

THE ILE INNIN

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf724t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-6:

PIC16F726/LF726 AND PIC16F727/LF727 SPECIAL FUNCTION REGISTERS

Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION	81h	TMR0	101h	OPTION	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h	ANSELA	185h
PORTB	06h	TRISB	86h		106h	ANSELB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h	CPSCON0	108h	ANSELD ⁽¹⁾	188h
PORTE	09h	TRISE	89h	CPSCON1	109h	ANSELE ⁽¹⁾	189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	PMDATL	10Ch	PMCON1	18Ch
PIR2	0Dh	PIE2	8Dh	PMADRL	10Dh	Reserved	18Dh
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh	Reserved	18Eh
TMR1H	0Fh	T1GCON	8Fh	PMADRH	10Fh	Reserved	18Fh
T1CON	10h	OSCCON	90h		110h		190h
TMR2	11h	OSCTUNE	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD/SSPMSK	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h	WPUB	95h		115h		195h
CCPR1H	16h	IOCB	96h	General	116h	General	196h
CCP1CON	17h		97h	Purpose	117h	Purpose	197h
RCSTA	18h	TXSTA	98h	Register	118h	Register	198h
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199h
RCREG	1Ah		9Ah		11Ah		19Ah
CCPR2L	1Bh		9Bh		11Bh		19Bh
CCPR2H	1Ch	APFCON	9Ch		11Ch		19Ch
CCP2CON	1Dh	FVRCON	9Dh		11Dh		19Dh
ADRES	1Eh		9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
		General		General		General	
		Purpose		Purpose		Purpose	
General		Register		Register		Register	
Purpose		80 Bytes		80 Bytes		80 Bytes	
Register 96 Bytes			EFh		16Fh		1EFh
So Bytes		Accesses	F0h	Accesses	170h	Accesses	1F0h
		70h-7Fh		70h-7Fh		70h-7Fh	
	7Fh		FFh		17Fh		1FFh
Bank 0		Bank 1		Bank 2	1	Bank 3	1
d: = Unimple	mented o	data memory locations,	read as	ʻ0',			
* = Not a ph				implemented on the			

2.2.2.2 OPTION register

The OPTION register, shown in Register 2-2, is a readable and writable register, which contains various control bits to configure:

- Timer0/WDT prescaler
- External RB0/INT interrupt
- Timer0
- Weak pull-ups on PORTB

Note:	To achieve a 1:1 prescaler assignment for
	Timer0, assign the prescaler to the WDT
	by setting the PSA bit of the
	OPTION_REG register to '1'. Refer to
	Section 11.1.3 "Software
	Programmable Prescaler".

REGISTER 2-2: OPTION_REG: OPTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual bits in the WPUB register					
bit 6	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin					
bit 5	TOCS: Timer0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (Fosc/4)					
bit 4	T0SE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin					
bit 3	PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module					
bit 2-0	PS<2:0>: Prescaler Rate Select bits					
	Bit Value Timer0 Rate WDT Rate					
	000 1:2 1:1 001 1:4 1:2 010 1:8 1:4 011 1:16 1:8 100 1:32 1:16 101 1:64 1:32					

1:128

1:256

1:64

1 : 128

110

111

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE	PEIE	TOIE	INTE	RBIE ⁽¹⁾	T0IF ⁽²⁾	INTF	RBIF
bit 7							bit C
Legend: R = Readabl	o hit	W = Writable I	nit	II – I Inimpler	nented bit, read	1 26 '0'	
-n = Value at		'1' = Bit is set	JIL	0' = Bit is cle		x = Bit is unkr	NOWD
		1 – Dit 13 Set			areu		IOWIT
bit 7	GIE: Global Ir	nterrupt Enable	bit				
	1 = Enables a 0 = Disables a	all unmasked in all interrupts	terrupts				
bit 6	1 = Enables a	eral Interrupt Er all unmasked pe all peripheral in	eripheral inte	rrupts			
bit 5	TolE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt						
bit 4	1 = Enables t	IT External Inte he RB0/INT ext the RB0/INT ex	ernal interru	ot			
bit 3	1 = Enables t	B Change Intern he PORTB cha the PORTB cha	nge interrupt				
bit 2	1 = TMR0 reg	Overflow Interr gister has overfl gister did not ov	owed (must l		oftware)		
bit 1	INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur						
bit 0	RBIF: PORTB Change Interrupt Flag bit 1 = When at least one of the PORTB general purpose I/O pins changed state (must be cleared software)					be cleared i	
	0 = None of t				h		

REGISTER 4-1: INTCON: INTERRUPT CONTROL REGISTER

- The appropriate bits in the IOCB register must also be set. Note 1:
 - 2: T0IF bit is set when Timer0 rolls over. Timer0 is unchanged on Reset and should be initialized before clearing T0IF bit.

4.5.3 PIE2 REGISTER

Γ.

bit 0

The PIE2 register contains the interrupt enable bits, as shown in Register 4-3.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 4-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—		CCP2IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1 Unimplemented: Read as '0'

CCP2IE: CCP2 Interrupt Enable bit

1 = Enables the CCP2 interrupt

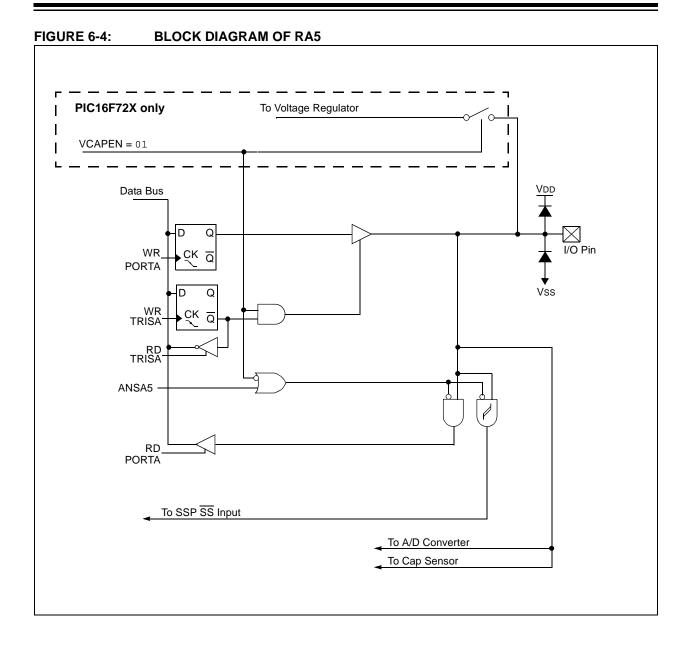
0 = Disables the CCP2 interrupt

6.0 I/O PORTS

There are as many as 35 general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

6.1 Alternate Pin Function

The Alternate Pin Function Control (APFCON) register is used to steer specific peripheral input and output functions between different pins. The APFCON register is shown in Register 6-1. For this device family, the following functions can be moved between different pins.


- SS (Slave Select)
- CCP2

REGISTER 6-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	_	—	—	SSSEL	CCP2SEL
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2	Unimplemented: Read as '0'.
bit 1	SSSEL: SS Input Pin Selection bit
	0 = <u>SS</u> function is on RA5/AN4/CPS7/SS/VCAP 1 = <u>SS</u> function is on RA0/AN0/SS/VCAP
bit 0	CCP2SEL: CCP2 Input/Output Pin Selection bit 0 = CCP2 function is on RC1/T1OSI/CCP2 1 = CCP2 function is on RB3/CCP2

6.3 PORTB and TRISB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 6-6). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 6-2 shows how to initialize PORTB.

Reading the PORTB register (Register 6-5) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

The TRISB register (Register 6-6) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'. Example 6-2 shows how to initialize PORTB.

EXAMPLE 6-2: INITIALIZING PORTB

BANKSEL	PORTB	;
CLRF	PORTB	;Init PORTB
BANKSEL	ANSELB	
CLRF	ANSELB	;Make RB<7:0> digital
BANKSEL	TRISB	;
MOVLW	B'11110000'	;Set RB<7:4> as inputs
		;and RB<3:0> as outputs
MOVWF	TRISB	;

Note: The ANSELB register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'.

6.3.1 ANSELB REGISTER

The ANSELB register (Register 6-9) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no affect on digital output functions. A pin with TRIS clear and ANSELB set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

6.3.2 WEAK PULL-UPS

Each of the PORTB pins has an individually configurable internal weak pull-up. Control bits WPUB<7:0> enable or disable each pull-up (see Register 6-7). Each weak pull-up is automatically turned off when the port pin is configured as an output. All pull-ups are disabled on a Power-on Reset by the RBPU bit of the OPTION register.

6.3.3 INTERRUPT-ON-CHANGE

All of the PORTB pins are individually configurable as an interrupt-on-change pin. Control bits IOCB<7:0> enable or disable the interrupt function for each pin. Refer to Register 6-8. The interrupt-on-change feature is disabled on a Power-on Reset.

For enabled interrupt-on-change pins, the present value is compared with the old value latched on the last read of PORTB to determine which bits have changed or mismatched the old value. The 'mismatch' outputs of the last read are OR'd together to set the PORTB Change Interrupt flag bit (RBIF) in the INTCON register.

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear the flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading or writing PORTB will end the mismatch condition and allow flag bit RBIF to be cleared. The latch holding the last read value is not affected by a MCLR nor Brown-out Reset. After these Resets, the RBIF flag will continue to be set if a mismatch is present.

Note: When a pin change occurs at the same time as a read operation on PORTB, the RBIF flag will always be set. If multiple PORTB pins are configured for the interrupt-on-change, the user may not be able to identify which pin changed state.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
bit 7			•			•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 6-7: WPUB: WEAK PULL-UP PORTB REGISTER

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: Global RBPU bit of the OPTION register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

REGISTER 6-8: IOCB: INTERRUPT-ON-CHANGE PORTB REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| IOCB7 | IOCB6 | IOCB5 | IOCB4 | IOCB3 | IOCB2 | IOCB1 | IOCB0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **IOCB<7:0>:** Interrupt-on-Change PORTB Control bits

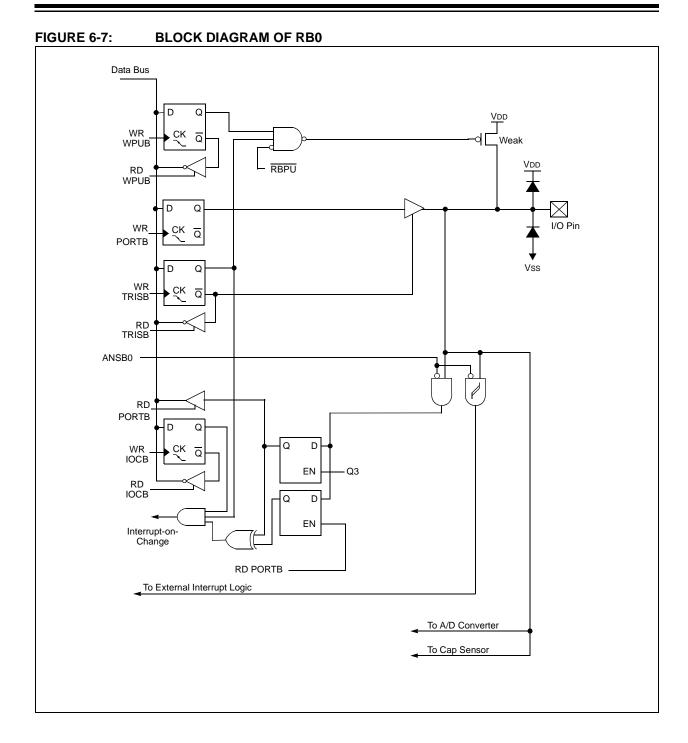
1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

REGISTER 6-9: ANSELB: PORTB ANALOG SELECT REGISTER

U-0 U-0		R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 7-6 Unimplemented: Read as '0'

bit 5-0 ANSB<5:0>: Analog Select between Analog or Digital Function on Pins RB<5:0>, respectively

0 = Digital I/O. Pin is assigned to port or Digital special function.

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital Input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7		ull-ups are dis	abled	dual port latch	values		
bit 6	•	errupt Edge Se on rising edge on falling edge	of INT pin				
bit 5	1 = Transition	Clock Source on T0CKI pin astruction cycle	or CPSOSC s				
bit 4		Source Edge t on high-to-lov t on low-to-hig	w transition or				
bit 3		er Assignmen is assigned to is assigned to	the WDT	nodule			
bit 2-0	PS<2:0>: Pre	escaler Rate S	elect bits				
	BIT	VALUE TMR0 R	ATE WDT RA	TE			
	0 0 1 1 1	00 1:2 01 1:4 10 1:8 11 1:1 00 1:3 01 1:6 10 1:1	1:2 1:4 1:8 1:16 4 1:32 28				
TABLE 11-1:			TERS ASSO		H TIMERO		

REGISTER 11-1: OPTION_REG: OPTION REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CPSCON0	CPSON				CPSRNG1	CPSRNG0	CPSOUT	T0XCS	0 0000	0 0000
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
TMR0	Timer0 Mo	dule Register							XXXX XXXX	uuuu uuuu
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module.

13.0 TIMER2 MODULE

The Timer2 module is an 8-bit timer with the following features:

- 8-bit timer register (TMR2)
- 8-bit period register (PR2)
- Interrupt on TMR2 match with PR2
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)

See Figure 13-1 for a block diagram of Timer2.

13.1 Timer2 Operation

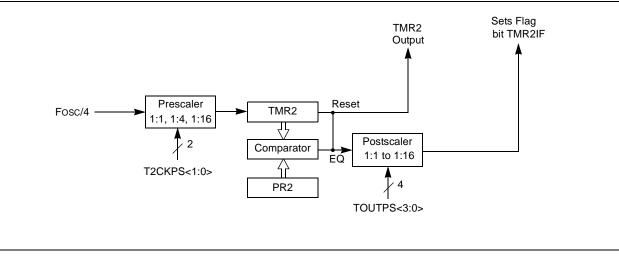
The clock input to the Timer2 module is the system instruction clock (Fosc/4). The clock is fed into the Timer2 prescaler, which has prescale options of 1:1, 1:4 or 1:16. The output of the prescaler is then used to increment the TMR2 register.

The values of TMR2 and PR2 are constantly compared to determine when they match. TMR2 will increment from 00h until it matches the value in PR2. When a match occurs, two things happen:

- TMR2 is reset to 00h on the next increment cycle.
- The Timer2 postscaler is incremented.

The match output of the Timer2/PR2 comparator is then fed into the Timer2 postscaler. The postscaler has postscale options of 1:1 to 1:16 inclusive. The output of the Timer2 postscaler is used to set the TMR2IF interrupt flag bit in the PIR1 register.

FIGURE 13-1: TIMER2 BLOCK DIAGRAM


The TMR2 and PR2 registers are both fully readable and writable. On any Reset, the TMR2 register is set to 00h and the PR2 register is set to FFh.

Timer2 is turned on by setting the TMR2ON bit in the T2CON register to a '1'. Timer2 is turned off by clearing the TMR2ON bit to a '0'.

The Timer2 prescaler is controlled by the T2CKPS bits in the T2CON register. The Timer2 postscaler is controlled by the TOUTPS bits in the T2CON register. The prescaler and postscaler counters are cleared when:

- A write to TMR2 occurs.
- A write to T2CON occurs.
- Any device Reset occurs (Power-on Reset, MCLR Reset, Watchdog Timer Reset, or Brown-out Reset).

Note: TMR2 is not cleared when T2CON is written.

15.3.2 PWM PERIOD

The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 15-1.

EQUATION 15-1: PWM PERIOD

$$PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$$
$$(TMR2 Prescale Value)$$
Note: Tosc = 1/Fosc

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from CCPRxL into CCPRxH.

Note:	The	Timer2	postscaler	(refe	er to
			imer2 Oper		
	usea freque		etermination	of the	PVVM

15.3.3 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPRxL register and DCxB<1:0> bits of the CCPxCON register. The CCPRxL contains the eight MSbs and the DCxB<1:0> bits of the CCPxCON register contain the two LSbs. CCPRxL and DCxB<1:0> bits of the CCPxCON register can be written to at any time. The duty cycle value is not latched into CCPRxH until after the period completes (i.e., a match between PR2 and TMR2 registers occurs). While using the PWM, the CCPRxH register is read-only.

Equation 15-2 is used to calculate the PWM pulse width.

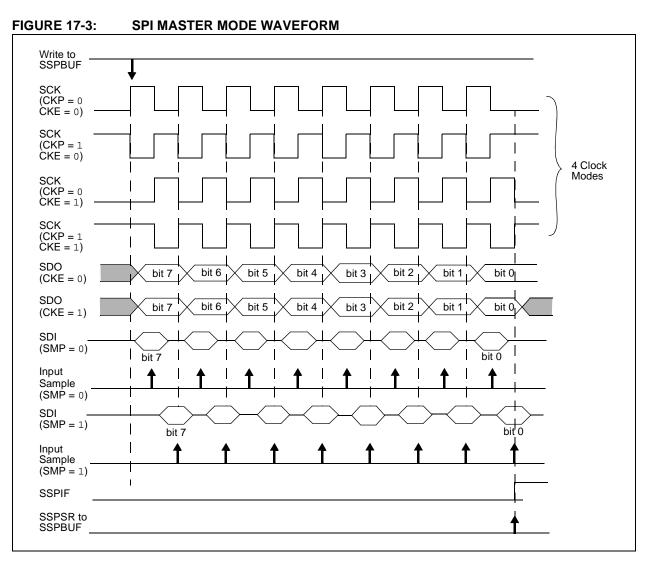
Equation 15-3 is used to calculate the PWM duty cycle ratio.

EQUATION 15-2: PULSE WIDTH

 $Pulse Width = (CCPRxL:CCPxCON < 5:4>) \bullet$

TOSC • (TMR2 Prescale Value)

Note: Tosc = 1/Fosc


EQUATION 15-3: DUTY CYCLE RATIO

$$Duty Cycle Ratio = \frac{(CCPRxL:CCPxCON < 5:4>)}{4(PR2 + 1)}$$

The CCPRxH register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

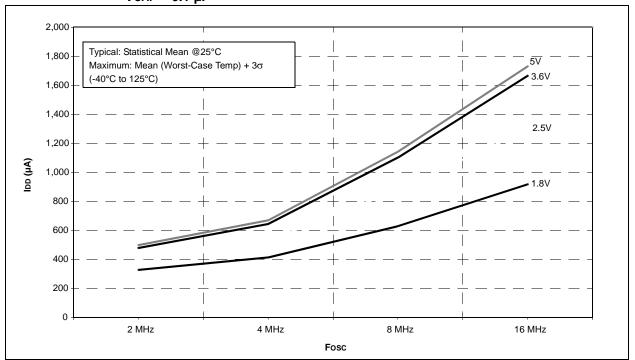
The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH and 2-bit latch, then the CCPx pin is cleared (refer to Figure 15-3).

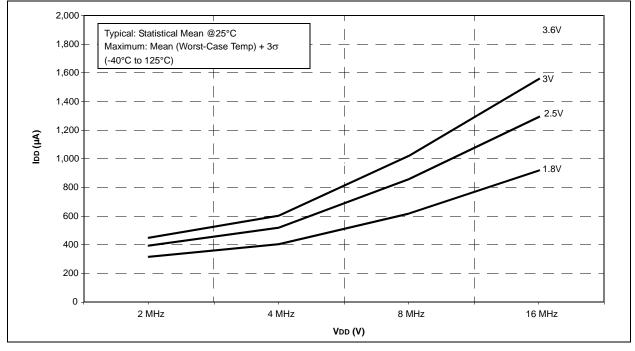
EXAMPLE 17-1: LOADING THE SSPBUF (SSPSR) REGISTER

	BANKSEL	SSPSTAT	i
LOOP	BTFSS	SSPSTAT, BF	;Has data been received(transmit complete)?
	GOTO	LOOP	;No
	BANKSEL	SSPBUF	;
	MOVF	SSPBUF, W	;WREG reg = contents of SSPBUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF	TXDATA, W	;W reg = contents of TXDATA
	MOVWF	SSPBUF	;New data to xmit

23.5 **Thermal Considerations**


	Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C							
Param No.	Sym.	Characteristic	Тур.	Units	Conditions			
TH01	θJA	Thermal Resistance Junction to Ambient	60	°C/W	28-pin SPDIP package			
			80	°C/W	28-pin SOIC package			
			90	°C/W	28-pin SSOP package			
			27.5	°C/W	28-pin UQFN 4x4mm package			
			27.5	°C/W	28-pin QFN 6x6mm package			
			47.2	°C/W	40-pin PDIP package			
			46	°C/W	44-pin TQFP package			
			24.4	°C/W	44-pin QFN 8x8mm package			
TH02	θJC	Thermal Resistance Junction to Case	31.4	°C/W	28-pin SPDIP package			
			24	°C/W	28-pin SOIC package			
			24	°C/W	28-pin SSOP package			
			24	°C/W	28-pin UQFN 4x4mm package			
			24	°C/W	28-pin QFN 6x6mm package			
			24.7	°C/W	40-pin PDIP package			
			14.5	°C/W	44-pin TQFP package			
			20	°C/W	44-pin QFN 8x8mm package			
TH03	TJMAX	Maximum Junction Temperature	150	°C				
TH04	PD	Power Dissipation		W	PD = PINTERNAL + PI/O			
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾			
TH06	Pi/o	I/O Power Dissipation		W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$			
TH07	Pder	Derated Power	_	W	Pder = PDmax (Tj - Ta)/θja ⁽²⁾			

Note 1: IDD is current to run the chip alone without driving any load on the output pins.


2: TA = Ambient Temperature

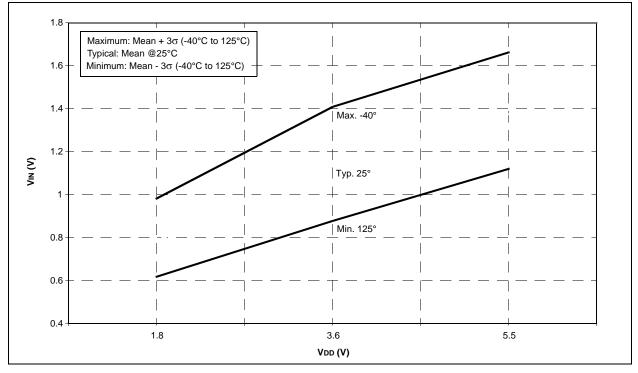
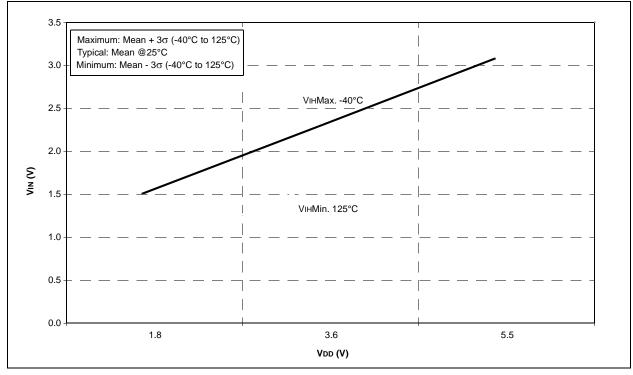

3: T_J = Junction Temperature

FIGURE 24-25: PIC16F722/3/4/6/7 TYPICAL IDD vs. Fosc OVER VDD, INTOSC MODE, VCAP = $0.1 \mu F$



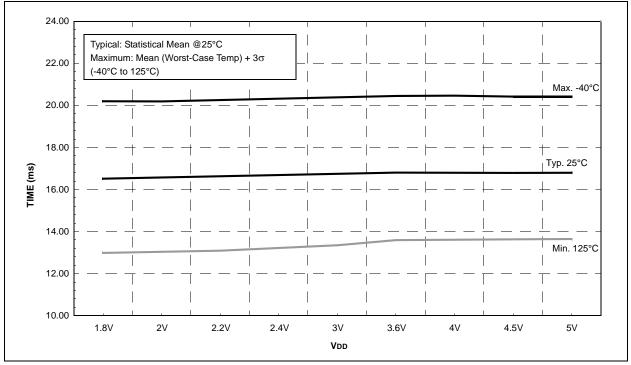
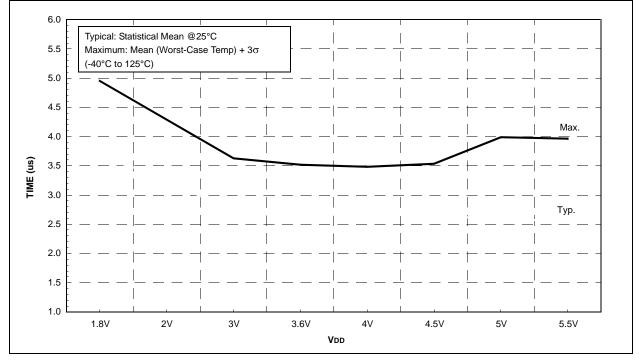


FIGURE 24-49: TTL INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE



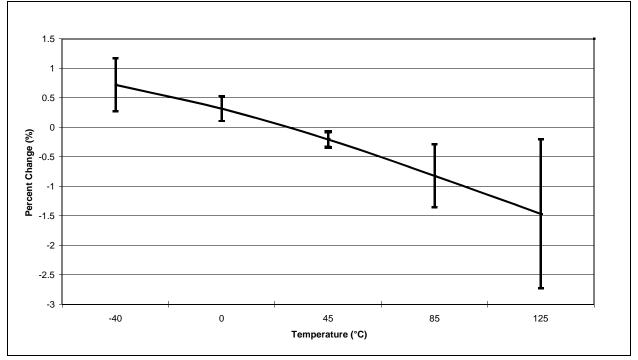
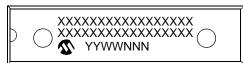
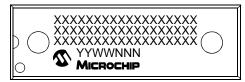
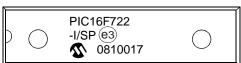


FIGURE 24-59: PIC16F722/3/4/6/7 WDT TIME-OUT PERIOD




25.0 PACKAGING INFORMATION

25.1 Package Marking Information


28-Lead SPDIP

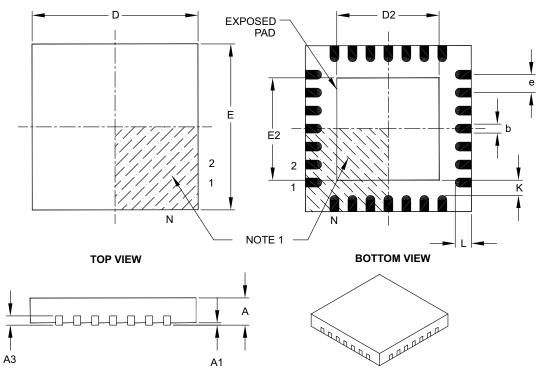
40-Lead PDIP

Example

Example

28-Lead QFN/UQFN

Example



Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC [®] designator (e3) can be found on the outer packaging for this package.
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	0.65 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20
Contact Width	b	0.23	0.30	0.35
Contact Length	L	0.50	0.55	0.70
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B