E·XFL

NXP USA Inc. - MSC8126TMP6400 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC140 Core
Interface	DSI, Ethernet, RS-232
Clock Rate	400MHz
Non-Volatile Memory	External
On-Chip RAM	1.436MB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	431-BFBGA, FCBGA
Supplier Device Package	431-FCPBGA (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc8126tmp6400

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1	Pin A	ssignments4		
	1.1	FC-PBGA Ball Layout Diagrams4		
	1.2	Signal List By Ball Location		
2	Elect	rical Characteristics		
	2.1	Maximum Ratings		
	2.2	Recommended Operating Conditions		
	2.3	Thermal Characteristics		
	2.4	DC Electrical Characteristics		
	2.5	AC Timings		
3	Hard	ware Design Considerations40		
	3.1	Start-up Sequencing Recommendations		
	3.2	Power Supply Design Considerations		
	3.3	Connectivity Guidelines		
	3.4	External SDRAM Selection		
	3.5	Thermal Considerations		
4	Orde	ring Information		
5	Pack	age Information		
6	Product Documentation			
7	Revis	sion History		

List of Figures

N

Figure 1.	MSC8126 Block Diagram 3
Figure 2.	StarCore SC140 DSP Extended Core Block Diagram 3
Figure 3.	MSC8126 Package, Top View 5
Figure 4.	MSC8126 Package, Bottom View 6
Figure 5.	Overshoot/Undershoot Voltage for V_{IH} and $V_{\text{IL}},\ldots,$ 16
Figure 6.	Start-Up Sequence: V_{DD} and V_{DDH} Raised Together 17
Figure 7.	Start-Up Sequence: V _{DD} Raised Before V _{DDH} with CLKIN
	Started with V _{DDH} 17
Figure 8.	Power-Up Sequence for V_{DDH} and $V_{\text{DD}}/V_{\text{CCSYN}}$ 18

Figure 9. Timing Diagram for a Reset Configuration Write 21
Figure 10.Internal Tick Spacing for Memory Controller Signals 22
Figure 11.SIU Timing Diagram
Figure 12.CLKOUT and CLKIN Signals
Figure 13.DMA Signals
Figure 14.Asynchronous Single- and Dual-Strobe Modes Read
Timing Diagram
Figure 15.Asynchronous Single- and Dual-Strobe Modes Write
Timing Diagram
Figure 16.Asynchronous Broadcast Write Timing Diagram 30
Figure 17.DSI Synchronous Mode Signals Timing Diagram 31
Figure 18.TDM Inputs Signals
Figure 19.TDM Output Signals
Figure 20.UART Input Timing
Figure 21.UART Output Timing
Figure 22.Timer Timing
Figure 23.MDIO Timing Relationship to MDC
Figure 24.MII Mode Signal Timing
Figure 26.SMII Mode Signal Timing
Figure 27.GPIO Timing
Figure 28.EE Pin Timing
Figure 29.Test Clock Input Timing Diagram
Figure 30.Boundary Scan (JTAG) Timing Diagram
Figure 31.Test Access Port Timing Diagram
Figure 32.TRST Timing Diagram
Figure 33.Core Power Supply Decoupling
Figure 34.V _{CCSYN} Bypass
Figure 35.MSC8126 Mechanical Information, 431-pin FC-PBGA
Package 45

ssignments

1 Pin Assignments

This section includes diagrams of the MSC8126 package ball grid array layouts and pinout allocation tables.

1.1 FC-PBGA Ball Layout Diagrams

Top and bottom views of the FC-PBGA package are shown in Figure 3 and Figure 4 with their ball location index numbers.

Figure 4. MSC8126 Package, Bottom View

Des.	Signal Name	Des.	Signal Name
J3	HA26	K18	CS2
J4	V _{DD}	K19	GND
J5	HA13	K20	A26
J6	GND	K21	A29
J7	PSDAMUX/PGPL5	K22	A28
J8	BADDR27	L2	HA12
J9	V _{DD}	L3	HA14
J10	CLKIN	L4	HA11
J11	BM2/TC2/BNKSEL2	L5	V _{DDH}
J12	DBG	L6	V _{DDH}
J13	V _{DD}	L7	BADDR28
J14	GND	L8	IRQ5/BADDR29
J15	V _{DD}	L9	GND
J16	TT3/CS6	L10	GND
J17	PSDA10/PGPL0	L14	GND
J18	BCTL1/CS5	L15	V _{DDH}
J19	GPIO23/TDM0TDAT/IRQ13	L16	GND
J20	GND	L17	GND
J21	GPIO25/TDM0RCLK/IRQ15	L18	CS3
J22	A30	L19	V _{DDH}
K2	HA15	L20	A27
K3	HA21	L21	A25
K4	HA16	L22	A22
K5	PWE3/PSDDQM3/PBS3	M2	HD28
K6	PWE1/PSDDQM1/PBS1	M3	HD31
K7	POE/PSDRAS/PGPL2	M4	V _{DDH}
K8	IRQ2/BADDR30	M5	GND
K9	Reserved	M6	GND
K10	GND	M7	V _{DDH}
K11	GND	M8	V _{DD}
K12	GND	M9	V _{DDH}
K13	GND	M10	GND
K14	CLKOUT	M14	GND
M15	V _{DDH}	P12	V _{CCSYN}
M16	HBRST	P13	GND
M17	V _{DDH}	P14	GND
M18	V _{DDH}	P15	TA
M19	GND	P16	BR
M20	V _{DDH}	P17	TEA

Table 1. MSC8126 Signal Listing by Ball Designator (continued)

ssignments

Des.	Signal Name	Des.	Signal Name
M21	A24	P18	PSDVAL
M22	A21	P19	DP0/DREQ1/EXT_BR2
N2	HD26	P20	V _{DDH}
N3	HD30	P21	GND
N4	HD29	P22	A19
N5	HD24	R2	HD18
N6	PWE2/PSDDQM2/PBS2	R3	V _{DDH}
N7	V _{DDH}	R4	GND
N8	HWBS0/HDBS0/HWBE0/HDBE0	R5	HD22
N9	HBCS	R6	HWBS6/HDBS6/HWBE6/HDBE6/PWE6/PSDDQM6/PBS6
N10	GND	R7	HWBS4/HDBS4/HWBE4/HDBE4/PWE4/PSDDQM4/PBS4
N14	GND	R8	TSZ1
N15	HRDS/HRW/HRDE	R9	TSZ3
N16	BG	R10	IRQ1/GBL
N17	HCS	R11	V _{DD}
N18	CS0	R12	V _{DD}
N19	PSDWE/PGPL1	R13	V _{DD}
N20	GPIO26/TDM0RDAT	R14	TT0/HA7
N21	A23	R15	IRQ7/DP7/DREQ4
N22	A20	R16	IRQ6/DP6/DREQ3
P2	HD20	R17	IRQ3/DP3/DREQ2/EXT_BR3
P3	HD27	R18	TS
P4	HD25	R19	IRQ2/DP2/DACK2/EXT_DBG2
P5	HD23	R20	A17
P6	HWBS3/HDBS3/HWBE3/HDBE3	R21	A18
P7	HWBS2/HDBS2/HWBE2/HDBE2	R22	A16
P8	HWBS1/HDBS1/HWBE1/HDBE1	T2	HD17
P9	HCLKIN	Т3	HD21
P10	GND	T4	HD1/DSISYNC
P11	GND _{SYN}	T5	HD0/SWTE
Т6	HWBS7/HDBS7/HWBE7/HDBE7/PWE7/PSDDQM7/PBS7	U21	A12
T7	HWBS5/HDBS5/HWBE5/HDBE5/PWE5/PSDDQM5/PBS5	U22	A13
Т8	TSZ0	V2	HD3/MODCK1
Т9	TSZ2	V3	V _{DDH}
T10	TBST	V4	GND
T11	V _{DD}	V5	D0
T12	D16	V6	D1
T13	Π1	V7	D4
T14	D21	V8	D5

Table 1. MSC8126 Signal Listing by Ball Designator (continued)

Des.	Signal Name	Des.	Signal Name
T15	D23	V9	D7
T16	IRQ5/DP5/DACK4/EXT_BG3	V10	D10
T17	IRQ4/DP4/DACK3/EXT_DBG3	V11	D12
T18	IRQ1/DP1/DACK1/EXT_BG2	V12	D13
T19	D30	V13	D18
T20	GND	V14	D20
T21	A15	V15	GND
T22	A14	V16	D24
U2	HD16	V17	D27
U3	HD19	V18	D29
U4	HD2/DSI64	V19	A8
U5	D2	V20	A9
U6	D3	V21	A10
U7	D6	V22	A11
U8	D8	W2	HD6
U9	D9	W3	HD5/CNFGS
U10	D11	W4	HD4/MODCK2
U11	D14	W5	GND
U12	D15	W6	GND
U13	D17	W7	V _{DDH}
U14	D19	W8	V _{DDH}
U15	D22	W9	GND
U16	D25	W10	HDST1/HA10
U17	D26	W11	HDST0/HA9
U18	D28	W12	V _{DDH}
U19	D31	W13	GND
U20	V _{DDH}	W14	HD40/D40/ETHRXD0
W15	V _{DDH}	AA9	V _{DDH}
W16	HD33/D33/reserved	AA10	HD54/D54/ETHTX_EN
W17	V _{DDH}	AA11	HD52/D52
W18	HD32/D32/reserved	AA12	V _{DDH}
W19	GND	AA13	GND
W20	GND	AA14	V _{DDH}
W21	Α7	AA15	HD46/D46/ETHTXT0
W22	A6	AA16	GND
Y2	HD7	AA17	HD42/D42/ETHRXD2/reserved
Y3	HD15	AA18	HD38/D38/reserved
Y4	V _{DDH}	AA19	HD35/D35/reserved
Y5	HD9	AA20	A0

Table 1. MSC8126 Signal Listing by Ball Designator (continued)

rical Characteristics

2.2 Recommended Operating Conditions

Table 3 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed.

Rating	Symbol	Value	Unit
Core and PLL supply voltage: • Standard — 400 MHz — 500 MHz • Reduced (300 and 400 MHz)	V _{DD} V _{CCSYN}	1.14 to 1.26 1.16 to 1.24 1.07 to 1.13	V V V
I/O supply voltage	V _{DDH}	3.135 to 3.465	V
Input voltage	V _{IN}	–0.2 to V _{DDH} +0.2	V
Operating temperature range: • Standard • Extended	T _J TJ	0 to 90 –40 to 105	℃ ℃

Table 3. Recommended	Operating Conditions
----------------------	-----------------------------

2.3 Thermal Characteristics

Table 4 describes thermal characteristics of the MSC8126 for the FC-PBGA packages.

				FC-PBGA 20 × 20 mm ⁵		Unit
Characteristic		Symbol	Natural Convection	200 ft/min (1 m/s) airflow		
Junction-to	o-an	nbient ^{1, 2}	R _{θJA}	26	21	°C/W
Junction-to	o-an	nbient, four-layer board ^{1, 3}	R _{θJA}	19	15	°C/W
Junction-to-board (bottom) ⁴		R _{θJB}	9		°C/W	
Junction-to-case ⁵		R _{θJC}	0.9		°C/W	
Junction-to-package-top ⁶		Ψ _{JT}	1		°C/W	
 Notes: 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal. 3. Per JEDEC JESD51-6 with the board horizontal. 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD 51-8. Board temperature is measured on the top surface of the board near the package. 						
	5.	Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method			883 Method	

Thermal characterization parameter indicating the temperature difference between package top and the junction temperature

Table 4. Thermal Characteristics for the MSC8126

Section 3.5, *Thermal Considerations* provides a detailed explanation of these characteristics.

6.

per JEDEC JESD51-2.

In all cases, the power-up sequence must follow the guidelines shown in Figure 8.

Figure 8. Power-Up Sequence for V_{DDH} and V_{DD}/V_{CCSYN}

The following rules apply:

- 1. During time interval A, V_{DDH} should always be equal to or less than the V_{DD}/V_{CCSYN} voltage level. The duration of interval A should be kept below 10 ms.
- 2. The duration of timing interval B should be kept as small as possible and less than 10 ms.

2.5.3 Clock and Timing Signals

The following sections include a description of clock signal characteristics. **Table 7** shows the maximum frequency values for internal (Core, Reference, Bus, and DSI) and external (CLKIN and CLKOUT) clocks. The user must ensure that maximum frequency values are not exceeded.

Table 7.	Maximum	Frequencies
----------	---------	-------------

Characteristic	Maximum in MHz
Core frequency	400/500
Reference frequency (REFCLK)	133/166
Internal bus frequency (BLCK)	133/166
DSI clock frequency (HCLKIN)	HCLKIN ≤ (min{100 MHz, CLKOUT})
External clock frequency (CLKIN or CLKOUT)	133/166

Table	8.	Clock	Frequer	ncies
IUNIO	~ ·	01001	11094001	.0.00

Characteristics	Symbol	400 MHz Device		500 MHz Device		
Characteristics	Symbol	Min	Max	Min	Max	
CLKIN frequency	F _{CLKIN}	20	133.3	20	166.7	
BCLK frequency	F _{BCLK}	40	133.3	40	166.7	
Reference clock (REFCLK) frequency	F _{REFCLK}	40	133.3	40	166.7	
Output clock (CLKOUT) frequency	F _{CLKOUT}	40	133.3	40	166.7	
SC140 core clock frequency	F _{CORE}	200	400	200	500	
Note: The rise and fall time of external clocks should be 5 ns maximum						

Table 9. System Clock Parameters

Characteristic	Min	Max	Unit
Phase jitter between BCLK and CLKIN	—	0.3	ns
CLKIN frequency	20	see Table 8	MHz
CLKIN slope	_	3	ns
PLL input clock (after predivider)	20	100	MHz
PLL output frequency (VCO output)	800		MHz
400 MHz core		1600	MHz
500 MHz core		2000	MHz
CLKOUT frequency jitter ¹	_	200	ps
CLKOUT phase jitter ¹ with CLKIN phase jitter of ±100 ps	—	500	ps
Notes:1.Peak-to-peak.2.Not tested. Guaranteed by design.			

2.5.4 Reset Timing

The MSC8126 has several inputs to the reset logic:

- Power-on reset (PORESET)
- External hard reset (HRESET)
- External soft reset (SRESET)
- Software watchdog reset
- Bus monitor reset
- Host reset command through JTAG

All MSC8126 reset sources are fed into the reset controller, which takes different actions depending on the source of the reset. The reset status register indicates the most recent sources to cause a reset. **Table 10** describes the reset sources.

Table 10. Reset Sources

Name	Direction	Description
Power-on reset (PORESET)	Input	Initiates the power-on reset flow that resets the MSC8126 and configures various attributes of the MSC8126. On PORESET, the entire MSC8126 device is reset. SPLL states is reset, HRESET and SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The clock mode (MODCK bits), reset configuration mode, boot mode, Chip ID, and use of either a DSI 64 bits port or a System Bus 64 bits port are configured only when PORESET is asserted.
Extern <u>al hard</u> reset (HRESET)	Input/ Output	Initiates the hard reset flow that configures various attributes of the MSC8126. While HRESET is asserted, SRESET is also asserted. HRESET is an open-drain pin. Upon hard reset, HRESET and SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The most configurable features are reconfigured. These features are defined in the 32-bit hard reset configuration word described in <i>Hard Reset Configuration Word</i> section of the <i>Reset</i> chapter in the <i>MSC8126 Reference Manual</i> .
External soft reset (SRESET)	Input/ Output	Initiates the soft reset flow. The MSC8126 detects an external assertion of SRESET only if it occurs while the MSC8126 is not asserting reset. SRESET is an open-drain pin. Upon soft reset, SRESET is driven, the SC140 extended cores are reset, and system configuration is maintained.
Software watchdog reset	Internal	When the MSC8126 watchdog count reaches zero, a software watchdog reset is signalled. The enabled software watchdog event then generates an internal hard reset sequence.
Bus monitor reset	Internal	When the MSC8126 bus monitor count reaches zero, a bus monitor hard reset is asserted. The enabled bus monitor event then generates an internal hard reset sequence.
Host reset command through the TAP	Internal	When a host reset command is written through the Test Access Port (TAP), the TAP logic asserts the soft reset signal and an internal soft reset sequence is generated.

Table 11 summarizes the reset actions that occur as a result of the different reset sources.

rical Characteristics

System Bus Access Timing 2.5.5

Core Data Transfers 2.5.5.1

Generally, all MSC8126 bus and system output signals are driven from the rising edge of the reference clock (REFCLK). The REFCLK is the CLKIN signal. Memory controller signals, however, trigger on four points within a REFCLK cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge of REFCLK (and T3 at the falling edge), but the spacing of T2 and T4 depends on the PLL clock ratio selected, as Table 13 shows.

BCI K/SC140 clock	Tick Spacing (T1 Occurs at the Rising Edge of REFCLK)					
BCENSC 140 CIOCK	T2	ТЗ	T4			
1:4, 1:6, 1:8, 1:10	1/4 REFCLK	1/2 REFCLK	3/4 REFCLK			
1:3	1/6 REFCLK	1/2 REFCLK	4/6 REFCLK			
1:5	2/10 REFCLK	1/2 REFCLK	7/10 REFCLK			

Table 13. Tick Spacing for Memory Controller Signals

Figure 10 is a graphical representation of Table 13.

Figure 10. Internal Tick Spacing for Memory Controller Signals

rical Characteristics

	Value for Bus Speed in MHz						
No.	Characteristic	Ref = CL	KIN	Ref = CLKOUT	Units		
		133	166	133			
31	PSDVAL/TEA/TA max delay from the 50% level of the REFCLK rising edge	4.9	4.9	5.8	ns		
32a	Address bus max delay from the 50% level of the REFCLK rising edge Multi-master mode (SIUBCR[EBM] = 1) 	5.5	5.5	6.4	ns		
	• Single-master mode (SIUBCR[EBM] = 0)	4.2	3.9	5.1	ns		
32b	Address attributes: TT[0–1]/TBST/TSZ/GBL max delay from the 50% level of the REFCLK rising edge	5.1	5.1	6.0	ns		
32c	Address attributes: TT[2–4]/TC max delay from the 50% level of the REFCLK rising edge	5.7	5.7	6.6	ns		
32d	BADDR max delay from the 50% level of the REFCLK rising edge	4.2	4.2	5.1	ns		
33a	Data bus max delay from the 50% level of the REFCLK rising edge Data-pipeline mode Non-pipeline mode 	3.9 6.1	3.7 6.1	4.8 7.0	ns ns		
33b	DP max delay from the 50% level of the REFCLK rising edge • Data-pipeline mode • Non-pipeline mode	5.3 6.5	5.3 6.5	6.2 7.4	ns ns		
34	Memory controller signals/ALE/CS[0–4] max delay from the 50% level of the REFCLK rising edge	4.2	3.9	5.1	ns		
35a	DBG/BG/BR/DBB max delay from the 50% level of the REFCLK rising edge	4.7	4.7	5.6	ns		
35b	AACK/ABB/TS/CS[5–7] max delay from the 50% level of the REFCLK rising edge	4.5	4.5	5.4	ns		
Notes:	 Notes: 1. Values are measured from the 50% level of the REFCLK rising edge to the 50% signal level and assume a 20 pF load except where otherwise specified. 2. Except for specification 30, which is specified for a 10 pF load, all timings in this table are specified for a 20 pF load. Decreasing the load results in a timing decrease at the rate of 0.3 ns per 5 pF decrease in load. Increasing the load results in a timing decrease at the rate of 0.3 ns per 5 pF decrease in load. Increasing the load results in a timing increase at the rate of 0.15 ns per 5 pF increase in load. 3. The maximum bus frequency depends on the mode: 4. In 60x-compatible mode connected to another MSC8126 device, the frequency is determined by adding the input and output longest timing values, which results in the total delay for 20 pF output capacitance. You must also account for other influences that can affect timing, such as on-board clock skews, on-board noise delays, and so on. In single-master mode, the frequency depends on the timing of the devices connected to the MSC8126. To achieve maximum performance on the bus in single-master mode, disable the DBB signal by writing a 1 to the SIUMCRIBDDI bit. See the SIU chapter in the MSC8122 Reference Manual for details. 						

Table 15. AC Timing for SIU Outputs (continued)

Electrical Characteristics

Figure 11. SIU Timing Diagram

2.5.5.3 DMA Data Transfers

Table 17 describes the DMA signal timing.

No.	Characteristic	Ref = CLKIN		Ref = C (1.2 V	Units	
		Min	Max	Min	Max	
37	DREQ set-up time before the 50% level of the falling edge of REFCLK	5.0	—	5.0	—	ns
38	DREQ hold time after the 50% level of the falling edge of REFCLK	0.5	—	0.5	—	ns
39	DONE set-up time before the 50% level of the rising edge of REFCLK	5.0	—	5.0	—	ns
40	DONE hold time after the 50% level of the rising edge of REFCLK	0.5	_	0.5	—	ns
41	DACK/DRACK/DONE delay after the 50% level of the REFCLK rising edge	0.5	7.5	0.5	8.4	ns

Table 17. DMA Signals

The DREQ signal is synchronized with REFCLK. To achieve fast response, a synchronized peripheral should assert DREQ according to the timings in **Table 17**. Figure 13 shows synchronous peripheral interaction.

Figure 13. DMA Signals

Figure 14 shows DSI asynchronous read signals timing.

Notes: 1. Used for single-strobe mode access.

- **2.** Used for dual-strobe mode access.
- **3.** HTA released at logic 0 (DCR[HTAAD] = 0) at end of access; used with pull-down implementation.
- 4. HTA released at logic 1 (DCR[HTAAD] = 1) at end of access; used with pull-up implementation.

Figure 14. Asynchronous Single- and Dual-Strobe Modes Read Timing Diagram

2.5.6.2 DSI Synchronous Mode

Table 19. DSI Inputs—Synchronous Mode

No.	Characteristic	Expression	Min	Max	Units
120	HCLKIN Cycle Time ^{1, 2}	HTC	10.0	55.6	ns
121	HCLKIN high Pulse Width	$(0.5\pm0.1) imes$ HTC	4.0	33.3	ns
122	HCLKIN low Pulse Width	$(0.5\pm0.1) imes$ HTC	4.0	33.3	ns
123	HA[11-29] inputs set-up time	—	1.2	—	ns
124	HD[0-63] inputs set-up time	—	0.4	—	ns
125	HCID[0-4] inputs set-up time	_	1.3		ns
126	All other inputs set-up time	—	1.2	_	ns
127	All inputs hold time	—	1.5	_	ns
Notes:	 Values are based on a frequency range of 18–100 MH Refer to Table 7 for HCLKIN frequency limits. 	Z.			

Table 20. DSI Outputs—Synchronous Mode

No.	Characteristic	Min	Max	Units
128	HCLKIN high to HD[0–63] output active	2.0		ns
129	HCLKIN high to HD[0–63] output valid		6.3	ns
130	HD[0–63] output hold time	1.7	_	ns
131	HCLKIN high to HD[0–63] output high impedance		7.6	ns
132	HCLKIN high to HTA output active	2.0	—	ns
133	HCLKIN high to HTA output valid	_	5.9	ns
134	HTA output hold time	1.7		ns
135	HCLKIN high to HTA high impedance	_	6.3	ns

Figure 17. DSI Synchronous Mode Signals Timing Diagram

Figure 27. GPIO Timing

2.5.12 EE Signals

Table	29.	EE	Pin	Timing	
IUNIO	20.			· · · · · · · · · · · · · · · · · · ·	,

Number	er Characteristics Type		Min	
65	EE0 (input)	Asynchronous	4 core clock periods	
66	EE1 (output)	Synchronous to Core clock	1 core clock period	

Notes: 1. The core clock is the SC140 core clock. The ratio between the core clock and CLKOUT is configured during power-on-reset.
 2. Refer to Table 1-4 on page 1-6 for details on EE pin functionality.

Figure 28 shows the signal behavior of the EE pins.

Figure 28. EE Pin Timing

2.5.13 JTAG Signals

Table 30. JTAG Timing

No.	Characteristics	All frequencies		Unit
		Min	Max	
700	TCK frequency of operation $(1/(T_{C} \times 4); maximum 25 MHz)$	0.0	25	MHz
701	TCK cycle time	40.0	_	ns
702	TCK clock pulse width measured at V_{M} = 1.6 V			
	+ High	20.0	—	ns
	• Low	16.0	_	ns
703	TCK rise and fall times	0.0	3.0	ns

ring Information

3.5 Thermal Considerations

An estimation of the chip-junction temperature, T_J, in °C can be obtained from the following:

$$T_J = T_A + (R_{\bigcup JA} \times P_D)$$
 Eqn. 1

where

$$\begin{split} T_A &= \text{ambient temperature near the package (°C)} \\ R_{\Theta JA} &= \text{junction-to-ambient thermal resistance (°C/W)} \\ P_D &= P_{INT} + P_{I/O} = \text{power dissipation in the package (W)} \\ P_{INT} &= I_{DD} \times V_{DD} = \text{internal power dissipation (W)} \\ P_{I/O} &= \text{power dissipated from device on output pins (W)} \end{split}$$

The power dissipation values for the MSC8126 are listed in **Table 2-3**. The ambient temperature for the device is the air temperature in the immediate vicinity that would cool the device. The junction-to-ambient thermal resistances are JEDEC standard values that provide a quick and easy estimation of thermal performance. There are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. The value that more closely approximates a specific application depends on the power dissipated by other components on the printed circuit board (PCB). The value obtained using a single layer board is appropriate for tightly packed PCB configurations. The value obtained using a board with internal planes is more appropriate for boards with low power dissipation (less than 0.02 W/cm² with natural convection) and well separated components. Based on an estimation of junction temperature using this technique, determine whether a more detailed thermal analysis is required. Standard thermal management techniques can be used to maintain the device thermal junction temperature below its maximum. If T_J appears to be too high, either lower the ambient temperature or the power dissipation of the chip. You can verify the junction temperature by measuring the case temperature using a small diameter thermocouple (40 gauge is recommended) or an infrared temperature sensor on a spot on the device case that is painted black. The MSC8126 device case surface is too shiny (low emissivity) to yield an accurate infrared temperature measurement. Use the following equation to determine T_J:

$$T_J = T_T + (\theta_{JA} \times P_D)$$
 Eqn. 2

where

 T_T = thermocouple (or infrared) temperature on top of the package (°C)

 θ_{JA} = thermal characterization parameter (°C/W)

 P_D = power dissipation in the package (W)

Note: See MSC8102, MSC8122, and MSC8126 Thermal Management Design Guidelines (AN2601/D).

4 Ordering Information

Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.

Part	Package Type	Spheres	Core Voltage	Operating Temperature	Core Frequency (MHz)	Order Number
MSC8126	Flip Chip Plastic Ball Grid Array (FC-PBGA)	Lead-free	1.2 V	-40° to 105°C	400	MSC8126TVT6400
		Lead-bearing				MSC8126TMP6400
		Lead-free		0° to 90°C	500	MSC8126VT8000
		Lead-bearing				MSC8126MP8000

7 Revision History

Table 31 provides a revision history for this data sheet.

Table 31. Document Revision History

Revision	Date	Description
0	May 2004	Initial release.
1	Jun. 2004	 Updated timing number 32b. Updated DSI timing specifications.
2	Sep 2004	 New orderable parts added with other core voltage and temperature options. Updated thermal characteristics. In Table 2-14, removed references to 30 pF. Design guidelines and layout recommendations updated.
3	Nov. 2004	 Added 500 MHz core and 166 MHz bus speed options. Definitions of GPIO[27–28] updated. Bus, TDM, and GPIO timing updated. I²C timing changed to GPIO timing. GPIO[27–28] connections updated. MWBEn replaced with correct name HWBEn. Design guidelines update.
4	Jan. 2005	 Package type changed to FC-PBGA for all frequencies. Low-voltage 300 MHz power changed to 1.1 V. HRESET and SRESET definitions updated. Undershoot and overshoot values added for V_{DDH}. RMII timing updated. Design guidelines updated and reorganized.
5	May 2005	Multiple AC timing specifications updated.
6	May 2005	Multiple AC timing specifications updated.
7	Jul. 2005	Multiple AC timing specifications updated.
8	Jul. 2005	AC specification table layout modified.
9	Sep. 2005	 ETHTX_EN type and TRST description updated. Package drawing updated. Clock specifications updated. Start-up sequence updated.
10	Oct 2005	 V_{DDH} + 10% changed to V_{DDH} + 8% in Figure 2-1. V_{DDH} +20% changed to V_{DDH} + 17% in Figure 2-1.
11	Apr 2006	Reset timing updated to reflect actual values in Table 2-11.
12	Oct. 2006	• Added new timings 17 and 18 for IRQ set time and pulse width in Table 2-13
13	Dec. 2007	 Converted to new data sheet format. Added PLL supply current to Table 5 in Section 2.4. Modified Figure 5 in Section 2.4 to make it clear that the time limits for undershoot referred to values below -0.3 V and not GND. Added cross-references between Sections 2.5.2 and Section 3.1 and 3.2. Added power-sequence guidelines to Sections 2.5.2. Added CLKIN jitter characteristic specifications to Table 9. Added additional guidelines to prevent reverse current to Section 3.1. Added connectivity guidelines for DSI in sliding windows mode to Section 3.3.
14	May 2008	• Changed V _{IL} maximum and reference value to 0.8 V in Table 5 .
15	Dec 2008	• Clarified the wording of note 2 in Table 15 on p. 24.

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 010 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™], the Freescale logo, CodeWarrior, StarCore, and QUICC Engine are trademarks of Freescale Semiconductor, Inc. RapidIO is a registered trademark of the RapidIO Trade Association. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2004, 2008. All rights reserved.

Document Number: MSC8126 Rev. 15 12/2008

