

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf726t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-7 shows the two situations for the loading of the PC. The upper example in Figure 2-7 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-7 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-7: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the Application Note *AN556, Implementing a Table Read* (DS00556).

2.3.2 STACK

All devices have an 8-level x 13-bit wide hardware stack (refer to Figures 2-1 and 2-3). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth PUSH overwrites the value that was stored from the first PUSH. The tenth PUSH overwrites the second PUSH (and so on).

- Note 1: There are no Status bits to indicate Stack Overflow or Stack Underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

2.4 **Program Memory Paging**

All devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper two bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is POPed off the stack. Therefore, manipulation of the PCLATH<4:3> bits is not required for the RETURN instructions (which POPs the address from the stack).

Example 2-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the Interrupt Service Routine (if interrupts are used).

EXAMPLE 2-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

	ORG 500	h					
	PAGESEL	SUB_P1	;Select page 1				
			;(800h-FFFh)				
	CALL	SUB1_P1	;Call	su	broutine in		
	:		;page	1	(800h-FFFh)		
	:						
	ORG	900h	;page	1	(800h-FFFh)		
SUB1_P1							
	:		;calle	ed	subroutine		
			;page	1	(800h-FFFh)		
	:						
	RETURN		;retur	m	to		
			;Call	su	broutine		
			;in pa	ıge	0		
			;(000h	1-7	FFh)		

Note: The contents of the PCLATH register are unchanged after a RETURN or RETFIE instruction is executed. The user must rewrite the contents of the PCLATH register for any subsequent subroutine calls or GOTO instructions.

Register	Address	Power-on Reset/ Brown-out Reset ⁽¹⁾	MCLR Reset/ WDT Reset	Wake-up from Sleep through Interrupt/Time out
W	—	xxxx xxxx	սսսս սսսս	սսսս սսսս
INDF	00h/80h/ 100h/180h	XXXX XXXX	XXXX XXXX	uuuu uuuu
TMR0	01h/101h	xxxx xxxx	սսսս սսսս	սսսս սսսս
PCL	02h/82h/ 102h/182h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h/83h/ 103h/183h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾
FSR	04h/84h/ 104h/184h	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTA	05h	XXXX XXXX	XXXX XXXX	uuuu uuuu
PORTB	06h	XXXX XXXX	XXXX XXXX	uuuu uuuu
PORTC	07h	XXXX XXXX	XXXX XXXX	uuuu uuuu
PORTD ⁽⁶⁾	08h	XXXX XXXX	XXXX XXXX	uuuu uuuu
PORTE	09h	xxxx	xxxx	uuuu
PCLATH	0Ah/8Ah/ 10Ah/18Ah	0 0000	0 0000	u uuuu
INTCON	0Bh/8Bh/ 10Bh/18Bh	0000 000x	0000 000x	uuuu uuuu ⁽²⁾
PIR1	0Ch	0000 0000	0000 0000	uuuu uuuu (2)
PIR2	0Dh	0	0	u
TMR1L	0Eh	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR1H	0Fh	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1CON	10h	0000 00-0	uuuu uu-u	uuuu uu-u
TMR2	11h	0000 0000	0000 0000	սսսս սսսս
T2CON	12h	-000 0000	-000 0000	-uuu uuuu
SSPBUF	13h	XXXX XXXX	XXXX XXXX	սսսս սսսս
SSPCON	14h	0000 0000	0000 0000	սսսս սսսս
CCPR1L	15h	xxxx xxxx	XXXX XXXX	սսսս սսսս
CCPR1H	16h	xxxx xxxx	XXXX XXXX	սսսս սսսս
CCP1CON	17h	00 0000	00 0000	uu uuuu
RCSTA	18h	x000 0000	0000 000x	սսսս սսսս
TXREG	19h	0000 0000	0000 0000	սսսս սսսս
RCREG	1Ah	0000 0000	0000 0000	սսսս սսսս
CCPR2L	1Bh	xxxx xxxx	XXXX XXXX	սսսս սսսս
CCPR2H	1Ch	xxxx xxxx	XXXX XXXX	սսսս սսսս
CCP2CON	1Dh	00 0000	00 0000	uu uuuu
ADRES	1Eh	XXXX XXXX	սսսս սսսս	<u>uuuu</u> uuuu
ADCON0	1Fh	00 0000	00 0000	uu uuuu
OPTION_REG	81h/181h	1111 1111	1111 1111	<u>uuuu</u> uuuu
TRISA	85h	1111 1111	1111 1111	<u>uuuu</u> uuuu
TRISB	86h	1111 1111	1111 1111	uuuu uuuu
TRISC	87h	1111 1111	1111 1111	uuuu uuuu
TRISD ⁽⁶⁾	88h	1111 1111	1111 1111	<u>uuuu</u> uuuu
TRISE	89h	1111	1111	uuuu
PIE1	8Ch	0000 0000	0000 0000	<u>uuuu</u> uuuu
PIE2	8Dh	0	0	u

TABLE 3-4: INITIALIZATION CONDITION FOR REGISTERS

 $\label{eq:Legend: Legend: Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition.$

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 and PIR2 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 3-5 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

6: PIC16F724/727/PIC16LF724/727 only.

4.0 INTERRUPTS

The PIC16(L)F722/3/4/6/7 device family features an interruptible core, allowing certain events to preempt normal program flow. An Interrupt Service Routine (ISR) is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

The PIC16(L)F722/3/4/6/7 device family has 12 interrupt sources, differentiated by corresponding interrupt enable and flag bits:

- Timer0 Overflow Interrupt
- External Edge Detect on INT Pin Interrupt
- PORTB Change Interrupt
- Timer1 Gate Interrupt
- A/D Conversion Complete Interrupt
- AUSART Receive Interrupt
- AUSART Transmit Interrupt
- SSP Event Interrupt
- CCP1 Event Interrupt
- · Timer2 Match with PR2 Interrupt
- Timer1 Overflow Interrupt
- CCP2 Event Interrupt

A block diagram of the interrupt logic is shown in Figure 4-1.

FIGURE 4-1: INTERRUPT LOGIC

REGISTER 6-5: PORTB: PORTB REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
bit 7	•						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		าดพท	

bit 7-0 **RB<7:0>**: PORTB I/O Pin bit 1 = Port pin is > VIH 0 = Port pin is < VIL

REGISTER 6-6: TRISB: PORTB TRI-STATE REGISTER

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 TRISB<7:0>: PORTB Tri-State Control bit

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
bit 7						•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unkno		nown	

REGISTER 6-7: WPUB: WEAK PULL-UP PORTB REGISTER

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: Global RBPU bit of the OPTION register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

REGISTER 6-8: IOCB: INTERRUPT-ON-CHANGE PORTB REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| IOCB7 | IOCB6 | IOCB5 | IOCB4 | IOCB3 | IOCB2 | IOCB1 | IOCB0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **IOCB<7:0>:** Interrupt-on-Change PORTB Control bits

1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

REGISTER 6-9: ANSELB: PORTB ANALOG SELECT REGISTER

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 ANSB<5:0>: Analog Select between Analog or Digital Function on Pins RB<5:0>, respectively

0 = Digital I/O. Pin is assigned to port or Digital special function.

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital Input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

TABLE 9-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock	Period (TAD)		Devi	Device Frequency (Fosc)			
ADC Clock Source	ADCS<2:0>	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz	
Fosc/2	000	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	
Fosc/4	100	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs	
Fosc/8	001	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾	
Fosc/16	101	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾	
Fosc/32	010	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾	
Fosc/64	110	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾	
FRC	x11	1.0-6.0 μs ^(1,4)					

Legend: Shaded cells are outside of recommended range.

Note 1: The FRC source has a typical TAD time of 1.6 μs for VDD.

- 2: These values violate the minimum required TAD time.
- **3:** For faster conversion times, the selection of another clock source is recommended.
- 4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the conversion will be performed during Sleep.

FIGURE 9-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

PIC16(L)F722/3/4/6/7

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	00 0000
ADCON1	_	ADCS2	ADCS1	ADCS0	_	_	ADREF1	ADREF0	-00000	-00000
ANSELA	_	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	11 1111	11 1111
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111
ANSELE	_	_	_	_	_	ANSE2	ANSE1	ANSE0	111	111
ADRES				A/D Result	Register Byte	e			xxxx xxxx	uuuu uuuu
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
FVRCON	FVRRDY	FVREN	_	_	_	_	ADFVR1	ADFVR0	q000	d000
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
TRISE	_	_	_	_	TRISE3	TRISE2	TRISE1	TRISE0	1111	1111

TABLE 9-2: SUMMARY OF ASSOCIATED ADC REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for ADC module.

12.11 Timer1 Control Register

The Timer1 Control register (T1CON), shown in Register 12-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR1ON
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	TMR1CS<1:0>: Timer1 Clock Source Select bits
	11 = Timer1 clock source is Capacitive Sensing Oscillator (CAPOSC)
	10 = Timer1 clock source is pin or oscillator:
	$\underline{\text{If } \text{T1OSCEN} = 0}$
	External clock from T1CKI pin (on the rising edge)
	$\frac{\text{If } 110\text{SUEN} = 1}{\text{Crustel excillator on T10SUT10SO pine}}$
	01 – Timer1 clock source is system clock (FOSC)
	00 = Timer1 clock source is instruction clock (FOSC/4)
bit 5-4	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits
	11 = 1.8 Prescale value
	10 = 1:4 Prescale value
	01 = 1:2 Prescale value
	00 = 1:1 Prescale value
bit 3	T1OSCEN: LP Oscillator Enable Control bit
	1 = Dedicated Timer1 oscillator circuit enabled
	0 = Dedicated Timer1 oscillator circuit disabled
bit 2	T1SYNC: Timer1 External Clock Input Synchronization Control bit
	<u>TMR1CS<1:0> = $1X$</u>
	1 = Do not synchronize external clock input
	0 = Synchronize external clock input with system clock (FOSC)
	TMR1CS<1:0> = 0X
	This bit is ignored. Timer1 uses the internal clock when TMR1CS<1:0> = $1X$.
bit 1	Unimplemented: Read as '0'
bit 0	TMR10N: Timer1 On bit
	1 = Enables Timer1
	0 = Stops Timer1
	Clears Timer1 Gate flip-flop

13.0 TIMER2 MODULE

The Timer2 module is an 8-bit timer with the following features:

- 8-bit timer register (TMR2)
- 8-bit period register (PR2)
- Interrupt on TMR2 match with PR2
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)

See Figure 13-1 for a block diagram of Timer2.

13.1 Timer2 Operation

The clock input to the Timer2 module is the system instruction clock (Fosc/4). The clock is fed into the Timer2 prescaler, which has prescale options of 1:1, 1:4 or 1:16. The output of the prescaler is then used to increment the TMR2 register.

The values of TMR2 and PR2 are constantly compared to determine when they match. TMR2 will increment from 00h until it matches the value in PR2. When a match occurs, two things happen:

- TMR2 is reset to 00h on the next increment cycle.
- The Timer2 postscaler is incremented.

The match output of the Timer2/PR2 comparator is then fed into the Timer2 postscaler. The postscaler has postscale options of 1:1 to 1:16 inclusive. The output of the Timer2 postscaler is used to set the TMR2IF interrupt flag bit in the PIR1 register.

FIGURE 13-1: TIMER2 BLOCK DIAGRAM

The TMR2 and PR2 registers are both fully readable and writable. On any Reset, the TMR2 register is set to 00h and the PR2 register is set to FFh.

Timer2 is turned on by setting the TMR2ON bit in the T2CON register to a '1'. Timer2 is turned off by clearing the TMR2ON bit to a '0'.

The Timer2 prescaler is controlled by the T2CKPS bits in the T2CON register. The Timer2 postscaler is controlled by the TOUTPS bits in the T2CON register. The prescaler and postscaler counters are cleared when:

- A write to TMR2 occurs.
- A write to T2CON occurs.
- Any device Reset occurs (Power-on Reset, MCLR Reset, Watchdog Timer Reset, or Brown-out Reset).

Note: TMR2 is not cleared when T2CON is written.

14.0 CAPACITIVE SENSING MODULE

The capacitive sensing module allows for an interaction with an end user without a mechanical interface. In a typical application, the capacitive sensing module is attached to a pad on a printed circuit board (PCB), which is electrically isolated from the end user. When the end user places their finger over the PCB pad, a capacitive load is added, causing a frequency shift in the capacitive sensing module. The capacitive sensing module requires software and at least one timer resource to determine the change in frequency. Key features of this module include:

- · Analog MUX for monitoring multiple inputs
- · Capacitive sensing oscillator
- Multiple timer resources
- Software control
- · Operation during Sleep

FIGURE 14-1: CAPACITIVE SENSING BLOCK DIAGRAM

15.3 PWM Mode

The PWM mode generates a Pulse-Width Modulated signal on the CCPx pin. The duty cycle, period and resolution are determined by the following registers:

- PR2
- T2CON
- CCPRxL
- CCPxCON

In Pulse-Width Modulation (PWM) mode, the CCP module produces up to a 10-bit resolution PWM output on the CCPx pin.

Figure 15-3 shows a simplified block diagram of PWM operation.

Figure 15-4 shows a typical waveform of the PWM signal.

For a step-by-step procedure on how to set up the CCP module for PWM operation, refer to **Section 15.3.8** "Setup for PWM Operation".

FIGURE 15-3: SIMPLIFIED PWM BLOCK DIAGRAM

The PWM output (Figure 15-4) has a time base (period) and a time that the output stays high (duty cycle).

FIGURE 15-4: CCP PWM OUTPUT

15.3.1 CCPx PIN CONFIGURATION

In PWM mode, the CCPx pin is multiplexed with the PORT data latch. The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Either RC1 or RB3 can be selected as the CCP2 pin. Refer to **Section 6.1** "Alternate Pin Function" for more information.

Note: Clearing the CCPxCON register will relinquish CCPx control of the CCPx pin.

REGISTER 17-5: SSPMSK: SSP MASK REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is clear	x = Bit is unkno	wn				
bit 7-1	MSK<7:1>: M	ask bits								
	1 = The recei	ived address bit n i	s compared to	o SSPADD <n> to detect I²C addres</n>	detect I ² C addr	ess match				

	0 = The received address bit his hot used to detect if C address match
bit 0	MSK<0>: Mask bit for I ² C Slave Mode, 10-bit Address
	I ² C Slave Mode, 10-bit Address (SSPM<3:0> = 0111):
	1 = The received address bit '0' is compared to SSPADD<0> to detect I^2C address match
	0 = The received address bit '0' is not used to detect I^2C address match
	All other SSP modes: this bit has no effect.

REGISTER 17-6: SSPADD: SSP I²C ADDRESS REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADD7 | ADD6 | ADD5 | ADD4 | ADD3 | ADD2 | ADD1 | ADD0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	ʻ0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 ADD<7:0>: Address bits Received address

TABLE 17-7: REGISTERS ASSOCIATED WITH I²C OPERATION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
SSPBUF	Synchronous Serial Port Receive Buffer/Transmit Register								xxxx xxxx	uuuu uuuu
SSPADD	Synchronous Serial Port (I ² C mode) Address Register								0000 0000	0000 0000
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
SSPMSK ⁽²⁾	Synchronous Serial Port (I ² C mode) Address Mask Register								1111 1111	1111 1111
SSPSTAT	SMP ⁽¹⁾	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in I²C mode.

Note 1: Maintain these bits clear in I^2C mode.

2: Accessible only when SSPM<3:0> = 1001.

PIC16(L)F722/3/4/6/7

RLF	Rotate	Left f th	roug	h Carry	y
Syntax:	[label]] RLF	f,d		
Operands:	$0 \le f \le d \in [0,]$	127 1]			
Operation:	See de	scription	belov	N	
Status Affected:	С				
Description:	The co rotated the Ca result is If 'd' is back in	ntents of one bit t rry flag. If s placed '1', the re register C	regis o the f 'd' is in the esult i 'f'. Regis	ter 'f' a left thro o '0', the W reg is store	re ough ∋ ister. d
Words:	1				
Cycles:	1				
Example:	RLF	REG1	,0		
	Before	Instructio	on		
		REG1	=	1110	0110
		C	=	0	
	After In	struction			
		REG1	=	1110	0110
		W	=	1100	1100
		С	=	1	

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{00h} \rightarrow \text{WDT,} \\ 0 \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, \overline{PD} is cleared. Time-out Status bit, \overline{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

RRF	Rotate Right f through Carry				
Syntax:	[<i>label</i>] RRF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	See description below				
Status Affected:	С				
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.				
	C Register f				

SUBLW	Subtract W from literal					
Syntax:	[label] SU	JBLW k				
Operands:	$0 \leq k \leq 255$					
Operation:	$k \text{ - } (W) \to (W)$					
Status Affected:	C, DC, Z					
Description:	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the W register.					
	C = 0	W > k				
	C = 1	$W \le k$				

DC = 0

DC = 1

W<3:0> > k<3:0>

 $W < 3:0 > \le k < 3:0 >$

22.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
 Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit[™] 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

22.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- Built-in support for Bugzilla issue tracker

TABLE 23-9: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions				
US120	ТскH2dtV	SYNC XMIT (Master and Slave)	3.0-5.5V	—	80	ns				
	Clock high to data-out valid	1.8-5.5V	—	100	ns					
US121 TCKRF	Clock out rise time and fall time (Master mode)	3.0-5.5V	—	45	ns					
		1.8-5.5V	—	50	ns					
US122 TDTRF	TDTRF	Data-out rise time and fall time	3.0-5.5V	_	45	ns				
		1.8-5.5V	_	50	ns					

FIGURE 23-15: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

10

15

ns

ns

TABLE 23-10: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Data-hold before $CK \downarrow (DT hold time)$

Data-hold after $CK \downarrow (DT hold time)$

Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C ≤ TA ≤ +125°C Param. Symbol Characteristic Min. Max. Units Conditions US125 TDTV2CKL SYNC RCV (Master and Slave) Image: Condition state s

US126

TCKL2DTL

Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6		μS	Device must operate at a minimum of 10 MHz
			SSP Module	1.5Tcy			
SP101* T	TLOW	Clock low time	100 kHz mode	4.7		μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3		μS	Device must operate at a minimum of 10 MHz
			SSP Module	1.5Tcr	_		
SP102* TR	TR	SDA and SCL rise time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10-400 pF
SP103*	TF	SDA and SCL fall time	100 kHz mode	—	250	ns	
			400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF
SP106*	THD:DAT	Data input hold time	100 kHz mode	0		ns	
			400 kHz mode	0	0.9	μS	
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250		ns	(Note 2)
			400 kHz mode	100		ns	
SP109*	ΤΑΑ	Output valid from clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—	_	ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7	_	μS	Time the bus must be free
			400 kHz mode	1.3	_	μS	before a new transmission can start
SP111	Св	Bus capacitive loading		—	400	pF	

TABLE 23-13: I²C BUS DATA REQUIREMENTS

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

PIC16(L)F722/3/4/6/7

FIGURE 24-5: PIC16F722/3/4/6/7 MAXIMUM IDD vs. VDD OVER Fosc, EXTRC MODE, VCAP = 0.1μ F

PIC16(L)F722/3/4/6/7

FIGURE 24-39: PIC16F722/3/4/6/7 CAP SENSE LOW POWER IPD vs. VDD, VCAP = 0.1 µF

