

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf727t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F72X Family Types

Device	Data Sheet Index	Program Memory Flash (words)	Data SRAM (bytes)	High-Endurance Flash Memory (bytes)	I/O's ⁽²⁾	8-bit ADC (ch)	CapSense (ch)	Timers (8/16-bit)	AUSART	SSP (I ² C/SPI)	ССР	Debug ⁽¹⁾	ХГР
PIC16(L)F707	(1)	8192	363	0	36	14	32	4/2	1	1	2		Y
PIC16(L)F720	(2)	2048	128	128	18	12	_	2/1	1	1	1	I	Y
PIC16(L)F721	(2)	4096	256	128	18	12	_	2/1	1	1	1	I	Y
PIC16(L)F722	(4)	2048	128	0	25	11	8	2/1	1	1	2	-	Y
PIC16(L)F722A	(3)	2048	128	0	25	11	8	2/1	1	1	2	I	Y
PIC16(L)F723	(4)	4096	192	0	25	11	8	2/1	1	1	2	Ι	Y
PIC16(L)F723A	(3)	4096	192	0	25	11	8	2/1	1	1	2	-	Y
PIC16(L)F724	(4)	4096	192	0	36	14	16	2/1	1	1	2	I	Y
PIC16(L)F726	(4)	8192	368	0	25	11	8	2/1	1	1	2	Ι	Y
PIC16(L)F727	(4)	8192	368	0	36	14	16	2/1	1	1	2	I	Y

Note 1: I - Debugging, Integrated on Chip; H - Debugging, Requires Debug Header.

2: One pin is input-only.

Data Sheet Index: (Unshaded devices are described in this document.)

- 1: DS41418 PIC16(L)F707 Data Sheet, 40/44-Pin Flash, 8-bit Microcontrollers
- 2: DS41430 PIC16(L)F720/721 Data Sheet, 20-Pin Flash, 8-bit Microcontrollers
- 3: DS41417 PIC16(L)F722A/723A Data Sheet, 28-Pin Flash, 8-bit Microcontrollers
- 4: DS41341 PIC16(L)F72X Data Sheet, 28/40/44-Pin Flash, 8-bit Microcontrollers

1.0 DEVICE OVERVIEW

The PIC16(L)F722/3/4/6/7 devices are covered by this data sheet. They are available in 28/40/44-pin packages. Figure 1-1 shows a block diagram of the PIC16F722/723/726/PIC16LF722/723/726 devices and Figure 1-2 shows a block diagram of the PIC16F724/727/PIC16LF724/727 devices. Table 1-1 shows the pinout descriptions.

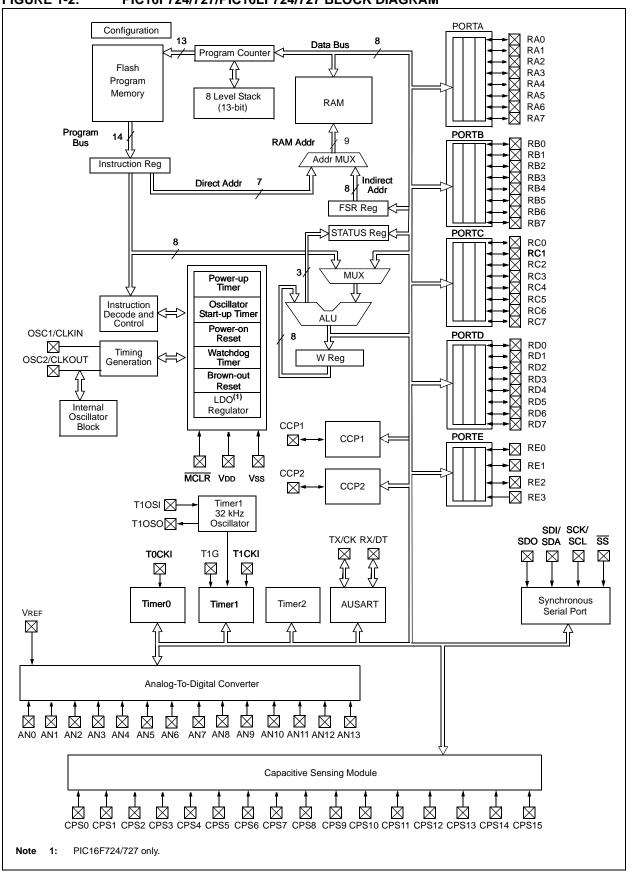
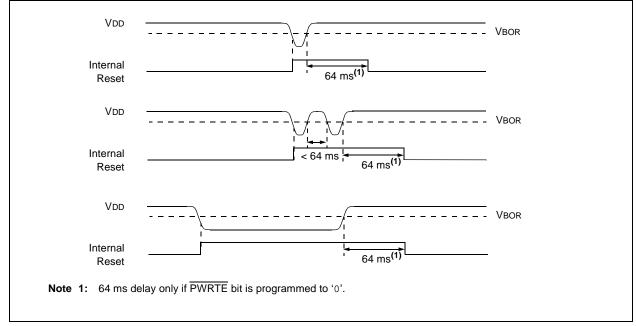


FIGURE 1-2: PIC16F724/727/PIC16LF724/727 BLOCK DIAGRAM

3.5 Brown-Out Reset (BOR)

Brown-out Reset is enabled by programming the BOREN<1:0> bits in the Configuration register. The brown-out trip point is selectable from two trip points via the BORV bit in the Configuration register.


Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

Two bits are used to enable the BOR. When BOREN = 11, the BOR is always enabled. When BOREN = 10, the BOR is enabled, but disabled during Sleep. When BOREN = 0X, the BOR is disabled.

If VDD falls below VBOR for greater than parameter (TBOR) (see **Section 23.0** "**Electrical Specifica-tions**"), the brown-out situation will reset the device. This will occur regardless of VDD slew rate. A Reset is not ensured to occur if VDD falls below VBOR for more than TBOR.

If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-up Timer will execute a 64 ms Reset.

Note: When erasing Flash program memory, the BOR is forced to enabled at the minimum BOR setting to ensure that any code protection circuitry is operating properly.

FIGURE 3-3: BROWN-OUT SITUATIONS

4.5.2 PIE1 REGISTER

The PIE1 register contains the interrupt enable bits, as shown in Register 4-2.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE
bit 7							bit 0

Legend:			
R = Readable b	w = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at PO	OR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
oit 7	TMR1GIE: Timer1 Gate Interrupt En		
	1 = Enable the Timer1 Gate Acquis 0 = Disable the Timer1 Gate Acquis		
bit 6	ADIE: A/D Converter (ADC) Interrup	pt Enable bit	
	1 = Enables the ADC interrupt0 = Disables the ADC interrupt		
bit 5	RCIE: USART Receive Interrupt En	able bit	
	1 = Enables the USART receive inte		
	0 = Disables the USART receive int	terrupt	
bit 4	TXIE: USART Transmit Interrupt Er	hable bit	
	1 = Enables the USART transmit in 0 = Disables the USART transmit in	•	
bit 3	SSPIE: Synchronous Serial Port (S	SP) Interrupt Enable bit	
	1 = Enables the SSP interrupt 0 = Disables the SSP interrupt		
bit 2	CCP1IE: CCP1 Interrupt Enable bit		
	1 = Enables the CCP1 interrupt		
	0 = Disables the CCP1 interrupt		
bit 1	TMR2IE: TMR2 to PR2 Match Inter	rupt Enable bit	
	1 = Enables the Timer2 to PR2 mat		
	0 = Disables the Timer2 to PR2 ma	tch interrupt	
bit 0	TMR1IE: Timer1 Overflow Interrupt	Enable bit	
	1 = Enables the Timer1 overflow int	•	
	0 = Disables the Timer1 overflow in	terrupt	

REGISTER 6-17: ANSELE: PORTE ANALOG SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1		
—	_		_	_	ANSE2 ⁽²⁾	ANSE1 ⁽²⁾	ANSE0 ⁽²⁾		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared			x = Bit is unknown		

bit 7-3 Unimplemented: Read as '0'

bit 2-0 **ANSE<2:0>:** Analog Select between Analog or Digital Function on Pins RE<2:0>, respectively 0 = Digital I/O. Pin is assigned to port or Digital special function.

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital Input buffer disabled.

2: ANSELE register is not implemented on the PIC16F722/723/726/PIC16LF722/723/726. Read as '0'

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0			CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	00 0000
ANSELE	_		_	_	_	ANSE2	ANSE1	ANSE0	111	111
PORTE	_	_	_	_	RE3	RE2	RE1	RE0	xxxx	xxxx
TRISE	_		_	_	TRISE3 ⁽²⁾	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	1111	1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTE

Note 1: These registers are not implemented on the PIC16F722/723/726/PIC16LF722/723/726 devices, read as '0'.

2: This bit is always '1' as RE3 is input only.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

PIC16(L)F722/3/4/6/7

REGISTER	19-2. ADCO		ITROL REG				
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
_	ADCS2	ADCS1	ADCS0	_	_	ADREF1	ADREF0
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable bi	t	U = Unimpleme	ented bit, read as	s 'O'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkno	wn
bit 7	Unimplemente	ed: Read as '0'					
bit 6-4	ADCS<2:0>: A	/D Conversion C	lock Select bits				
	000 = Fosc/2						
	001 = Fosc/8						
	010 = Fosc/32	-					
	· · ·	ock supplied from	a dedicated RC	Coscillator)			
	100 = Fosc/4 101 = Fosc/16						
	101 = FOSC/10 110 = FOSC/64	-					
		, ock supplied from	a dedicated RC	coscillator)			
bit 3-2	Unimplemente	••		,			
bit 1-0	ADREF<1:0>:	Voltage Referend	e Configuration	bits			
		connected to VDD	0				
	10 = VREF is c	connected to exte	rnal VREF (RA3	/AN3)			
			nal Fixed Voltag				

REGISTER 9-2: ADCON1: A/D CONTROL REGISTER 1

REGISTER 9-3: ADRES: ADC RESULT REGISTER

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ADRES7 | ADRES6 | ADRES5 | ADRES4 | ADRES3 | ADRES2 | ADRES1 | ADRES0 |
| bit 7 | | | | | | | bit 0 |

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-0 **ADRES<7:0>**: ADC Result Register bits 8-bit conversion result.

11.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (shared with Watchdog Timer)
- Programmable internal or external clock source
- Programmable external clock edge selection
- Interrupt on overflow
- TMR0 can be used to gate Timer1

Figure 11-1 is a block diagram of the Timer0 module.

11.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

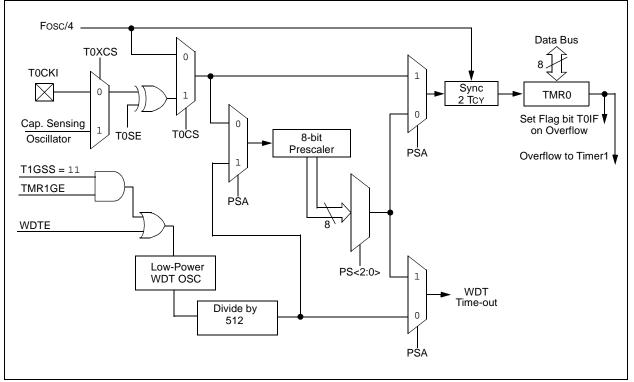
11.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-Bit Timer mode is selected by clearing the T0CS bit of the OPTION register.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.

11.1.2 8-BIT COUNTER MODE


In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin or the Capacitive Sensing Oscillator (CPSOSC) signal.

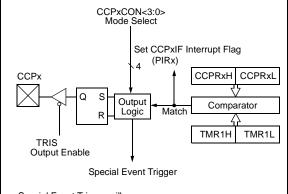
8-Bit Counter mode using the T0CKI pin is selected by setting the T0CS bit in the OPTION register to '1' and resetting the T0XCS bit in the CPSCON0 register to '0'.

8-Bit Counter mode using the Capacitive Sensing Oscillator (CPSOSC) signal is selected by setting the TOCS bit in the OPTION register to '1' and setting the T0XCS bit in the CPSCON0 register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the T0SE bit in the OPTION register.

FIGURE 11-1: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

15.2 Compare Mode


In Compare mode, the 16-bit CCPRx register value is constantly compared against the TMR1 register pair value. When a match occurs, the CCPx module may:

- Toggle the CCPx output
- Set the CCPx output
- Clear the CCPx output
- Generate a Special Event Trigger
- Generate a Software Interrupt

The action on the pin is based on the value of the CCPxM<3:0> control bits of the CCPxCON register.

All Compare modes can generate an interrupt.

FIGURE 15-2: COMPARE MODE OPERATION BLOCK DIAGRAM

- Special Event Trigger will:
- Clear TMR1H and TMR1L registers.
- NOT set interrupt flag bit TMR1IF of the PIR1 register.
 Set the GO/DONE bit to start the ADC conversion
- (CCP2 only).

15.2.1 CCPx PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Either RC1 or RB3 can be selected as the CCP2 pin. Refer to **Section 6.1** "Alternate Pin Function" for more information.

Note:	Clearing the CCPxCON register will force
	the CCPx compare output latch to the
	default low level. This is not the PORT I/O
	data latch.

15.2.2 TIMER1 MODE SELECTION

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode. Note: Clocking Timer1 from the system clock (Fosc) should not be used in Compare mode. For the Compare operation of the TMR1 register to the CCPRx register to occur, Timer1 must be clocked from the Instruction Clock (Fosc/4) or from an external clock source.

15.2.3 SOFTWARE INTERRUPT MODE

When Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the CCPxIF bit in the PIRx register is set and the CCPx module does not assert control of the CCPx pin (refer to the CCPxCON register).

15.2.4 SPECIAL EVENT TRIGGER

When Special Event Trigger mode is chosen (CCPxM<3:0> = 1011), the CCPx module does the following:

- Resets Timer1
- Starts an ADC conversion if ADC is enabled (CCP2 only)

The CCPx module does not assert control of the CCPx pin in this mode (refer to the CCPxCON register).

The Special Event Trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPRxH, CCPRxL register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. This allows the CCPRxH, CCPRxL register pair to effectively provide a 16-bit programmable period register for Timer1.

Note 1: The Special Event Trigger from the CCP module does not set interrupt flag bit TMR1IF of the PIR1 register.

2: Removing the match condition by changing the contents of the CCPRxH and CCPRxL register pair, between the clock edge that generates the Special Event Trigger and the clock edge that generates the Timer1 Reset, will preclude the Reset from occurring.

15.2.5 COMPARE DURING SLEEP

The Compare Mode is dependent upon the system clock (Fosc) for proper operation. Since Fosc is shut down during Sleep mode, the Compare mode will not function properly during Sleep.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0	_		CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	00 0000
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111
APFCON	_	_	_	_	_	_	SSSEL	CCP2SEL	00	00
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
CCPRxL	Capture/Com	npare/PWM R	egister X Lov	v Byte					xxxx xxxx	uuuu uuuu
CCPRxH	Capture/Compare/PWM Register X High Byte							xxxx xxxx	uuuu uuuu	
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIE2	—	-	—	-	—	—	—	CCP2IE	0	0
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIR2	—	-	—	-	—	—	—	CCP2IF	0	0
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	0000 00-0	uuuu uu-u
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	0000 0x00	00x0 0x00
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register									uuuu uuuu
TMR1H	Holding Regi	ster for the M	ost Significar	nt Byte of the	16-bit TMR1 F	Register			xxxx xxxx	uuuu uuuu
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Compare.

		SYNC = 0, BRGH = 0											
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 16.0000 MHz			Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300		_	_		_	_		—	—		_	_	
1200	1221	1.73	255	1200	0.00	239	1201	0.08	207	1200	0.00	143	
2400	2404	0.16	129	2400	0.00	119	2403	0.16	103	2400	0.00	71	
9600	9470	-1.36	32	9600	0.00	29	9615	0.16	25	9600	0.00	17	
10417	10417	0.00	29	10286	-1.26	27	10416	-0.01	23	10165	-2.42	16	
19.2k	19.53k	1.73	15	19.20k	0.00	14	19.23k	0.16	12	19.20k	0.00	8	
57.6k	_	—	_	57.60k	0.00	7	_	—	_	57.60k	0.00	2	
115.2k	—	_	—	_	_	—	_	—	—	_	_	—	

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_	_	_	300	0.16	207	300	0.00	191	300	0.16	51	
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12	
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	_	_	
9600	9615	0.16	12	_	_	_	9600	0.00	5	—	_	_	
10417	10417	0.00	11	10417	0.00	5	—	_	_	—	_	_	
19.2k	_	_	_	—	_	_	19.20k	0.00	2	—	_	_	
57.6k	—	_	—	—	_	—	57.60k	0.00	0	—	_	—	
115.2k		—	—		—	—		_	—		—	—	

BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 16.0000 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—		_		_	_	_	—	_	—	—	—
1200	—	—	—	—	—	—	—	—	—	—	—	—
2400	—	_	_	_	_	_	_	_	_	—	—	_
9600	9615	0.16	129	9600	0.00	119	9615	0.16	103	9600	0.00	71
10417	10417	0.00	119	10378	-0.37	110	10417	0.00	95	10473	0.53	65
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.23k	0.16	51	19.20k	0.00	35
57.6k	56.82k	-1.36	21	57.60k	0.00	19	58.8k	2.12	16	57.60k	0.00	11
115.2k	113.64k	-1.36	10	115.2k	0.00	9	_	_	_	115.2k	0.00	5

16.4 AUSART Operation During Sleep

The AUSART will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

16.4.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Reception (refer to Section 16.3.2.4 "Synchronous Slave Reception Setup:").
- If interrupts are desired, set the RCIE bit of the PIE1 register and the PEIE bit of the INTCON register.
- The RCIF interrupt flag must be cleared by reading RCREG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RCIF interrupt flag bit of the PIR1 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the GIE global interrupt enable bit of the INTCON register is also set, then the Interrupt Service Routine at address 0004h will be called.

16.4.2 SYNCHRONOUS TRANSMIT DURING SLEEP

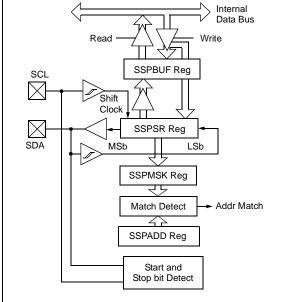
To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Transmission (refer to Section 16.3.2.2 "Synchronous Slave Transmission Setup:").
- The TXIF interrupt flag must be cleared by writing the output data to the TXREG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the PEIE bit of the INTCON register.

Upon entering Sleep mode, the device will be ready to accept clocks on TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TXREG will transfer to the TSR and the TXIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TXREG is available to accept another character for transmission, which will clear the TXIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the GIE global interrupt enable bit is also set then the Interrupt Service Routine at address 0004h will be called.

17.2 I²C Mode


The SSP module, in I^2C mode, implements all slave functions, except general call support. It provides interrupts on Start and Stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the I^2C Standard mode specifications:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- Start and Stop bit interrupts enabled to support firmware Master mode
- Address masking

Two pins are used for data transfer; the SCL pin (clock line) and the SDA pin (data line). The user must configure the two pin's data direction bits as inputs in the appropriate TRIS register. Upon enabling I^2C mode, the I^2C slew rate limiters in the I/O pads are controlled by the SMP bit of SSPSTAT register. The SSP module functions are enabled by setting the SSPEN bit of SSPCON register.

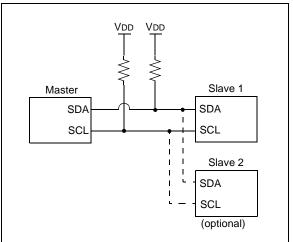
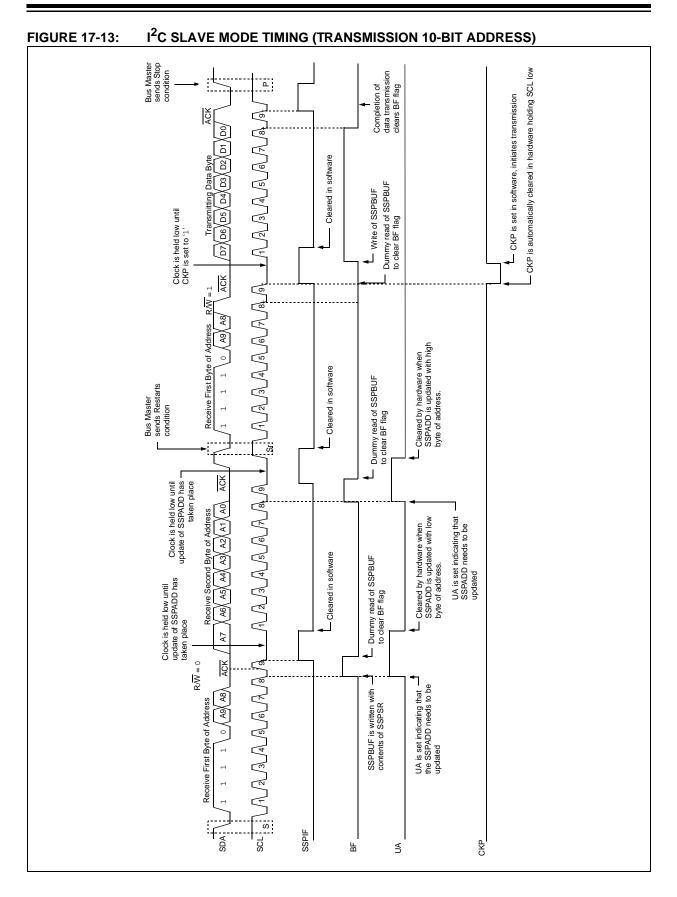

Data is sampled on the rising edge and shifted out on the falling edge of the clock. This ensures that the SDA signal is valid during the SCL high time. The SCL clock input must have minimum high and low times for proper operation. Refer to **Section 23.0** "**Electrical Specifications**".

FIGURE 17-7: I²C MODE BLOCK DIAGRAM

FIGURE 17-8: TYPICAL I²C

CONNECTIONS

The SSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. They are:


- SSP Control (SSPCON) register
- SSP Status (SSPSTAT) register
- Serial Receive/Transmit Buffer (SSPBUF) register
- SSP Shift Register (SSPSR), not directly accessible
- SSP Address (SSPADD) register
- SSP Address Mask (SSPMSK) register

17.2.1 HARDWARE SETUP

Selection of I^2C mode, with the SSPEN bit of the SSPCON register set, forces the SCL and SDA pins to be open drain, provided these pins are programmed as inputs by setting the appropriate TRISC bits. The SSP module will override the input state with the output data, when required, such as for Acknowledge and slave-transmitter sequences.

Note: Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I²C module

PIC16(L)F722/3/4/6/7

REGISTER 18-1: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

R-1	U-0	U-0	U-0	U-0	U-0	U-0	R/S-0
Reserved	—	—I	—	—	—	—	RD
bit 7							bit 0

Legend:		S = Setable bit, cleared in h	ardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 6-1 Unimplemented: Read as '0'

bit 0 RD: Read Control bit

 1 = Initiates an program memory read (The RD is cleared in hardware; the RD bit can only be set (not cleared) in software).

0 = Does not initiate a program memory read

REGISTER 18-2: PMDATH: PROGRAM MEMORY DATA HIGH REGISTER

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	PMD13	PMD12	PMD11	PMD10	PMD9	PMD8
bit 7							bit 0
l egend.							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **PMD<13:8>:** The value of the program memory word pointed to by PMADRH and PMADRL after a program memory read command.

REGISTER 18-3: PMDATL: PROGRAM MEMORY DATA LOW REGISTER

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PMD7 | PMD6 | PMD5 | PMD4 | PMD3 | PMD2 | PMD1 | PMD0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **PMD<7:0>:** The value of the program memory word pointed to by PMADRH and PMADRL after a program memory read command.

23.2 DC Characteristics: PIC16(L)F722/3/4/6/7-I/E (Industrial, Extended) (Continued)

PIC16LF7	722/3/4/6/7								
PIC16F722/3/4/6/7							ess otherwise stated) $x \le +85^{\circ}$ C for industrial $x \le +125^{\circ}$ C for extended		
Param	Device	Min.	Typt	Max.	Units	Conditions			
No.	Characteristics		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Vdd	Note		
	Supply Current (IDD) ^{(1,}	2)							
D014		_	290	330	μA	1.8	Fosc = 4 MHz		
		_	460	500	μA	3.0	EC Oscillator mode		
D014			300	430	μA	1.8	Fosc = 4 MHz		
			450	655	μA	3.0	EC Oscillator mode (Note 5)		
		—	500	730	μΑ	5.0			
D015		_	100	130	μA	1.8	Fosc = 500 kHz		
		_	120	150	μA	3.0	MFINTOSC mode		
D015		_	115	195	μA	1.8	Fosc = 500 kHz		
		_	135	200	μΑ	3.0	MFINTOSC mode (Note 5)		
		—	150	220	μA	5.0			
D016		_	650	800	μΑ	1.8	Fosc = 8 MHz		
			1000	1200	μA	3.0	HFINTOSC mode		
D016		_	625	850	μA	1.8	Fosc = 8 MHz		
		_	1000	1200	μA	3.0	HFINTOSC mode (Note 5)		
		—	1100	1500	μA	5.0			
D017			1.0	1.2	mA	1.8	Fosc = 16 MHz		
			1.5	1.85	mA	3.0	HFINTOSC mode		
D017		_	1	1.2	mA	1.8	Fosc = 16 MHz		
		_	1.5	1.7	mA	3.0	HFINTOSC mode (Note 5)		
		—	1.7	2.1	mA	5.0			
D018		_	210	240	μA	1.8	Fosc = 4 MHz		
		_	340	380	μA	3.0	EXTRC mode (Note 3, Note 5)		
D018		_	225	320	μA	1.8	Fosc = 4 MHz		
			360	445	μA	3.0	EXTRC mode (Note 3, Note 5)		
		—	410	650	μA	5.0			
D019			1.6	1.9	mA	3.0	Fosc = 20 MHz		
			2.0	2.8	mA	3.6	HS Oscillator mode		
D019		_	1.6	2	mA	3.0	Fosc = 20 MHz		
	—		1.9	3.2	mA	5.0	HS Oscillator mode (Note 5)		

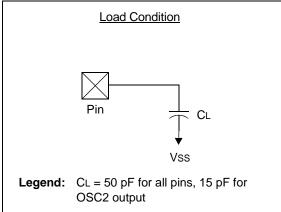
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 0.1 μF capacitor on VCAP (RA0).


23.6 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

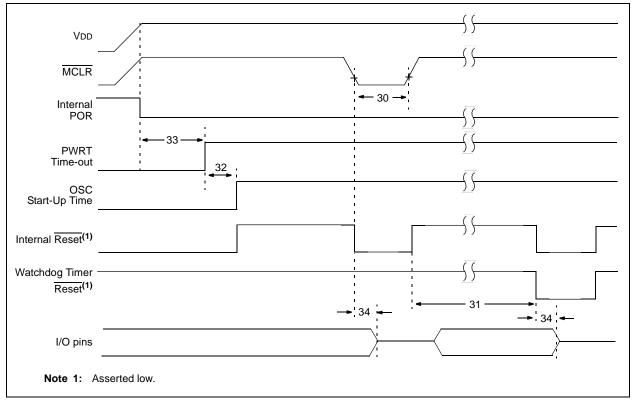
- 1. TppS2ppS
- 2. TppS

2. Tpp3			
т			
F	Frequency	Т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O PORT	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 23-2: LOAD CONDITIONS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	_		70	ns	VDD = 3.3-5.0V	
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—		72	ns	VDD = 3.3-5.0V	
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	_	20	ns		
OS14	TioV2ckH	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns		_	ns		
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 3.3-5.0V	
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	—	—	ns	VDD = 3.3-5.0V	
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	—	_	ns		
OS18	TioR	Port output rise time ⁽²⁾		40 15	72 32	ns	VDD = 2.0V VDD = 3.3-5.0V	
OS19	TioF	Port output fall time ⁽²⁾		28 15	55 30	ns	VDD = 2.0V VDD = 3.3-5.0V	
OS20*	Tinp	INT pin input high or low time	25	—	—	ns		
OS21*	Trbp	PORTB interrupt-on-change new input level time	Тсү	—	—	ns		

TABLE 23-3: CLKOUT AND I/O TIMING PARAMETERS


* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

2: Includes OSC2 in CLKOUT mode.

FIGURE 23-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

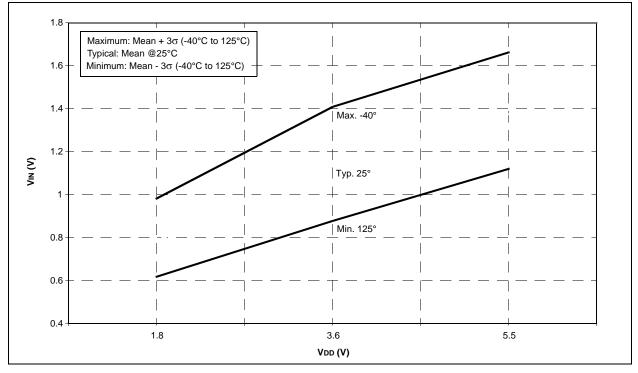
TABLE 23-7: PIC16F722/3/4/6/7 A/D CONVERTER (ADC) CHARACTERISTICS:

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
AD01	Nr	Resolution	—	_	8	bit		
AD02	EIL	Integral Error	—		±1.7	LSb	VREF = 3.0V	
AD03	Edl	Differential Error	-	—	±1	LSb	No missing codes VREF = 3.0V	
AD04	EOFF	Offset Error	—		±2.2	LSb	VREF = 3.0V	
AD05	Egn	Gain Error	_	_	±1.5	LSb	VREF = 3.0V	
AD06	VREF	Reference Voltage ⁽³⁾	1.8	_	Vdd	V		
AD07	VAIN	Full-Scale Range	Vss	—	VREF	V		
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	-	_	50	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.	

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

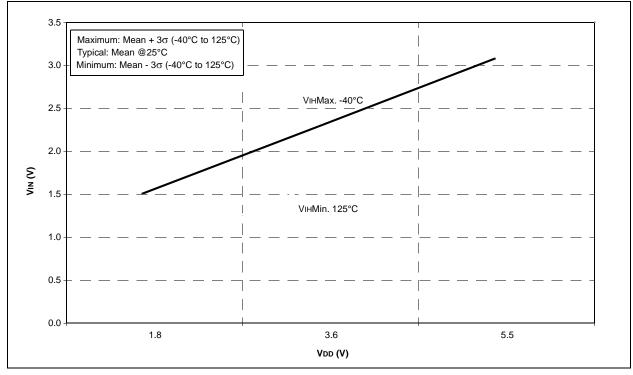
Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

- 2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
- 3: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.


TABLE 23-8: PIC16F722/3/4/6/7 A/D CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C								
Param No.	Sym Characteristic Min Typt Max Units Conditions							
AD130*	Tad	A/D Clock Period A/D Internal RC Oscillator Period	1.0 1.0	 2.0	9.0 6.0	μs μs	Tosc-based ADCS<1:0> = 11 (ADRC mode)	
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	_	10.5	—	Tad	Set GO/DONE bit to conversion complete	
AD132*	TACQ	Acquisition Time	—	1.0	_	μS		

* These parameters are characterized but not tested.


† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

FIGURE 24-49: TTL INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE

