

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf724-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.5 Brown-Out Reset (BOR)

Brown-out Reset is enabled by programming the BOREN<1:0> bits in the Configuration register. The brown-out trip point is selectable from two trip points via the BORV bit in the Configuration register.

Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

Two bits are used to enable the BOR. When BOREN = 11, the BOR is always enabled. When BOREN = 10, the BOR is enabled, but disabled during Sleep. When BOREN = 0X, the BOR is disabled.

If VDD falls below VBOR for greater than parameter (TBOR) (see **Section 23.0** "**Electrical Specifica-tions**"), the brown-out situation will reset the device. This will occur regardless of VDD slew rate. A Reset is not ensured to occur if VDD falls below VBOR for more than TBOR.

If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-up Timer will execute a 64 ms Reset.

Note: When erasing Flash program memory, the BOR is forced to enabled at the minimum BOR setting to ensure that any code protection circuitry is operating properly.

FIGURE 3-3: BROWN-OUT SITUATIONS

PIC16(L)F722/3/4/6/7

FIGURE 6-10: BLOCK DIAGRAM OF RB5

6.4 PORTC and TRISC Registers

PORTC is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISC (Register 6-11). Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 6-3 shows how to initialize PORTC.

Reading the PORTC register (Register 6-10) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

The TRISC register (Register 6-11) controls the PORTC pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISC register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

EXAMPLE 6-3: INITIALIZING PORTC

BANKSEL	PORTC	;
CLRF	PORTC	;Init PORTC
BANKSEL	TRISC	;
MOVLW	B'00001100'	;Set RC<3:2> as inputs
MOVWF	TRISC	;and set RC<7:4,1:0>
		;as outputs

The location of the CCP2 function is controlled by the CCP2SEL bit in the APFCON register (refer to Register 6-1)

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RC7 | RC6 | RC5 | RC4 | RC3 | RC2 | RC1 | RC0 |
| bit 7 | | | | | | | bit 0 |

REGISTER 6-10: PORTC: PORTC REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits

1 = Port pin is > VIH 0 = Port pin is < VIL

REGISTER 6-11: TRISC: PORTC TRI-STATE REGISTER

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **TRISC<7:0>:** PORTC Tri-State Control bits 1 = PORTC pin configured as an input (tri-stated) 0 = PORTC pin configured as an output

TABLE 6-3:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTC
------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
APFCON	_	-	-	—	-	_	SSSEL	CCP2SEL	00	00
CCP1CON	_	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
CCP2CON	-	-	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	XXXX XXXX
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR1ON	0000 00-0	uuuu uu-u
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Port C.

PIC16(L)F722/3/4/6/7

7.6.4 EXTERNAL RC MODES

The external Resistor-Capacitor (RC) modes support the use of an external RC circuit. This allows the designer maximum flexibility in frequency choice while keeping costs to a minimum when clock accuracy is not required. There are two modes: RC and RCIO.

In RC mode, the RC circuit connects to OSC1. OSC2/CLKOUT outputs the RC oscillator frequency divided by 4. This signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements. Figure 7-5 shows the external RC mode connections.

In RCIO mode, the RC circuit is connected to OSC1. OSC2 becomes an additional general purpose I/O pin.

The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. Other factors affecting the oscillator frequency are:

- threshold voltage variation
- component tolerances
- · packaging variations in capacitance

The user also needs to take into account variation due to tolerance of external RC components used.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets ⁽¹⁾
CONFIG1 ⁽¹⁾	_	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	_	_
OSCCON	—	—	IRCF1	IRCF0	ICSL	ICSS	—	—	10 qq	10 qq
OSCTUNE	—	—	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	00 0000	uu uuuu

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by clock sources.**Note 1:**See Configuration Word 1 (Register 8-1) for operation of all bits.

8.0 DEVICE CONFIGURATION

Device Configuration consists of Configuration Word 1 and Configuration Word 2 registers, Code Protection and Device ID.

8.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 register at 2007h and Configuration Word 2 register at 2008h. These registers are only accessible during programming.

REGISTER 8-1: CONFIG1: CONFIGURATION WORD REGISTER 1

		R/P-1	R/P-1	U-1 ⁽⁴⁾	R/P-1	R/P-1	R/P-1
		DEBUG	PLLEN	—	BORV	BOREN1	BOREN0
bit 15							bit 8

U-1 ⁽⁴⁾	R/P-1						
_	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0
bit 7							bit 0

Legend:	P = Programmable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 13	DEBUG: In-Circuit Debugger Mode bit 1 = In-Circuit Debugger disabled, RB6/ICSPCLK and RB7/ICSPDAT are general purpose I/O pins 0 = In-Circuit Debugger enabled, RB6/ICSPCLK and RB7/ICSPDAT are dedicated to the debugger
bit 12	PLLEN: INTOSC PLL Enable bit 0 = INTOSC Frequency is 500 kHz 1 = INTOSC Frequency is 16 MHz (32x)
bit 11	Unimplemented: Read as '1'
bit 10	BORV: Brown-out Reset Voltage selection bit 0 = Brown-out Reset Voltage (VBOR) set to 2.5 V nominal 1 = Brown-out Reset Voltage (VBOR) set to 1.9 V nominal
bit 9-8	BOREN<1:0>: Brown-out Reset Selection bits ⁽¹⁾ 0x = BOR disabled (Preconditioned State) 10 = BOR enabled during operation and disabled in Sleep 11 = BOR enabled
bit 7	Unimplemented: Read as '1'
bit 6	CP : Code Protection bit ⁽²⁾ 1 = Program memory code protection is disabled 0 = Program memory code protection is enabled
bit 5	MCLRE: RE3/MCLR pin function select bit ⁽³⁾ 1 = RE3/MCLR pin function is MCLR 0 = RE3/MCLR pin function is digital input, MCLR internally tied to VDD
Note 1: 2: 3:	Enabling Brown-out Reset does not automatically enable Power-up Timer. The entire program memory will be erased when the code protection is turned off. When $\overline{\text{MCLR}}$ is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.

4: MPLAB[®] X IDE masks unimplemented Configuration bits to '0'.

9.1 ADC Configuration

When configuring and using the ADC, the following functions must be considered:

- Port configuration
- Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Results formatting

9.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 6.0 "I/O Ports"** for more information.

Note: Analog voltages on any pin that is defined as a digital input may cause the input buffer to conduct excess current.

9.1.2 CHANNEL SELECTION

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 9.2 "ADC Operation"** for more information.

9.1.3 ADC VOLTAGE REFERENCE

The ADREF bits of the ADCON1 register provides control of the positive voltage reference. The positive voltage reference can be either VDD, an external voltage source or the internal Fixed Voltage Reference. The negative voltage reference is always connected to the ground reference. See **Section 10.0** "**Fixed Voltage Reference**" for more details on the Fixed Voltage Reference.

9.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 8-bit conversion requires 10 TAD periods as shown in Figure 9-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the A/D conversion requirements in **Section 23.0** "**Electrical Specifications**" for more information. Table 9-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

12.6 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 Gate circuitry. This is also referred to as Timer1 Gate Count Enable.

Timer1 Gate can also be driven by multiple selectable sources.

12.6.1 TIMER1 GATE COUNT ENABLE

The Timer1 Gate is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate (T1G) input is active, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate input is inactive, no incrementing will occur and Timer1 will hold the current count. See Figure 12-3 for timing details.

TABLE 12-3: TIMER1 GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation
\uparrow	0	0	Counts
1	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts

12.6.2 TIMER1 GATE SOURCE SELECTION

The Timer1 Gate source can be selected from one of four different sources. Source selection is controlled by the T1GSS bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T1GPOL bit of the T1GCON register.

TABLE 12-4: TIMER1 GATE SOURCES

T1GSS	Timer1 Gate Source
00	Timer1 Gate Pin
01	Overflow of Timer0 (TMR0 increments from FFh to 00h)
10	Timer2 match PR2 (TMR2 increments to match PR2)
11	Count Enabled by WDT Overflow (Watchdog Time-out interval expired)

12.6.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 Gate Control. It can be used to supply an external source to the Timer1 Gate circuitry.

12.6.2.2 Timer0 Overflow Gate Operation

When Timer0 increments from FFh to 00h, a low-to-high pulse will automatically be generated and internally supplied to the Timer1 Gate circuitry.

12.6.2.3 Timer2 Match Gate Operation

The TMR2 register will increment until it matches the value in the PR2 register. On the very next increment cycle, TMR2 will be reset to 00h. When this Reset occurs, a low-to-high pulse will automatically be generated and internally supplied to the Timer1 Gate circuitry.

12.6.2.4 Watchdog Overflow Gate Operation

The Watchdog Timer oscillator, prescaler and counter will be automatically turned on when TMR1GE = 1 and T1GSS selects the WDT as a gate source for Timer1 (T1GSS = 11). TMR1ON does not factor into the oscillator, prescaler and counter enable. See Table 12-5.

The PSA and PS bits of the OPTION register still control what time-out interval is selected. Changing the prescaler during operation may result in a spurious capture.

Enabling the Watchdog Timer oscillator does not automatically enable a Watchdog Reset or Wake-up from Sleep upon counter overflow.

Note:	When using the WDT as a gate source for
	limer1, operations that clear the Watchdog
	Timer (CLRWDT, SLEEP instructions) will
	affect the time interval being measured for
	capacitive sensing. This includes waking
	from Sleep. All other interrupts that might
	wake the device from Sleep should be
	disabled to prevent them from disturbing
	the measurement period.

As the gate signal coming from the WDT counter will generate different pulse widths depending on if the WDT is enabled, when the CLRWDT instruction is executed, and so on, Toggle mode must be used. A specific sequence is required to put the device into the correct state to capture the next WDT counter interval.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	xxxx xxxx
TMR1H	Holding Reg	gister for the	Most Signific	ant Byte of th	he 16-bit TMI	R1 Register			XXXX XXXX	uuuu uuuu
TMR1L	Holding Reg	gister for the	Least Signifi	cant Byte of	the 16-bit TM	IR1 Register			xxxx xxxx	uuuu uuuu
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	0000 00-0	uuuu uu-u
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	0000 0x00	uuuu uxuu

TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELB	-	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111
APFCON	_	_	_	_	_	_	SSSEL	CCP2SEL	00	00
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
CCPRxL	Capture/Compare/PWM Register X Low Byte								xxxx xxxx	uuuu uuuu
CCPRxH	Capture/Compare/PWM Register X High Byte								xxxx xxxx	uuuu uuuu
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIE2	—	—	—	-	—	-	-	CCP2IE	0	0
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIR2	—	—	—	-	—	-	-	CCP2IF	0	0
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	-	TMR10N	0000 00-0	uuuu uu-u
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	0000 0x00	00x0 0x00
TMR1L	Holding Reg	ister for the L	east Significa	nt Byte of the	16-bit TMR1	Register			xxxx xxxx	uuuu uuuu
TMR1H	Holding Reg	ister for the N	lost Significar	nt Byte of the	16-bit TMR1 F	Register			xxxx xxxx	uuuu uuuu
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

TABLE 15-3: S	UMMARY OF REGISTERS ASSO	CIATED WITH CAPTURE
---------------	--------------------------	---------------------

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture.

16.1.2.8 Asynchronous Reception Set-up:

- Initialize the SPBRG register and the BRGH bit to achieve the desired baud rate (refer to Section 16.2 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Enable reception by setting the CREN bit.
- The RCIF interrupt flag bit of the PIR1 register will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE bit of the PIE1 register was also set.
- 7. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 8. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register.
- 9. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

16.1.2.9 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRG register and the BRGH bit to achieve the desired baud rate (refer to Section 16.2 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. Enable 9-bit reception by setting the RX9 bit.
- 5. Enable address detection by setting the ADDEN bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit of the PIR1 register will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit of the PIE1 register was also set.
- 8. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

RX/DT pin	Start bit / bit 0 / bit 1 / (/ ybit 7/8/ Stop / bit / bit 0 / (/ ybit 7/8/ Stop / bit / / / ybit 7/8/ Stop
Rcv Shift Reg Rcv Buffer Reg	Word 1 Word 2 Word 2 PCPEC
Read Rcv Buffer Reg – RCREG	
RCIF (Interrupt Flag)	
OERR bit _ CREN _	
Note: This t causir	iming diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word, ng the OERR (overrun) bit to be set.

FIGURE 16-5: ASYNCHRONOUS RECEPTION

EXAMPLE 17-1: LOADING THE SSPBUF (SSPSR) REGISTER

	BANKSEL	SSPSTAT	;
LOOP	BTFSS	SSPSTAT, BF	;Has data been received(transmit complete)?
	GOTO	LOOP	; No
	BANKSEL	SSPBUF	;
	MOVF	SSPBUF, W	;WREG reg = contents of SSPBUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF	TXDATA, W	;W reg = contents of TXDATA
	MOVWF	SSPBUF	;New data to xmit

	DC CI	HARACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature -40°C \leq TA \leq +85°C for industrial-40°C \leq TA \leq +125°C for extended					
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
	VIL	Input Low Voltage						
		I/O PORT:						
D030		with TTL buffer	—		0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D030A			—		0.15 Vdd	V	$1.8V \leq V\text{DD} \leq 4.5V$	
D031		with Schmitt Trigger buffer	—		0.2 Vdd	V	$2.0V \leq V\text{DD} \leq 5.5V$	
		with I ² C levels	—		0.3 Vdd	V		
D032		MCLR, OSC1 (RC mode) ⁽¹⁾	—	_	0.2 Vdd	V		
D033A		OSC1 (HS mode)	—	_	0.3 Vdd	V		
	Vih	Input High Voltage						
		I/O ports:		_	_			
D040		with TTL buffer	2.0		—	V	$4.5V \leq VDD \leq 5.5V$	
D040A			0.25 VDD+ 0.8	_	_	V	$1.8V \le V\text{DD} \le 4.5V$	
D041		with Schmitt Trigger buffer	0.8 Vdd	—	—	V	$2.0V \leq V\text{DD} \leq 5.5V$	
		with I ² C levels	0.7 Vdd	_	—	V		
D042		MCLR	0.8 Vdd	_	—	V		
D043A		OSC1 (HS mode)	0.7 Vdd	_	—	V		
D043B		OSC1 (RC mode)	0.9 Vdd	_	—	V	(Note 1)	
	lı∟	Input Leakage Current ⁽²⁾						
D060		I/O ports	—	± 5	± 125	nA	Vss \leq VPIN \leq VDD, Pin at high- impedance, 85°C	
		(2)		± 5	± 1000	nA	125°C	
D061	-	MCLR ⁽³⁾	—	± 50	± 200	nA	$VSS \leq VPIN \leq VDD, 85^{\circ}C$	
	IPUR	PORTB Weak Pull-up Current			1	1		
D070*			25	100	200		VDD = 3.3V, VPIN = VSS	
	1/2:	O	25	140	300	μΑ	VDD = 5.0V, VPIN = VSS	
Daga	VOL		1					
D080		I/O ports	—	—	0.6	V	IOL = 8MA, VDD = 5V IOL = 6MA, VDD = 3.3V IOL = 1.8MA, VDD = 1.8V	
	Voh	Output High Voltage ⁽⁴⁾						
D090		I/O ports	Vdd - 0.7	_	_	V	IOH = 3.5mA, VDD = 5V IOH = 3mA, VDD = 3.3V IOH = 1mA, VDD = 1.8V	
		Capacitive Loading Specs on	Output Pins					
D101*	COSC2	OSC2 pin	_	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1	
D101A*	Сю	All I/O pins	_	_	50	pF		
		Program Flash Memory	1		•	•		

23.4 DC Characteristics: PIC16(L)F722/3/4/6/7-I/E

Legend: TBD = To Be Determined

^t These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

Standard Operating	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	—	37	kHz	LP Oscillator mode		
			DC	—	4	MHz	XT Oscillator mode		
			DC	—	20	MHz	HS Oscillator mode		
			DC	—	20	MHz	EC Oscillator mode		
		Oscillator Frequency ⁽¹⁾	—	32.768	—	kHz	LP Oscillator mode		
			0.1	—	4	MHz	XT Oscillator mode		
			1	—	20	MHz	HS Oscillator mode		
			DC	—	4	MHz	RC Oscillator mode		
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	—	×	μs	LP Oscillator mode		
			250	—	∞	ns	XT Oscillator mode		
			50	—	∞	ns	HS Oscillator mode		
			50	—	∞	ns	EC Oscillator mode		
		Oscillator Period ⁽¹⁾	—	30.5	—	μS	LP Oscillator mode		
			250	—	10,000	ns	XT Oscillator mode		
			50	—	1,000	ns	HS Oscillator mode		
			250	—	—	ns	RC Oscillator mode		
OS03	TCY	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	TCY = 4/FOSC		
OS04*	TosH,	External CLKIN High,	2	—	—	μs	LP oscillator		
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator		
			20	—	—	ns	HS oscillator		
OS05*	TosR,	External CLKIN Rise,	0	—	×	ns	LP oscillator		
	TosF	External CLKIN Fall	0	—	∞	ns	XT oscillator		
			0	_	×	ns	HS oscillator		

TABLE 23-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

Note 1: If the A/D clock source is selected as RC, a time of TcY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

PIC16(L)F722/3/4/6/7

PIC16(L)F722/3/4/6/7

FIGURE 24-54: VOH vs. IOH OVER TEMPERATURE, VDD = 1.8V

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.80 BSC			
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X44)	X1			0.55	
Contact Pad Length (X44)	Y1			1.50	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dim	Dimension Limits		NOM	MAX
Number of Pins	N	28		
Pitch	е	0.40 BSC		
Overall Height	A	0.45	0.50	0.55
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.127 REF		
Overall Width	E	4.00 BSC		
Exposed Pad Width	E2	2.55	2.65	2.75
Overall Length	D	4.00 BSC		
Exposed Pad Length	D2	2.55	2.65	2.75
Contact Width	b	0.15	0.20	0.25
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>[X]</u> (1)	¥	<u>/xx</u>	<u>xxx</u>	Exa	mples:
Device	Tape and Reel Option	Temperature Range	Package	Pattern	a) b)	PIC16F722-E/SP 301 = Extended Temp., skinny PDIP package, QTP pattern #301 PIC16F722-I/SO = Industrial Temp., SOIC package
Device:	PIC16F722, PIC16 PIC16F723, PIC16 PIC16F724, PIC16 PIC16F726, PIC16 PIC16F726, PIC16 PIC16F727, PIC16	LF722, PIC16F722 LF723, PIC16F723 LF724, PIC16F724 LF726, PIC16F726 LF727, PIC16F727	T, PIC16LF72 T, PIC16LF72 T, PIC16LF72 T, PIC16LF72 T, PIC16LF72 T, PIC16LF72	22T(1) 23T(1) 24T(1) 26T(1) 27T(1)		,
Tape and Reel Option:	$I = -40^{\circ}C \text{ to}$ $E = -40^{\circ}C \text{ to}$ $MV = \text{Micro Le}$	+85°C +125°C ad Frame (UQFN)				
Temperature Range:	$ \begin{array}{rcl} I & = -40^{\circ}C \ tc \\ E & = -40^{\circ}C \ tc \end{array} $	o +85°C (Indus o +125°C (Exten	trial) ded)		Note	e 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering numbers and
Package:	ML = Micro Le P = Plastic I PT = TQFP (SO = SOIC SP = Skinny F SS = SSOP	ead Frame (QFN) DIP Thin Quad Flatpack Plastic DIP)			is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.