

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf723-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F722/3/4/6/7

Pin Diagrams – 44-PIN TQFP (PIC16F724/727/PIC16LF724/727)

Name	Function	Input Type	Output Type	Description
RB4/AN11/CPS4	RB4	TTL	CMOS	General purpose I/O. Individually controlled inter- rupt-on-change. Individually enabled pull-up.
	AN11	AN	_	A/D Channel 11 input.
	CPS4	AN	_	Capacitive sensing input 4.
RB5/AN13/CPS5/T1G	RB5	TTL	CMOS	General purpose I/O. Individually controlled inter- rupt-on-change. Individually enabled pull-up.
	AN13	AN	—	A/D Channel 13 input.
	CPS5	AN	_	Capacitive sensing input 5.
	T1G	ST	—	Timer1 Gate input.
RB6/ICSPCLK/ICDCLK	RB6	TTL	CMOS	General purpose I/O. Individually controlled inter- rupt-on-change. Individually enabled pull-up.
	ICSPCLK	ST	—	Serial Programming Clock.
	ICDCLK	ST	_	In-Circuit Debug Clock.
RB7/ICSPDAT/ICDDAT	RB7	TTL	CMOS	General purpose I/O. Individually controlled inter- rupt-on-change. Individually enabled pull-up.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
	ICDDAT	ST	—	In-Circuit Data I/O.
RC0/T1OSO/T1CKI	RC0	ST	CMOS	General purpose I/O.
	T1OSO	XTAL	XTAL	Timer1 oscillator connection.
	T1CKI	ST		Timer1 clock input.
RC1/T1OSI/CCP2	RC1	ST	CMOS	General purpose I/O.
	T1OSI	XTAL	XTAL	Timer1 oscillator connection.
	CCP2	ST	CMOS	Capture/Compare/PWM2.
RC2/CCP1	RC2	ST	CMOS	General purpose I/O.
	CCP1	ST	CMOS	Capture/Compare/PWM1.
RC3/SCK/SCL	RC3	ST	CMOS	General purpose I/O.
	SCK	ST	CMOS	SPI clock.
	SCL	l ² C	OD	I ² C clock.
RC4/SDI/SDA	RC4	ST	CMOS	General purpose I/O.
	SDI	ST	—	SPI data input.
	SDA	l ² C	OD	I ² C data input/output.
RC5/SDO	RC5	ST	CMOS	General purpose I/O.
	SDO	—	CMOS	SPI data output.
RC6/TX/CK	RC6	ST	CMOS	General purpose I/O.
	TX	—	CMOS	USART asynchronous transmit.
	СК	ST	CMOS	USART synchronous clock.
RC7/RX/DT	RC7	ST	CMOS	General purpose I/O.
	RX	ST		USART asynchronous input.
	DT	ST	CMOS	USART synchronous data.
RD0/CPS8	RD0	ST	CMOS	General purpose I/O.
	CPS8	AN		Capacitive sensing input 8.
RD1/CPS9	RD1	ST	CMOS	General purpose I/O.
-	CPS9	AN	—	Capacitive sensing input 9.
RD2/CPS10	RD2	ST	CMOS	General purpose I/O.
	CPS10	AN	—	Capacitive sensing input 10.

	PIC16/I)E722/2/4/6/7 PINOLIT DESCRIPTION (CONTINUED)	
IADLE I-I.	PICIO(L)F/22/3/4/0/ PINOUI DESCRIPTION (CONTINUED)	

Legend: AN = Analog input or output CMOS = CMOS compatible input or output

XTAL = Crystal levels HV = High Voltage

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Page
Bank 0	D										
00h ⁽²⁾	INDF	Addressing	ddressing this location uses contents of FSR to address data memory (not a physical register)								29,37
01h	TMR0	Timer0 Mod	lule Register							XXXX XXXX	105,37
02h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Signific	ant Byte					0000 0000	28,37
03h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	25,37
04h ⁽²⁾	FSR	Indirect Data	a Memory Ad	ddress Point	er					XXXX XXXX	29,37
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXX XXXX	51,37
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	60,37
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	70,37
08h ⁽³⁾	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	77,37
09h	PORTE	—	—	_	—	RE3	RE2 ⁽³⁾	RE1 ⁽³⁾	RE0 ⁽³⁾	xxxx	81,37
0Ah ^(1, 2)	PCLATH	—	—	_	Write Buffer	for the upper	5 bits of the F	Program Cou	nter	0 0000	28,37
0Bh ⁽²⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	x000 000x	44,37
0Ch	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	47,37
0Dh	PIR2	—	CCP2IF							0	48,37
0Eh	TMR1L	Holding Reg	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								113,37
0Fh	TMR1H	Holding Reg	gister for the	Most Signific	cant Byte of th	ne 16-bit TMF	1 Register			XXXX XXXX	113,37
10h	T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR10N	0000 00-0	117,37
11h	TMR2	Timer2 Mod	lule Register							0000 0000	120,37
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	121,37
13h	SSPBUF	Synchronou	is Serial Port	Receive Bu	ffer/Transmit	Register				XXXX XXXX	161,37
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	178,37
15h	CCPR1L	Capture/Co	mpare/PWM	Register (L	SB)					XXXX XXXX	130,37
16h	CCPR1H	Capture/Co	mpare/PWM	Register (M	SB)					XXXX XXXX	130,37
17h	CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	129,37
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	148,37
19h	TXREG	USART Tra	USART Transmit Data Register								147,37
1Ah	RCREG	USART Receive Data Register								0000 0000	145,37
1Bh	CCPR2L	Capture/Compare/PWM Register 2 (LSB)							XXXX XXXX	130,37	
1Ch	CCPR2H	Capture/Co	Capture/Compare/PWM Register 2 (MSB)							XXXX XXXX	130,37
1Dh	CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	129,37
1Eh	ADRES	A/D Result I	Register						-	xxxx xxxx	100,37
1Fh	ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	99,37

TABLE 2-1: PIC16(L)F722/3/4/6/7 SPECIAL FUNCTION REGISTER SUMMARY

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter. These registers can be addressed from any bank. These registers/bits are not implemented on PIC16F722/723/726/PIC16LF722/723/726 devices, read as '0'. Accessible only when SSPM<3:0> = 1001. Accessible only when SSPM<3:0> \neq 1001. This bit is always '1' as RE3 is input-only. Note 1:

2:

3:

4:

5:

6:

3.6 Time-out Sequence

On power-up, the time-out sequence is as follows: first, PWRT time out is invoked after POR has expired, then OST is activated after the PWRT time out has expired. The total time out will vary based on oscillator configuration and \overrightarrow{PWRTE} bit status. For example, in EC mode with \overrightarrow{PWRTE} bit = 1 (\overrightarrow{PWRT} disabled), there will be no time out at all. Figure 3-4, Figure 3-5 and Figure 3-6 depict time-out sequences.

Since the time outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time outs will expire. Then, bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 3-5). This is useful for testing purposes or to synchronize more than one PIC16(L)F722/3/4/6/7 device operating in parallel.

Table 3-3 shows the Reset conditions for some special registers.

3.7 Power Control (PCON) Register

The Power Control (PCON) register has two Status bits to indicate what type of Reset that last occurred.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out Reset). $\overline{\text{BOR}}$ is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{\text{BOR}} = 0$, indicating that a brown-out has occurred. The $\overline{\text{BOR}}$ Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word register).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is '0', it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low).

For more information, see Section 3.5 "Brown-Out Reset (BOR)".

Occillator Configuration	Powe	er-up	Brown-o	Wake-up from	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP ⁽¹⁾	TPWRT + 1024 • Tosc	1024 • Tosc	TPWRT + 1024 • Tosc	1024 • Tosc	1024 • Tosc
RC, EC, INTOSC	TPWRT	_	TPWRT		

TABLE 3-2: TIME OUT IN VARIOUS SITUATIONS

Note 1: LP mode with T1OSC disabled.

TABLE 3-3: RESET BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition
0	u	1	1	Power-on Reset
1	0	1	1	Brown-out Reset
u	u	0	u	WDT Reset
u	u	0	0	WDT Wake-up
u	u	u	u	MCLR Reset during normal operation
u	u	1	0	MCLR Reset during Sleep

Legend: u = unchanged, x = unknown

4.5.4 PIR1 REGISTER

The PIR1 register contains the interrupt flag bits, as shown in Register 4-4.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 4-4: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	1 - Timer1 Gate is inactive
	0 = Timer1 Gate is active
bit 6	ADIF: A/D Converter Interrupt Flag bit
	 1 = A/D conversion complete (must be cleared in software) 0 = A/D conversion has not completed or has not been started
bit 5	RCIF: USART Receive Interrupt Flag bit
	1 = The USART receive buffer is full (cleared by reading RCREG)0 = The USART receive buffer is not full
bit 4	TXIF: USART Transmit Interrupt Flag bit
	 1 = The USART transmit buffer is empty (cleared by writing to TXREG) 0 = The USART transmit buffer is full
bit 3	SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit
	1 = The Transmission/Reception is complete (must be cleared in software)0 = Waiting to Transmit/Receive
bit 2	CCP1IF: CCP1 Interrupt Flag bit
	Capture mode:
	 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred
	Compare mode:
	 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred
	<u>PWM mode</u> : Unused in this mode
bit 1	TMR2IF: Timer2 to PR2 Interrupt Flag bit
	1 = A Timer2 to PR2 match occurred (must be cleared in software)0 = No Timer2 to PR2 match occurred
bit 0	TMR1IF: Timer1 Overflow Interrupt Flag bit
	 1 = The TMR1 register overflowed (must be cleared in software) 0 = The TMR1 register did not overflow

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
bit 7						•	bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at F	alue at POR '1' = Bit is set			0' = Bit is cleared $x = Bit is unknown$			nown

REGISTER 6-7: WPUB: WEAK PULL-UP PORTB REGISTER

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: Global RBPU bit of the OPTION register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

REGISTER 6-8: IOCB: INTERRUPT-ON-CHANGE PORTB REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| IOCB7 | IOCB6 | IOCB5 | IOCB4 | IOCB3 | IOCB2 | IOCB1 | IOCB0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **IOCB<7:0>:** Interrupt-on-Change PORTB Control bits

1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

REGISTER 6-9: ANSELB: PORTB ANALOG SELECT REGISTER

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 ANSB<5:0>: Analog Select between Analog or Digital Function on Pins RB<5:0>, respectively

0 = Digital I/O. Pin is assigned to port or Digital special function.

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital Input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

PIC16(L)F722/3/4/6/7

FIGURE 6-10: BLOCK DIAGRAM OF RB5

6.5 **PORTD and TRISD Registers**

PORTD is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISD (Register 6-13). Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 6-4 shows how to initialize PORTD.

Reading the PORTD register (Register 6-12) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

Note: PORTD is available on PIC16F724/LF724 and PIC16F727/LF727 only.

The TRISD register (Register 6-13) controls the PORTD pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISD register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

EXAMPLE 6-4: INITIALIZING PORTD

BANKSEL POP	RTD	i
CLRF POP	RTD	;Init PORTD
BANKSEL ANS	SELD	
CLRF ANS	SELD	;Make PORTD digital
BANKSEL TR	ISD	;
MOVLW B'(00001100′	;Set RD<3:2> as inputs
MOVWF TR	ISD	;and set RD<7:4,1:0>
		;as outputs

6.5.1 ANSELD REGISTER

The ANSELD register (Register 6-9) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELD bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELD bits has no affect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELD register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'.

REGISTER 6-12: PORTD: PORTD REGISTER⁽¹⁾

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RD7 | RD6 | RD5 | RD4 | RD3 | RD2 | RD1 | RD0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 RD<7:0>: PORTD General Purpose I/O Pin bits

1 = Port pin is > VIH

0 = Port pin is < VIL

Note 1: PORTD is not implemented on PIC16F722/723/726/PIC16LF722/723/726 devices, read as '0'.

REGISTER 6-13: TRISD: PORTD TRI-STATE REC	GISTER
---	--------

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISD0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0

TRISD<7:0>: PORTD Tri-State Control bits 1 = PORTD pin configured as an input (tri-stated) 0 = PORTD pin configured as an output

Note 1: TRISD is not implemented on PIC16F722/723/726/PIC16LF722/723/726 devices, read as '0'.

REGISTER 6-14: ANSELD: PORTD ANALOG SELECT REGISTER⁽²⁾

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ANSD7 | ANSD6 | ANSD5 | ANSD4 | ANSD3 | ANSD2 | ANSD1 | ANSD0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 **ANSD<7:0>**: Analog Select between Analog or Digital Function on Pins RD<7:0>, respectively 0 = Digital I/O. Pin is assigned to port or Digital special function.

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital Input buffer disabled.

- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.
 - 2: ANSELD register is not implemented on the PIC16F722/723/726/PIC16LF722/723/726. Read as '0'.

Note: PORTD is available on PIC16F724/LF724 and PIC16F727/LF727 only.

6.5.2 RD0/CPS8

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

- a general purpose I/O
- · a capacitive sensing input

6.5.3 RD1/CPS9

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

- a general purpose I/O
- · a capacitive sensing input

6.5.4 RD2/CPS10

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

- a general purpose I/O
- · a capacitive sensing input

6.5.5 RD3/CPS11

Figure 6-21 shows the diagram for these pins. They are configurable to function as one of the following:

- a general purpose I/O
- · a capacitive sensing input

8.0 DEVICE CONFIGURATION

Device Configuration consists of Configuration Word 1 and Configuration Word 2 registers, Code Protection and Device ID.

8.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 register at 2007h and Configuration Word 2 register at 2008h. These registers are only accessible during programming.

REGISTER 8-1: CONFIG1: CONFIGURATION WORD REGISTER 1

		R/P-1	R/P-1	U-1 ⁽⁴⁾	R/P-1	R/P-1	R/P-1
_	—	DEBUG	PLLEN	—	BORV	BOREN1	BOREN0
bit 15							bit 8

U-1 ⁽⁴⁾	R/P-1						
_	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0
bit 7							bit 0

Legend:	P = Programmable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 13	DEBUG: In-Circuit Debugger Mode bit 1 = In-Circuit Debugger disabled, RB6/ICSPCLK and RB7/ICSPDAT are general purpose I/O pins 0 = In-Circuit Debugger enabled, RB6/ICSPCLK and RB7/ICSPDAT are dedicated to the debugger
bit 12	PLLEN: INTOSC PLL Enable bit 0 = INTOSC Frequency is 500 kHz 1 = INTOSC Frequency is 16 MHz (32x)
bit 11	Unimplemented: Read as '1'
bit 10	BORV: Brown-out Reset Voltage selection bit 0 = Brown-out Reset Voltage (VBOR) set to 2.5 V nominal 1 = Brown-out Reset Voltage (VBOR) set to 1.9 V nominal
bit 9-8	BOREN<1:0>: Brown-out Reset Selection bits ⁽¹⁾ 0x = BOR disabled (Preconditioned State) 10 = BOR enabled during operation and disabled in Sleep 11 = BOR enabled
bit 7	Unimplemented: Read as '1'
bit 6	CP : Code Protection bit ⁽²⁾ 1 = Program memory code protection is disabled 0 = Program memory code protection is enabled
bit 5	MCLRE: RE3/MCLR pin function select bit ⁽³⁾ 1 = RE3/MCLR pin function is MCLR 0 = RE3/MCLR pin function is digital input, MCLR internally tied to VDD
Note 1: 2: 3:	Enabling Brown-out Reset does not automatically enable Power-up Timer. The entire program memory will be erased when the code protection is turned off. When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.

4: MPLAB[®] X IDE masks unimplemented Configuration bits to '0'.

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R-0	R/W-0
CPSON	—	—	—	CPSRNG1	CPSRNG0	CPSOUT	TOXCS
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7 CPSON: Capacitive Sensing Module Enable bit 1 = Capacitive sensing module is operating 0 = Capacitive sensing module is shut off and consumes no operating current							
bit 6-4	Unimplemen	ted: Read as '	כ'				
bit 3-2	bit 3-2 CPSRNG<1:0>: Capacitive Sensing Oscillator Range bits 00 = Oscillator is Off. 01 = Oscillator is in low range. Charge/discharge current is nominally 0.1 μA. 10 = Oscillator is in medium range. Charge/discharge current is nominally 1.2 μA. 11 = Oscillator is in bidh range. Charge/discharge current is nominally 1.8 μA						
bit 1 CPSOUT: Capacitive Sensing Oscillator Status bit 1 = Oscillator is sourcing current (Current flowing out the pin) 0 = Oscillator is sinking current (Current flowing into the pin)							
bit 0 TOXCS : Timer0 External Clock Source Select bit $\frac{\text{If TOCS} = 1}{\text{The TOXCS}}$ The TOXCS bit controls which clock external to the core/Timer0 module supplies Timer0: 1 = Timer0 Clock Source is the capacitive sensing oscillator 0 = Timer0 Clock Source is the TOCKI pin <u>If TOCS = 0</u> Timer0 clock source is controlled by the core/Timer0 module and is Fosc/4.							0:

REGISTER 14-1: CPSCON0: CAPACITIVE SENSING CONTROL REGISTER 0

15.1 Capture Mode

In Capture mode, CCPRxH:CCPRxL captures the 16-bit value of the TMR1 register when an event occurs on pin CCPx. An event is defined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value (refer to Figure 15-1).

15.1.1 CCPx PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Either RC1 or RB3 can be selected as the CCP2 pin. Refer to **Section 6.1** "Alternate Pin Function" for more information.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 15-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

15.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode or when Timer1 is clocked at Fosc, the capture operation may not work.

15.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIEx register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIRx register following any change in operating mode.

Note: Clocking Timer1 from the system clock (Fosc) should not be used in Capture Mode. In order for Capture Mode to recognize the trigger event on the CCPx pin, Timer1 must be clocked from the Instruction Clock (Fosc/4) or from an external clock source.

15.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCPxM<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler (refer to Example 15-1).

EXAMPLE 15-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEI	L CCP1CON	;Set Bank bits to point
		;to CCP1CON
CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; move value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value
1		

15.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (Fosc/4), or by an external clock source.

If Timer1 is clocked by FOSC/4, then Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

If Timer1 is clocked by an external clock source, then Capture mode will operate as defined in **Section 15.1** "**Capture Mode**".

15.3.2 PWM PERIOD

The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 15-1.

EQUATION 15-1: PWM PERIOD

$$PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$$
$$(TMR2 Prescale Value)$$
Note: Tosc = 1/Fosc

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from CCPRxL into CCPRxH.

Note:	The	Timer2	postscaler	(refer	to
	Secti	on 13.1 "	Timer2 Ope	r ation") is r	not
	used	in the d	etermination	of the PW	/M
	freque	ency.			

15.3.3 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPRxL register and DCxB<1:0> bits of the CCPxCON register. The CCPRxL contains the eight MSbs and the DCxB<1:0> bits of the CCPxCON register contain the two LSbs. CCPRxL and DCxB<1:0> bits of the CCPxCON register can be written to at any time. The duty cycle value is not latched into CCPRxH until after the period completes (i.e., a match between PR2 and TMR2 registers occurs). While using the PWM, the CCPRxH register is read-only.

Equation 15-2 is used to calculate the PWM pulse width.

Equation 15-3 is used to calculate the PWM duty cycle ratio.

EQUATION 15-2: PULSE WIDTH

 $Pulse Width = (CCPRxL:CCPxCON < 5:4>) \bullet$

TOSC • (TMR2 Prescale Value)

Note: Tosc = 1/Fosc

EQUATION 15-3: DUTY CYCLE RATIO

$$Duty Cycle Ratio = \frac{(CCPRxL:CCPxCON < 5:4>)}{4(PR2 + 1)}$$

The CCPRxH register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH and 2-bit latch, then the CCPx pin is cleared (refer to Figure 15-3).

16.3.2.3 AUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 16.3.1.4 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never Idle
- SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE interrupt enable bit of the PIE1 register is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 16.3.2.4 Synchronous Slave Reception Setup:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 3. If 9-bit reception is desired, set the RX9 bit.
- 4. Verify address detection is disabled by clearing the ADDEN bit of the RCSTA register.
- 5. Set the CREN bit to enable reception.
- The RCIF bit of the PIR1 register will be set when reception is complete. An interrupt will be generated if the RCIE bit of the PIE1 register was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCREG	EG AUSART Receive Data Register									0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000X	0000 000X
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010

TABLE 16-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.

REGISTER 17-2: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (SPI MODE)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/Ā	Р	S	R/W	UA	BF
bit 7							bit 0

R = Reada	ble bit	W = Writable bit	U = Unimplemented bit.	. read as '0'				
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknowr				
bit 7	SMP: SF	PI Data Input Sample Phase	bit					
	SPI Mas	ter mode:						
	1 = Input	t data sampled at end of data	a output time					
	0 = Inpui SPI Slav	e mode:						
	SMP mu	st be cleared when SPI is us	sed in Slave mode					
bit 6	CKE: SP	PI Clock Edge Select bit						
	<u>SPI mod</u>	<u>e, CKP = 0:</u>						
	1 = Data	= Data stable on rising edge of SCK						
	0 = Data SPI mod) = Data stable on failing edge of SUK						
	1 = Data	L = Data stable on falling edge of SCK						
	0 = Data	stable on rising edge of SC	K					
bit 5	D/A: Dat	a/Address bit						
	Used in I	² C mode only.						
bit 4	P: Stop b	bit						
	Used in I	¹² C mode only.						
bit 3	S: Start b	pit						
	Used in I	² C mode only.						
bit 2	R/W: Re	Read/Write Information bit						
	Used in I	² C mode only.						
bit 1	UA: Upd	UA: Update Address bit						
	Used in I	² C mode only.						
bit 0	BF: Buffe	er Full Status bit						
	1 = Rece	eive complete, SSPBUF is fu						

REGISTER 17-4: SSPSTAT: SYNCHRONOUS SERIAL PORT STATUS REGISTER (I²C MODE)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
SMP	CKE	D/A	Р	S	R/W	UA	BF			
bit 7							bit 0			
]			
Legend:	Legend:									
R = Readable b		VV = VVIItable bi	t	U = Unimplement	ented bit, read as	v – Pit is uskos				
		T = Dit is set			ieu					
bit 7 SMP : SPI Data Input Sample Phase bit 1 = Slew Rate Control (limiting) disabled. Operating in I ² C Standard Mode (100 kHz and 1 MHz). 0 = Slew Rate Control (limiting) enabled. Operating in I ² C Fast Mode (400 kHz).										
bit 6	CKE: SPI Clock This bit must be	<pre>< Edge Select bit e maintained cleat</pre>	ar. Used in SPI	mode only.						
bit 5	D \overline{A} : DATA \overline{ADI} 1 = Indicates th 0 = Indicates th	DRESS bit (I ² C m hat the last byte m hat the last byte m	node only) eceived or tran eceived or tran	smitted was data smitted was add	ress					
bit 4	P : Stop bit This bit is clear 1 = Indicates th 0 = Stop bit was	ed when the SSF at a Stop bit has s not detected la	P module is dis been detected st	abled, or when th l last (this bit is '0	ne Start bit is dete ' on Reset)	ected last.				
bit 3	S : Start bit This bit is clear 1 = Indicates th 0 = Start bit was	ed when the SSF at a Start bit has s not detected la	P module is dis been detectec st	abled, or when th I last (this bit is '0	ne Stop bit is dete ' on Reset)	cted last.				
bit 2	 pit 2 R/W: READ/WRITE bit Information This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit or ACK bit. 1 = Read 0 = Write 									
bit 1	UA : Update Ad 1 = Indicates th 0 = Address do	dress bit (10-bit I at the user need es not need to be	² C mode only) s to update the e updated	address in the S	SPADD register					
bit 0	 BF: Buffer Full Status bit <u>Receive:</u> 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty <u>Transmit:</u> 1 = Transmit in progress, SSPBUF is full 0 = Transmit complete, SSPBUF is empty 									

Standard Operating	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	—	37	kHz	LP Oscillator mode			
			DC	—	4	MHz	XT Oscillator mode			
			DC	—	20	MHz	HS Oscillator mode			
			DC	—	20	MHz	EC Oscillator mode			
		Oscillator Frequency ⁽¹⁾	—	32.768	—	kHz	LP Oscillator mode			
			0.1	—	4	MHz	XT Oscillator mode			
			1	—	20	MHz	HS Oscillator mode			
			DC	—	4	MHz	RC Oscillator mode			
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	—	×	μs	LP Oscillator mode			
			250	—	∞	ns	XT Oscillator mode			
			50	—	∞	ns	HS Oscillator mode			
			50	—	∞	ns	EC Oscillator mode			
		Oscillator Period ⁽¹⁾	—	30.5	—	μs	LP Oscillator mode			
			250	—	10,000	ns	XT Oscillator mode			
			50	—	1,000	ns	HS Oscillator mode			
			250	—	—	ns	RC Oscillator mode			
OS03	TCY	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	TCY = 4/FOSC			
OS04*	TosH,	External CLKIN High,	2	—	—	μs	LP oscillator			
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator			
			20	—	—	ns	HS oscillator			
OS05*	TosR,	External CLKIN Rise,	0	—	∞	ns	LP oscillator			
	TosF	External CLKIN Fall	0	—	∞	ns	XT oscillator			
			0	_	×	ns	HS oscillator			

TABLE 23-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

FIGURE 24-19: PIC16F722/3/4/6/7 MAXIMUM IDD vs. Fosc OVER VDD, INTOSC MODE, VCAP = 0.1μ F

FIGURE 24-39: PIC16F722/3/4/6/7 CAP SENSE LOW POWER IPD vs. VDD, VCAP = 0.1 µF

