters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 23-2: LOAD CONDITIONS

TABLE 23-2: **OSCILLATOR PARAMETERS**

	Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C ≤ TA ≤ +125°C									
Param No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions		
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽²⁾	±2%		16.0		MHz	$\begin{array}{l} 0^{\circ}C \leq TA \leq +85^{\circ}C, \\ VDD \geq 2.5V \end{array}$		
			±5%	_	16.0	—	MHz	$\text{-40°C} \leq \text{TA} \leq \text{+125°C}$		
OS08A	MFosc	Internal Calibrated MFINTOSC Frequency ⁽²⁾	±2%	_	500	_	kHz	$0^{\circ}C \le TA \le +85^{\circ}C$ VDD $\ge 2.5V$		
			±5%	_	500	10	kHz	$-40^{\circ}C \leq TA \leq +125^{\circ}C$		
OS10*	TIOSC ST	HFINTOSC Wake-up from Sleep Start-up Time	—	_	5	8	μS			
		MFINTOSC Wake-up from Sleep Start-up Time	—		20	30	μS			

These parameters are characterized but not tested.

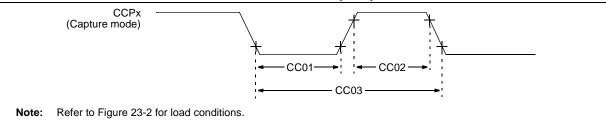

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are t not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

3: By design.

TABLE 23-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS


Standard Operating Conditions (unless otherwise stated)

Param No.	Sym.	Characteristic		Min.	Тур†	Max.	Units	Conditions	
40*	T⊤0H	T0CKI High F	Pulse Width No Prescaler		0.5 Tcy + 20	—	_	ns	
				With Prescaler	10	_	_	ns	
41*	TT0L	T0CKI Low F	ulse Width	No Prescaler	0.5 Tcy + 20	—	_	ns	
				With Prescaler	10	—	_	ns	
42*	Тт0Р	T0CKI Period	d		Greater of: 20 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value (2, 4,, 256)
45*	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 TCY + 20	_	_	ns	
			Synchronous, with Prescaler		15	_	_	ns	
			Asynchronous		30	—	_	ns	
46*	TT1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 TCY + 20	—	_	ns	
			Synchronous, with Prescaler		15	—	_	ns	
			Asynchronous		30	—	_	ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>TCY + 40</u> N	—		ns	N = prescale value (1, 2, 4, 8)
			Asynchronous	3	60	_	_	ns	
48	F⊤1		lator Input Frequency Range abled by setting bit T1OSCEN)		32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock E	2 Tosc	—	7 Tosc	—	Timers in Sync mode	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

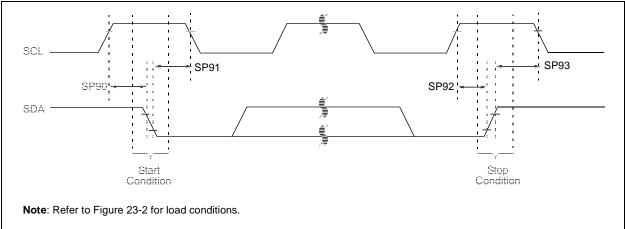
FIGURE 23-11: CAPTURE/COMPARE/PWM TIMINGS (CCP)

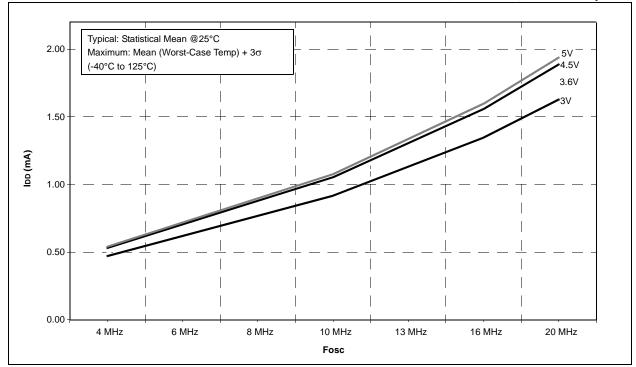
TABLE 23-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

	Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym.	Characteris	stic	Min.	Тур†	Max.	Units	Conditions			
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	_	—	ns				
			With Prescaler	20	_	_	ns				
CC02*	TccH	CCPx Input High Time	No Prescaler	0.5TCY + 20	_	_	ns				
			With Prescaler	20	_	_	ns				
CC03*	TccP	CCPx Input Period		<u>3Tcy + 40</u> N		_	ns	N = prescale value (1, 4 or 16)			

These parameters are characterized but not tested.

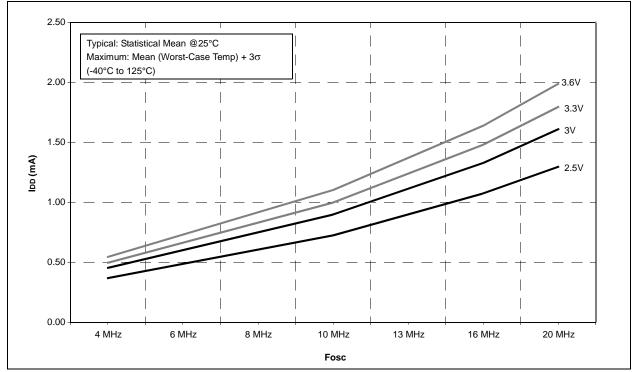
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

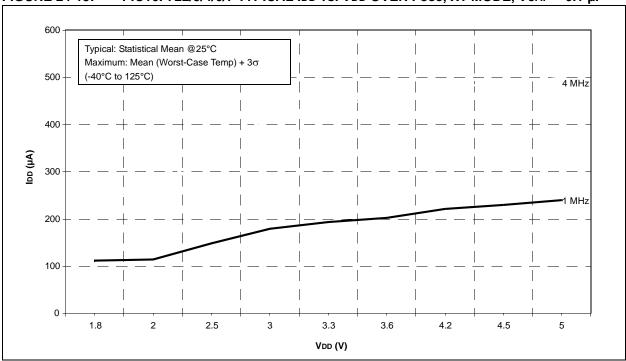

Param No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions	
SP70*	TssL2scH, TssL2scL	$\overline{\text{SS}}$ ↓ to SCK↓ or SCK↑ input	Тсү		—	ns		
SP71*	TscH	SCK input high time (Slave mode)		TCY + 20		_	ns	
SP72*	TscL	SCK input low time (Slave mode)		TCY + 20		_	ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK	edge	100		—	ns	
SP74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK e	100		—	ns		
SP75* TDOR SDO		SDO data output rise time	3.0-5.5V	—	10	25	ns	
			1.8-5.5V	—	25	50	ns	
SP76*	TDOF	SDO data output fall time		—	10	25	ns	
SP77*	TssH2doZ	\overline{SS} to SDO output high-impedance	10	_	50	ns		
SP78*	TscR	SCK output rise time	3.0-5.5V	—	10	25	ns	
		(Master mode)	1.8-5.5V	_	25	50	ns	
SP79*	TscF	SCK output fall time (Master mode)		_	10	25	ns	
SP80*	TscH2doV,	SDO data output valid after SCK	3.0-5.5V	—	_	50	ns	
	TscL2doV	edge	1.8-5.5V	—	_	145	ns	
SP81*	TDOV2SCH, TDOV2SCL	SDO data output setup to SCK edge	Тсу	_	—	ns		
SP82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edg	_	_	50	ns		
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5Tcy + 40	_	-	ns		

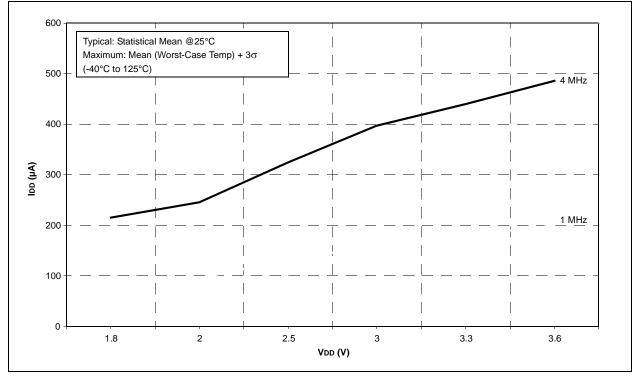

TABLE 23-11: SPI MODE REQUIREMENTS

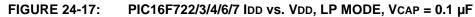
These parameters are characterized but not tested.

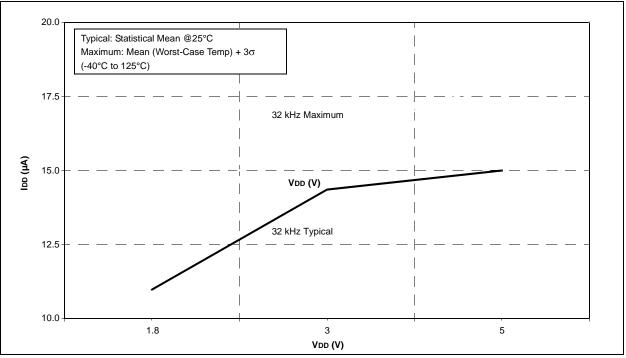
Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

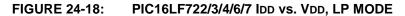

FIGURE 23-20: I²C BUS START/STOP BITS TIMING











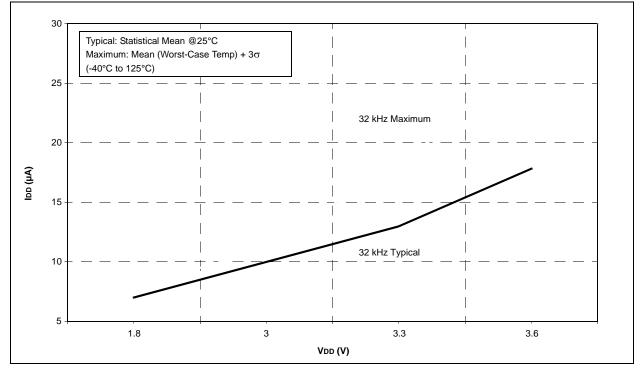
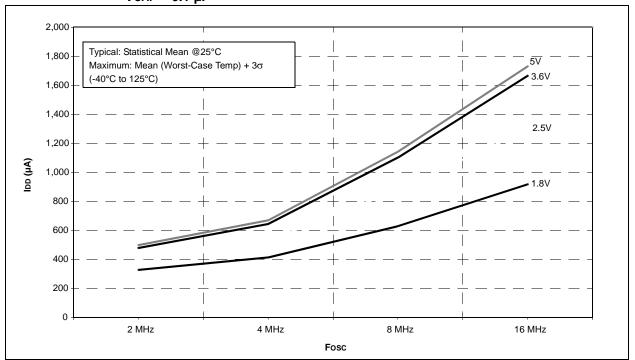
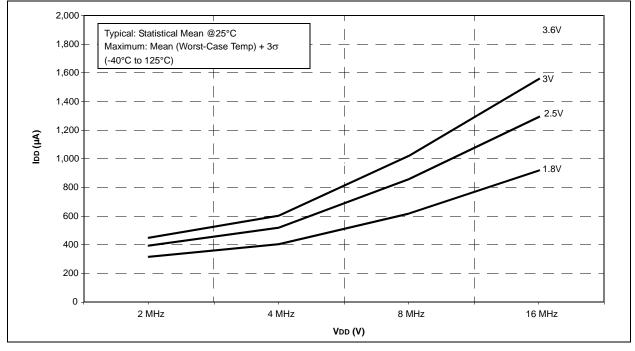




FIGURE 24-25: PIC16F722/3/4/6/7 TYPICAL IDD vs. Fosc OVER VDD, INTOSC MODE, VCAP = $0.1 \mu F$

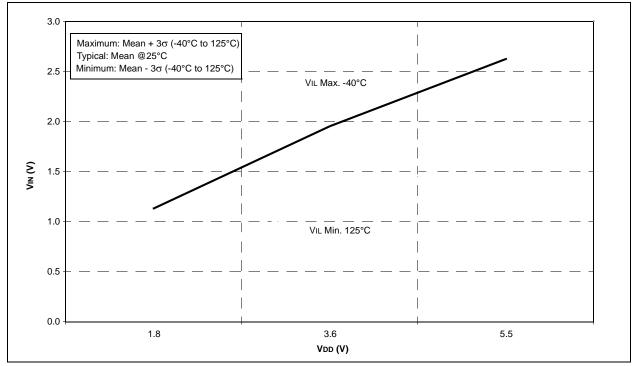
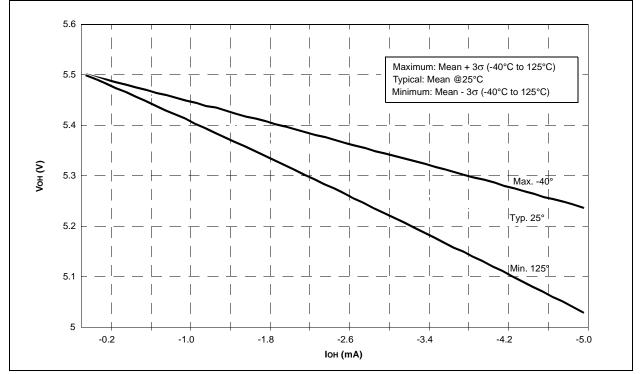
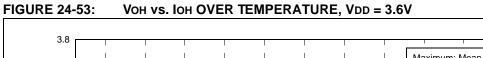
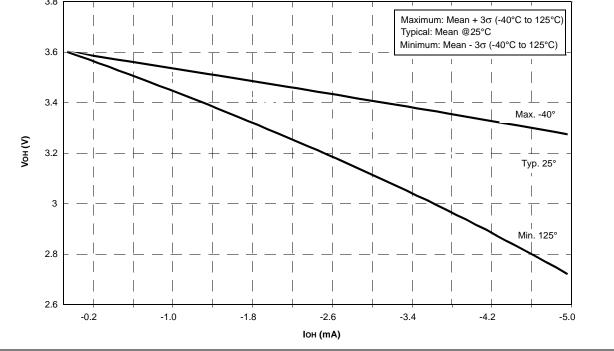





FIGURE 24-51: SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE

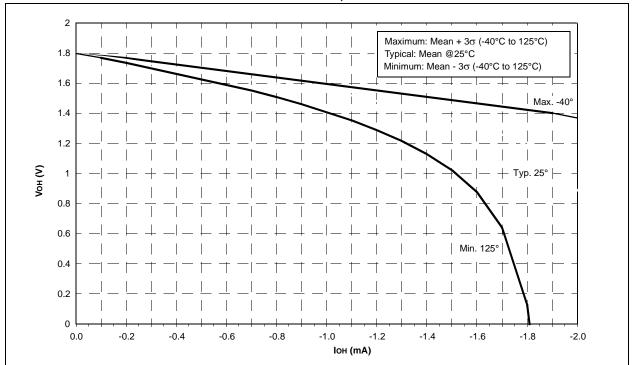


FIGURE 24-54: VOH vs. IOH OVER TEMPERATURE, VDD = 1.8V