



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 20MHz                                                                     |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                         |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                     |
| Number of I/O              | 36                                                                        |
| Program Memory Size        | 14KB (8K x 14)                                                            |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | -                                                                         |
| RAM Size                   | 368 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                               |
| Data Converters            | A/D 14x8b                                                                 |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 44-TQFP                                                                   |
| Supplier Device Package    | 44-TQFP (10x10)                                                           |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lf727-i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### 2.2.2.2 OPTION register

The OPTION register, shown in Register 2-2, is a readable and writable register, which contains various control bits to configure:

- Timer0/WDT prescaler
- External RB0/INT interrupt
- Timer0
- Weak pull-ups on PORTB

| Note: | To achieve a 1:1 prescaler assignment for |  |  |  |  |  |  |
|-------|-------------------------------------------|--|--|--|--|--|--|
|       | Timer0, assign the prescaler to the WDT   |  |  |  |  |  |  |
|       | by setting the PSA bit of the             |  |  |  |  |  |  |
|       | OPTION_REG register to '1'. Refer to      |  |  |  |  |  |  |
|       | Section 11.1.3 "Software                  |  |  |  |  |  |  |
|       | Programmable Prescaler".                  |  |  |  |  |  |  |

## REGISTER 2-2: OPTION\_REG: OPTION REGISTER

| R/W-1 | R/W-1  | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
|-------|--------|-------|-------|-------|-------|-------|-------|
| RBPU  | INTEDG | TOCS  | TOSE  | PSA   | PS2   | PS1   | PS0   |
| bit 7 |        |       |       |       |       |       | bit 0 |

| Legend:           |                  |                                    |                    |  |
|-------------------|------------------|------------------------------------|--------------------|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |

| bit 7   | <b>RBPU:</b> PORTB Pull-up Enable bit<br>1 = PORTB pull-ups are disabled<br>0 = PORTB pull-ups are enabled by individual bits in the WPUB register |                                                   |                                                      |                              |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|------------------------------|--|--|--|
| bit 6   | INTEDG: Interrupt E<br>1 = Interrupt on risir<br>0 = Interrupt on falling                                                                          | Edge Select bing edge of RB                       | it<br>0/INT pin<br>30/INT pin                        |                              |  |  |  |
| bit 5   | <b>TOCS:</b> Timer0 Clock<br>1 = Transition on R/<br>0 = Internal instruction                                                                      | < Source Sele<br>A4/T0CKI pin<br>ion cycle clocl  | ct bit<br>< (Fosc/4)                                 |                              |  |  |  |
| bit 4   | <b>TOSE:</b> Timer0 Source<br>1 = Increment on his<br>0 = Increment on log                                                                         | ce Edge Seleo<br>gh-to-low tran<br>w-to-high tran | ct bit<br>sition on Ra<br>sition on Ra               | A4/T0CKI pin<br>A4/T0CKI pin |  |  |  |
| bit 3   | <b>PSA:</b> Prescaler Ass<br>1 = Prescaler is ass<br>0 = Prescaler is ass                                                                          | ignment bit<br>igned to the V<br>igned to the T   | VDT<br>īmer0 mod                                     | ule                          |  |  |  |
| bit 2-0 | PS<2:0>: Prescaler                                                                                                                                 | Rate Select b                                     | oits                                                 |                              |  |  |  |
|         | Bit Value                                                                                                                                          | Timer0 Rate                                       | WDT Rate                                             |                              |  |  |  |
|         | 000<br>001<br>010<br>011<br>100<br>101                                                                                                             | 1:2<br>1:4<br>1:8<br>1:16<br>1:32<br>1:64         | 1 : 1<br>1 : 2<br>1 : 4<br>1 : 8<br>1 : 16<br>1 : 32 |                              |  |  |  |

1:128

1:256

1:64

1 : 128

110

111

## 4.0 INTERRUPTS

The PIC16(L)F722/3/4/6/7 device family features an interruptible core, allowing certain events to preempt normal program flow. An Interrupt Service Routine (ISR) is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

The PIC16(L)F722/3/4/6/7 device family has 12 interrupt sources, differentiated by corresponding interrupt enable and flag bits:

- Timer0 Overflow Interrupt
- External Edge Detect on INT Pin Interrupt
- PORTB Change Interrupt
- Timer1 Gate Interrupt
- A/D Conversion Complete Interrupt
- AUSART Receive Interrupt
- AUSART Transmit Interrupt
- SSP Event Interrupt
- CCP1 Event Interrupt
- · Timer2 Match with PR2 Interrupt
- Timer1 Overflow Interrupt
- CCP2 Event Interrupt

A block diagram of the interrupt logic is shown in Figure 4-1.



## FIGURE 4-1: INTERRUPT LOGIC

### REGISTER 6-5: PORTB: PORTB REGISTER

| R/W-x           | R/W-x | R/W-x            | R/W-x | R/W-x                                   | R/W-x | R/W-x | R/W-x |
|-----------------|-------|------------------|-------|-----------------------------------------|-------|-------|-------|
| RB7             | RB6   | RB5              | RB4   | RB3                                     | RB2   | RB1   | RB0   |
| bit 7           | •     |                  |       |                                         |       |       | bit 0 |
|                 |       |                  |       |                                         |       |       |       |
| Legend:         |       |                  |       |                                         |       |       |       |
| R = Readable    | bit   | W = Writable     | bit   | U = Unimplemented bit, read as '0'      |       |       |       |
| -n = Value at P | OR    | '1' = Bit is set |       | '0' = Bit is cleared x = Bit is unknown |       | าดพท  |       |

bit 7-0 **RB<7:0>**: PORTB I/O Pin bit 1 = Port pin is > VIH 0 = Port pin is < VIL

## REGISTER 6-6: TRISB: PORTB TRI-STATE REGISTER

| R/W-1  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7  |        |        |        |        |        |        | bit 0  |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 7-0 TRISB<7:0>: PORTB Tri-State Control bit

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

#### **REGISTER 6-15: PORTE: PORTE REGISTER**

| U-0   | U-0 | U-0 | U-0 | R-x | R/W-x              | R/W-x              | R/W-x              |
|-------|-----|-----|-----|-----|--------------------|--------------------|--------------------|
| —     | —   | —   | —   | RE3 | RE2 <sup>(1)</sup> | RE1 <sup>(1)</sup> | RE0 <sup>(1)</sup> |
| bit 7 |     |     |     |     |                    |                    | bit 0              |
|       |     |     |     |     |                    |                    |                    |

| Legend:           |                  |                      |                    |
|-------------------|------------------|----------------------|--------------------|
| R = Readable bit  | W = Writable bit | as '0'               |                    |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

| bit 7-4 | Unimplemented: Read as '0'                 |
|---------|--------------------------------------------|
| bit 3-0 | RE<3:0>: PORTE I/O Pin bits <sup>(1)</sup> |
|         | 1 = Port pin is > VIH                      |
|         | 0 = Port pin is < VIL                      |

Note 1: RE<2:0> are not implemented on the PIC16F722/723/726/PIC16LF722/723/726. Read as '0'.

#### REGISTER 6-16: TRISE: PORTE TRI-STATE REGISTER

| U-0   | U-0 | U-0 | U-0 | R-1    | R/W-1                 | R/W-1                 | R/W-1                 |
|-------|-----|-----|-----|--------|-----------------------|-----------------------|-----------------------|
| _     | —   | _   | —   | TRISE3 | TRISE2 <sup>(1)</sup> | TRISE1 <sup>(1)</sup> | TRISE0 <sup>(1)</sup> |
| bit 7 |     |     |     |        |                       |                       | bit 0                 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | 1 as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 7-4Unimplemented: Read as '0'bit 3TRISE3: RE3 Port Tri-state Control bit

This bit is always '1' as RE3 is an input onlybit 2-0TRISE<2:0>: RE<2:0> Tri-State Control bits(1)1 = PORTE pin configured as an input (tri-stated)0 = PORTE pin configured as an output

Note 1: TRISE<2:0> are not implemented on the PIC16F722/723/726/PIC16LF722/723/726. Read as '0'.

## 7.2 Clock Source Modes

Clock source modes can be classified as external or internal.

- Internal clock source (INTOSC) is contained within the oscillator module and derived from a 500 kHz high precision oscillator. The oscillator module has eight selectable output frequencies, with a maximum internal frequency of 16 MHz.
- External clock modes rely on external circuitry for the clock source. Examples are: oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits.

The system clock can be selected between external or internal clock sources via the FOSC bits of the Configuration Word 1.

## 7.3 Internal Clock Modes

The oscillator module has eight output frequencies derived from a 500 kHz high precision oscillator. The IRCF bits of the OSCCON register select the postscaler applied to the clock source dividing the frequency by 1, 2, 4 or 8. Setting the PLLEN bit of the Configuration Word 1 locks the internal clock source to 16 MHz before the postscaler is selected by the IRCF bits. The PLLEN bit must be set or cleared at the time of programming; therefore, only the upper or low four clock source frequencies are selectable in software.

## 7.3.1 INTOSC AND INTOSCIO MODES

The INTOSC and INTOSCIO modes configure the internal oscillators as the system clock source when the device is programmed using the oscillator selection or the FOSC<2:0> bits in the CONFIG1 register. See **Section 8.0** "**Device Configuration**" for more information.

In INTOSC mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT outputs the selected internal oscillator frequency divided by 4. The CLKOUT signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements.

In INTOSCIO mode, OSC1/CLKIN and OSC2/CLKOUT are available for general purpose I/O.

## 7.3.2 FREQUENCY SELECT BITS (IRCF)

The output of the 500 kHz INTOSC and 16 MHz INTOSC, with Phase-Locked Loop enabled, connect to a postscaler and multiplexer (see Figure 7-1). The Internal Oscillator Frequency Select bits (IRCF) of the OSCCON register select the frequency output of the internal oscillator. Depending upon the PLLEN bit, one of four frequencies of two frequency sets can be selected via software:

If PLLEN = 1, frequency selection is as follows:

- 16 MHz
- 8 MHz (default after Reset)
- 4 MHz
- 2 MHz
- If PLLEN = 0, frequency selection is as follows:
- 500 kHz
- 250 kHz (default after Reset)
- 125 kHz
- 62.5 kHz

Note: Following any Reset, the IRCF<1:0> bits of the OSCCON register are set to '10' and the frequency selection is set to 8 MHz or 250 kHz. The user can modify the IRCF bits to select a different frequency.

There is no start-up delay before a new frequency selected in the IRCF bits takes effect. This is because the old and new frequencies are derived from INTOSC via the postscaler and multiplexer.

Start-up delay specifications are located in the Table 23-2 in Section 23.0 "Electrical Specifications".

### 9.2.6 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
  - Disable pin output driver (Refer to the TRIS register)
  - Configure pin as analog (Refer to the ANSEL register)
- 2. Configure the ADC module:
  - Select ADC conversion clock
  - Configure voltage reference
  - Select ADC input channel
  - Turn on ADC module
- 3. Configure ADC interrupt (optional):
  - Clear ADC interrupt flag
  - Enable ADC interrupt
  - Enable peripheral interrupt
  - Enable global interrupt<sup>(1)</sup>
- 4. Wait the required acquisition time<sup>(2)</sup>.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
  - Polling the GO/DONE bit
  - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

**Note 1:** The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 9.3 "A/D Acquisition Requirements".

#### EXAMPLE 9-1: A/D CONVERSION

;This code block configures the ADC
;for polling, Vdd reference, Frc clock
;and AN0 input.
;

;Conversion start & polling for completion ; are included.

| ,       |             |                      |
|---------|-------------|----------------------|
| BANKSEL | ADCON1      | ;                    |
| MOVLW   | B'01110000' | ;ADC Frc clock,      |
|         |             | ;VDD reference       |
| MOVWF   | ADCON1      | ;                    |
| BANKSEL | TRISA       | ;                    |
| BSF     | TRISA,0     | ;Set RA0 to input    |
| BANKSEL | ANSELA      | ;                    |
| BSF     | ANSELA,0    | ;Set RA0 to analog   |
| BANKSEL | ADCON0      | ;                    |
| MOVLW   | B'0000001'  | ;AN0, On             |
| MOVWF   | ADCON0      | ;                    |
| CALL    | SampleTime  | ;Acquisiton delay    |
| BSF     | ADCON0,GO   | ;Start conversion    |
| BTFSC   | ADCON0,GO   | ;Is conversion done? |
| GOTO    | \$-1        | ;No, test again      |
| BANKSEL | ADRES       | ;                    |
| MOVF    | ADRES,W     | ;Read result         |
| MOVWF   | RESULT      | ;store in GPR space  |
|         |             |                      |

## 9.3 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 9-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 9-3. The maximum recommended impedance for analog sources is 10 k $\Omega$ . As the source

impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 9-1 may be used. This equation assumes that 1/2 LSb error is used (256 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

## EQUATION 9-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature = 
$$50^{\circ}C$$
 and external impedance of  $10k\Omega 5.0V VDD$   
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$   
 $= TAMP + TC + TCOFF$   
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$   
The value for TC can be approximated with the following equations:  
 $V_{APPLIED}\left(1 - \frac{1}{1-1}\right) = V_{CHOLD}$   
 $:[11VCHOLD charged to within 1/2 lsb$ 

$$(2^{n+1}) - 1'$$

$$V_{APPLIED}\left(1 - e^{\frac{-TC}{RC}}\right) = V_{CHOLD}$$
;[2] V\_{CHOLD charge response to V\_{APPLIED}}

$$V_{APPLIED}\left(1-e^{\frac{-ic}{RC}}\right) = V_{APPLIED}\left(1-\frac{1}{(2^{n+1})-l}\right) \quad (combining [1] and [2])$$

*Note:* Where n = number of bits of the ADC.

Solving for TC:

$$T_{C} = -C_{HOLD}(R_{IC} + R_{SS} + R_{S}) \ln(1/511)$$
  
=  $-10pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.001957)$   
=  $1.12\mu s$   
$$c_{O} = 2M_{S} + 1.12M_{S} + [(50^{\circ}C - 25^{\circ}C)(0.05M_{S}/^{\circ}C)]$$

Therefore:

$$TACQ = 2MS + 1.12MS + [(50°C-25°C)(0.05MS/°C)]$$
  
= 4.42MS

**Note 1:** The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is  $10 \text{ k}\Omega$ . This is required to meet the pin leakage specification.









## 14.5 Software Control

The software portion of the capacitive sensing module is required to determine the change in frequency of the capacitive sensing oscillator. This is accomplished by the following:

- Setting a fixed time base to acquire counts on Timer0 or Timer1
- Establishing the nominal frequency for the capacitive sensing oscillator
- Establishing the reduced frequency for the capacitive sensing oscillator due to an additional capacitive load
- Set the frequency threshold

#### 14.5.1 NOMINAL FREQUENCY (NO CAPACITIVE LOAD)

To determine the nominal frequency of the capacitive sensing oscillator:

- Remove any extra capacitive load on the selected CPSx pin
- At the start of the fixed time base, clear the timer resource
- At the end of the fixed time base save the value in the timer resource

The value of the timer resource is the number of oscillations of the capacitive sensing oscillator for the given time base. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer divided by the period of the fixed time base.

### 14.5.2 REDUCED FREQUENCY (ADDITIONAL CAPACITIVE LOAD)

The extra capacitive load will cause the frequency of the capacitive sensing oscillator to decrease. To determine the reduced frequency of the capacitive sensing oscillator:

- Add a typical capacitive load on the selected CPSx pin
- Use the same fixed-time base as the nominal frequency measurement
- At the start of the fixed-time base, clear the timer resource
- At the end of the fixed-time base save the value in the timer resource

The value of the timer resource is the number of oscillations of the capacitive sensing oscillator with an additional capacitive load. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer divided by the period of the fixed time base. This frequency should be less than the value obtained during the nominal frequency measurement.

## 14.5.3 FREQUENCY THRESHOLD

The frequency threshold should be placed midway between the value of nominal frequency and the reduced frequency of the capacitive sensing oscillator. Refer to Application Note AN1103, *Software Handling for Capacitive Sensing* (DS01103) for more detailed information the software required for capacitive sensing module.

| Note: | For            | more        | inform  | ation | O  | n general   |
|-------|----------------|-------------|---------|-------|----|-------------|
|       | Capao<br>Notes | citive<br>: | Sensing | refer | to | Application |

- AN1101, Introduction to Capacitive Sensing (DS01101)
- AN1102, Layout and Physical Design Guidelines for Capacitive Sensing (DS01102).

## 15.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The Capture/Compare/PWM module is a peripheral which allows the user to time and control different events. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate a pulse-width modulated signal of varying frequency and duty cycle.

The timer resources used by the module are shown in Table 15-1.

Additional information on CCP modules is available in the Application Note AN594, *Using the CCP Modules* (DS00594).

### TABLE 15-1: CCP MODE – TIMER RESOURCES REQUIRED

| CCP Mode | Timer Resource |
|----------|----------------|
| Capture  | Timer1         |
| Compare  | Timer1         |
| PWM      | Timer2         |

| CCP1 Mode | CCP2 Mode | Interaction                                                                                               |
|-----------|-----------|-----------------------------------------------------------------------------------------------------------|
| Capture   | Capture   | Same TMR1 time base                                                                                       |
| Capture   | Compare   | Same TMR1 time base <sup>(1, 2)</sup>                                                                     |
| Compare   | Compare   | Same TMR1 time base <sup>(1, 2)</sup>                                                                     |
| PWM       | PWM       | The PWMs will have the same frequency and update rate (TMR2 interrupt). The rising edges will be aligned. |
| PWM       | Capture   | None                                                                                                      |
| PWM       | Compare   | None                                                                                                      |

## TABLE 15-2: INTERACTION OF TWO CCP MODULES

**Note 1:** If CCP2 is configured as a Special Event Trigger, CCP1 will clear Timer1, affecting the value captured on the CCP2 pin.

**2:** If CCP1 is in Capture mode and CCP2 is configured as a Special Event Trigger, CCP2 will clear Timer1, affecting the value captured on the CCP1 pin.

| Note: | CCPRx                      | and      | CCPx   | throughout  | this |
|-------|----------------------------|----------|--------|-------------|------|
|       | documer                    | nt refer | to CCP | R1 or CCPR2 | and  |
|       | CCP1 or CCP2, respectively |          |        |             |      |

## 15.3 PWM Mode

The PWM mode generates a Pulse-Width Modulated signal on the CCPx pin. The duty cycle, period and resolution are determined by the following registers:

- PR2
- T2CON
- CCPRxL
- CCPxCON

In Pulse-Width Modulation (PWM) mode, the CCP module produces up to a 10-bit resolution PWM output on the CCPx pin.

Figure 15-3 shows a simplified block diagram of PWM operation.

Figure 15-4 shows a typical waveform of the PWM signal.

For a step-by-step procedure on how to set up the CCP module for PWM operation, refer to **Section 15.3.8** "Setup for PWM Operation".

FIGURE 15-3: SIMPLIFIED PWM BLOCK DIAGRAM



The PWM output (Figure 15-4) has a time base (period) and a time that the output stays high (duty cycle).

FIGURE 15-4: CCP PWM OUTPUT



### 15.3.1 CCPx PIN CONFIGURATION

In PWM mode, the CCPx pin is multiplexed with the PORT data latch. The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Either RC1 or RB3 can be selected as the CCP2 pin. Refer to **Section 6.1** "Alternate Pin Function" for more information.

Note: Clearing the CCPxCON register will relinquish CCPx control of the CCPx pin.

#### 15.3.2 PWM PERIOD

The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 15-1.

### EQUATION 15-1: PWM PERIOD

$$PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$$
$$(TMR2 Prescale Value)$$
Note: Tosc = 1/Fosc

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from CCPRxL into CCPRxH.

| Note: | The    | Timer2    | postscaler   | (refer                 | to  |
|-------|--------|-----------|--------------|------------------------|-----|
|       | Secti  | on 13.1 " | Timer2 Ope   | r <b>ation"</b> ) is r | not |
|       | used   | in the d  | etermination | of the PW              | /M  |
|       | freque | ency.     |              |                        |     |

#### 15.3.3 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPRxL register and DCxB<1:0> bits of the CCPxCON register. The CCPRxL contains the eight MSbs and the DCxB<1:0> bits of the CCPxCON register contain the two LSbs. CCPRxL and DCxB<1:0> bits of the CCPxCON register can be written to at any time. The duty cycle value is not latched into CCPRxH until after the period completes (i.e., a match between PR2 and TMR2 registers occurs). While using the PWM, the CCPRxH register is read-only.

Equation 15-2 is used to calculate the PWM pulse width.

Equation 15-3 is used to calculate the PWM duty cycle ratio.

### EQUATION 15-2: PULSE WIDTH

 $Pulse Width = (CCPRxL:CCPxCON < 5:4>) \bullet$ 

TOSC • (TMR2 Prescale Value)

Note: Tosc = 1/Fosc

## EQUATION 15-3: DUTY CYCLE RATIO

$$Duty Cycle Ratio = \frac{(CCPRxL:CCPxCON < 5:4>)}{4(PR2 + 1)}$$

The CCPRxH register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH and 2-bit latch, then the CCPx pin is cleared (refer to Figure 15-3).





The operation of the AUSART module is controlled through two registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)

These registers are detailed in Register 16-1 and Register 16-2, respectively.

## 16.4 AUSART Operation During Sleep

The AUSART will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

#### 16.4.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Reception (refer to Section 16.3.2.4 "Synchronous Slave Reception Setup:").
- If interrupts are desired, set the RCIE bit of the PIE1 register and the PEIE bit of the INTCON register.
- The RCIF interrupt flag must be cleared by reading RCREG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RCIF interrupt flag bit of the PIR1 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the GIE global interrupt enable bit of the INTCON register is also set, then the Interrupt Service Routine at address 0004h will be called.

#### 16.4.2 SYNCHRONOUS TRANSMIT DURING SLEEP

To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Transmission (refer to Section 16.3.2.2 "Synchronous Slave Transmission Setup:").
- The TXIF interrupt flag must be cleared by writing the output data to the TXREG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the PEIE bit of the INTCON register.

Upon entering Sleep mode, the device will be ready to accept clocks on TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TXREG will transfer to the TSR and the TXIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TXREG is available to accept another character for transmission, which will clear the TXIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the GIE global interrupt enable bit is also set then the Interrupt Service Routine at address 0004h will be called.

## 17.2.4 ADDRESSING

Once the SSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the eight bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock line (SCL).

### 17.2.4.1 7-bit Addressing

In 7-bit Addressing mode (Figure 17-10), the value of register SSPSR<7:1> is compared to the value of register SSPADD<7:1>. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- The SSPSR register value is loaded into the SSPBUF register.
- The BF bit is set.
- An ACK pulse is generated.
- SSP interrupt flag bit, SSPIF of the PIR1 register, is set (interrupt is generated if enabled) on the falling edge of the ninth SCL pulse.

#### 17.2.4.2 10-bit Addressing

In 10-bit Address mode, two address bytes need to be received by the slave (Figure 17-11). The five Most Significant bits (MSbs) of the first address byte specify if it is a 10-bit address. The R/W bit of the SSPSTAT register must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address.

The sequence of events for 10-bit address is as follows for reception:

- 1. Load SSPADD register with high byte of address.
- 2. Receive first (high) byte of address (bits SSPIF, BF and UA of the SSPSTAT register are set).
- 3. Read the SSPBUF register (clears bit BF).
- 4. Clear the SSPIF flag bit.
- 5. Update the SSPADD register with second (low) byte of address (clears UA bit and releases the SCL line).
- 6. Receive low byte of address (bits SSPIF, BF and UA are set).
- 7. Update the SSPADD register with the high byte of address. If match releases SCL line, this will clear bit UA.
- 8. Read the SSPBUF register (clears bit BF).
- 9. Clear flag bit SSPIF.

If data is requested by the master, once the slave has been addressed:

- 1. Receive repeated Start condition.
- 2. Receive repeat of high byte address with  $R/\overline{W} = 1$ , indicating a read.
- 3. BF bit is set and the CKP bit is cleared, stopping SCL and indicating a read request.
- 4. SSPBUF is written, setting BF, with the data to send to the master device.
- 5. CKP is set in software, releasing the SCL line.

### 17.2.4.3 Address Masking

The Address Masking register (SSPMSK) is only accessible while the SSPM bits of the SSPCON register are set to '1001'. In this register, the user can select which bits of a received address the hardware will compare when determining an address match. Any bit that is set to a zero in the SSPMSK register, the corresponding bit in the received address byte and SSPADD register are ignored when determining an address match. By default, the register is set to all ones, requiring a complete match of a 7-bit address or the lower eight bits of a 10-bit address.

| BTFSS            | Bit Test f, Skip if Set                                                                                                                                                                                         |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] BTFSS f,b                                                                                                                                                                                      |
| Operands:        | $0 \le f \le 127$<br>$0 \le b < 7$                                                                                                                                                                              |
| Operation:       | skip if (f <b>) = 1</b>                                                                                                                                                                                         |
| Status Affected: | None                                                                                                                                                                                                            |
| Description:     | If bit 'b' in register 'f' is '0', the next<br>instruction is executed.<br>If bit 'b' is '1', then the next<br>instruction is discarded and a NOP<br>is executed instead, making this a<br>2-cycle instruction. |

| CLRWDT           | Clear Watchdog Timer                                                                                                                                     |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] CLRWDT                                                                                                                                           |
| Operands:        | None                                                                                                                                                     |
| Operation:       | $\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$ |
| Status Affected: | TO, PD                                                                                                                                                   |
| Description:     | CLRWDT instruction resets the<br>Watchdog Timer. It also resets the<br>prescaler of the WDT.<br>Status bits TO and PD are set.                           |

| CALL             | Call Subroutine                                                                                                                                                                                                                         |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] CALL k                                                                                                                                                                                                                 |
| Operands:        | $0 \le k \le 2047$                                                                                                                                                                                                                      |
| Operation:       | (PC)+ 1→ TOS,<br>k → PC<10:0>,<br>(PCLATH<4:3>) → PC<12:11>                                                                                                                                                                             |
| Status Affected: | None                                                                                                                                                                                                                                    |
| Description:     | Call Subroutine. First, return<br>address (PC + 1) is pushed onto<br>the stack. The 11-bit immediate<br>address is loaded into PC bits<br><10:0>. The upper bits of the PC<br>are loaded from PCLATH. CALL is<br>a 2-cycle instruction. |

| COMF             | Complement f                                                                                                                                                   |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] COMF f,d                                                                                                                                               |
| Operands:        | $\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$                                                                                                    |
| Operation:       | $(\overline{f}) \rightarrow (destination)$                                                                                                                     |
| Status Affected: | Z                                                                                                                                                              |
| Description:     | The contents of register 'f' are<br>complemented. If 'd' is '0', the<br>result is stored in W. If 'd' is '1',<br>the result is stored back in<br>register 'f'. |

| CLRF             | Clear f                                                               |
|------------------|-----------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] CLRF f                                               |
| Operands:        | $0 \leq f \leq 127$                                                   |
| Operation:       | $\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$ |
| Status Affected: | Z                                                                     |
| Description:     | The contents of register 'f' are cleared and the Z bit is set.        |

| DECF             | Decrement f                                                                                                                                       |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ label ] DECF f,d                                                                                                                                |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                 |
| Operation:       | (f) - 1 $\rightarrow$ (destination)                                                                                                               |
| Status Affected: | Z                                                                                                                                                 |
| Description:     | Decrement register 'f'. If 'd' is '0',<br>the result is stored in the W<br>register. If 'd' is '1', the result is<br>stored back in register 'f'. |

| CLRW             | Clear W                                                               |
|------------------|-----------------------------------------------------------------------|
| Syntax:          | [label] CLRW                                                          |
| Operands:        | None                                                                  |
| Operation:       | $\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$ |
| Status Affected: | Z                                                                     |
| Description:     | W register is cleared. Zero bit (Z) is set.                           |





FIGURE 23-6: HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE





### FIGURE 24-59: PIC16F722/3/4/6/7 WDT TIME-OUT PERIOD





## 25.2 Package Details

The following sections give the technical details of the packages.

## 28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                            | Units    |          | INCHES |       |  |
|----------------------------|----------|----------|--------|-------|--|
| Dimensio                   | n Limits | MIN      | NOM    | MAX   |  |
| Number of Pins             | Ν        | 28       |        |       |  |
| Pitch                      | е        | .100 BSC |        |       |  |
| Top to Seating Plane       | Α        | -        | -      | .200  |  |
| Molded Package Thickness   | A2       | .120     | .135   | .150  |  |
| Base to Seating Plane      | A1       | .015     | -      | -     |  |
| Shoulder to Shoulder Width | E        | .290     | .310   | .335  |  |
| Molded Package Width       | E1       | .240     | .285   | .295  |  |
| Overall Length             | D        | 1.345    | 1.365  | 1.400 |  |
| Tip to Seating Plane       | L        | .110     | .130   | .150  |  |
| Lead Thickness             | с        | .008     | .010   | .015  |  |
| Upper Lead Width           | b1       | .040     | .050   | .070  |  |
| Lower Lead Width           | b        | .014     | .018   | .022  |  |
| Overall Row Spacing §      | eB       | _        | _      | .430  |  |

#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

# 28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                        | Units        | MILLIMETERS |      |      |
|------------------------|--------------|-------------|------|------|
| Dimer                  | nsion Limits | MIN         | NOM  | MAX  |
| Number of Pins         | N            | 28          |      |      |
| Pitch                  | е            | 0.65 BSC    |      |      |
| Overall Height         | Α            | 0.80        | 0.90 | 1.00 |
| Standoff               | A1           | 0.00        | 0.02 | 0.05 |
| Contact Thickness      | A3           | 0.20 REF    |      |      |
| Overall Width          | E            | 6.00 BSC    |      |      |
| Exposed Pad Width      | E2           | 3.65        | 3.70 | 4.20 |
| Overall Length         | D            | 6.00 BSC    |      |      |
| Exposed Pad Length     | D2           | 3.65        | 3.70 | 4.20 |
| Contact Width          | b            | 0.23        | 0.30 | 0.35 |
| Contact Length         | L            | 0.50        | 0.55 | 0.70 |
| Contact-to-Exposed Pad | K            | 0.20        | _    | _    |

#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
  - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B