

Welcome to **E-XFL.COM**

Understanding Embedded - DSP (Digital Signal Processors)

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital Signal Processors)</u>

Details	
Product Status	Obsolete
Туре	SC140 Core
Interface	DSI, Ethernet, RS-232
Clock Rate	400MHz
Non-Volatile Memory	External
On-Chip RAM	1.436MB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	431-BFBGA, FCBGA
Supplier Device Package	431-FCPBGA (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc8126tvt6400

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

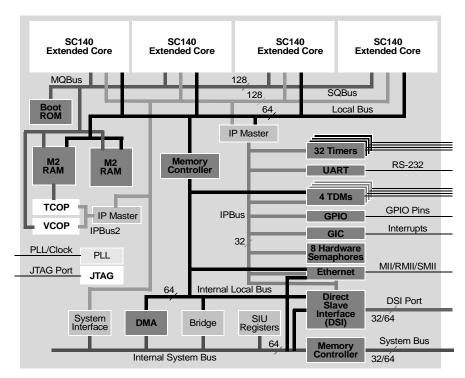
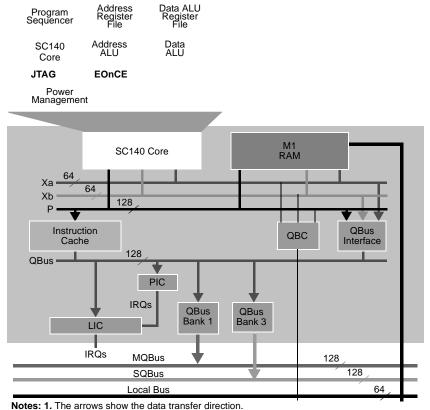



Figure 1. MSC8126 Block Diagram

Program Sequencer

Figure 2. StarCore SC140 DSP Extended Core Block Diagram

MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 15

The QBus interface includes a bus switch, write buffer, fetch unit, and a control unit that defines four QBus banks. In addition, the QBC handles internal memory contentions.

Bottom View

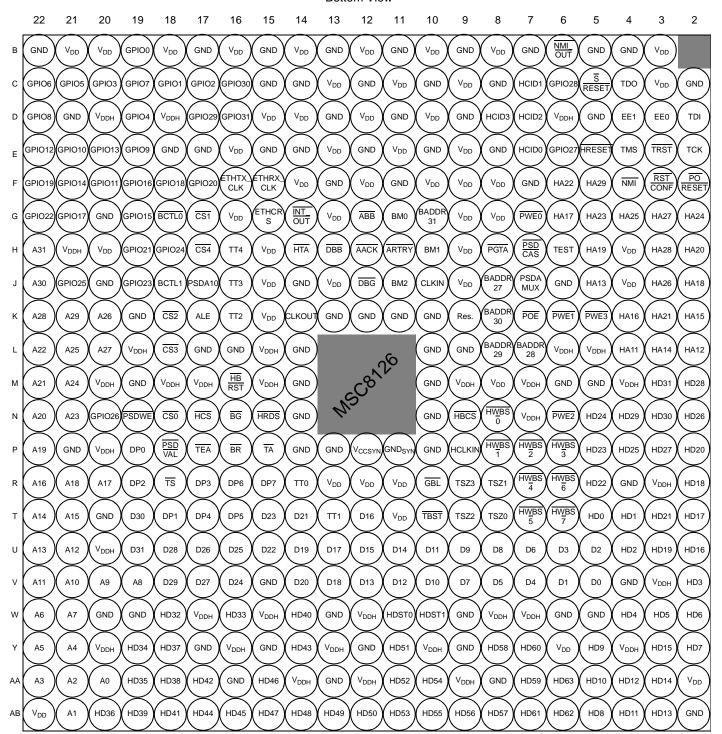


Figure 4. MSC8126 Package, Bottom View

1.2 Signal List By Ball Location

Table 1 presents signal list sorted by ball number. -

Table 1. MSC8126 Signal Listing by Ball Designator

	Table 1. M000120 dig		<u>-</u>
Des.	Signal Name	Des.	Signal Name
В3	V_{DD}	C18	GPIO1/TIMER0/CHIP_ID1/IRQ5/ETHTXD1
B4	GND	C19	GPIO7/TDM3RCLK/IRQ5/ETHTXD3
B5	GND	C20	GPIO3/TDM3TSYN/IRQ1/ETHTXD2
B6	NMI_OUT	C21	GPIO5/TDM3TDAT/IRQ3/ETHRXD3
B7	GND	C22	GPIO6/TDM3RSYN/IRQ4/ETHRXD2
B8	V_{DD}	D2	TDI
В9	GND	D3	EE0
B10	V_{DD}	D4	EE1
B11	GND	D5	GND
B12	V_{DD}	D6	V_{DDH}
B13	GND	D7	HCID2
B14	V _{DD}	D8	HCID3/HA8
B15	GND	D9	GND
B16	V _{DD}	D10	V_{DD}
B17	GND	D11	GND
B18	V_{DD}	D12	V_{DD}
B19	GPIO0/CHIP_ID0/IRQ4/ETHTXD0	D13	GND
B20	V _{DD}	D14	V_{DD}
B21	V_{DD}	D15	V_{DD}
B22	GND	D16	GPIO31/TIMER3/SCL
C2	GND	D17	GPIO29/CHIP_ID3/ETHTX_EN
C3	V _{DD}	D18	V_{DDH}
C4	TDO	D19	GPIO4/TDM3TCLK/IRQ2/ETHTX_ER
C5	SRESET	D20	V_{DDH}
C6	GPIO28/DREQ2/UTXD	D21	GND
C7	HCID1	D22	GPIO8/TDM3RDAT/IRQ6/ETHCOL
C8	GND	E2	тск
C9	V _{DD}	E3	TRST
C10	GND	E4	TMS
C11	V _{DD}	E5	HRESET
C12	GND	E6	GPIO27/DREQ1/URXD
C13	V _{DD}	E7	HCID0
C14	GND	E8	GND
C15	GND	E9	V_{DD}
C16	GPIO30/TIMER2/TMCLK/SDA	E10	GND
C17	GPIO2/TIMER1/CHIP_ID2/IRQ6	E11	V_{DD}

Table 1. MSC8126 Signal Listing by Ball Designator (continued)

Des.	Signal Name	Des.	Signal Name
E12	GND	G6	HA17
E13	V _{DD}	G7	PWE0/PSDDQM0/PBS0
E14	GND	G8	V _{DD}
E15	GND	G9	V_{DD}
E16	V _{DD}	G10	ĪRQ3/BADDR31
E17	GND	G11	BM0/TC0/BNKSEL0
E18	GND	G12	ABB/IRQ4
E19	GPIO9/TDM2TSYN/IRQ7/ETHMDIO	G13	V _{DD}
E20	GPIO13/TDM2RCLK/IRQ11/ETHMDC	G14	ĪRQ7/ĪNT_OUT
E21	GPIO10/TDM2TCLK/IRQ8/ETHRX_DV/ETHCRS_DV/NC	G15	ETHCRS/ETHRXD
E22	GPIO12/TDM2RSYN/IRQ10/ETHRXD1/ETHSYNC	G16	V_{DD}
F2	PORESET	G17	CS1
F3	RSTCONF	G18	BCTL0
F4	NMI	G19	GPIO15/TDM1TSYN/DREQ1
F5	HA29	G20	GND
F6	HA22	G21	GPIO17/TDM1TDAT/DACK1
F7	GND	G22	GPIO22/TDM0TCLK/DONE2/DRACK2
F8	V _{DD}	H2	HA20
F9	V _{DD}	НЗ	HA28
F10	V _{DD}	H4	V_{DD}
F11	GND	H5	HA19
F12	V _{DD}	H6	TEST
F13	GND	H7	PSDCAS/PGPL3
F14	V _{DD}	Н8	PGTA/PUPMWAIT/PGPL4/PPBS
F15	ETHRX_CLK/ETHSYNC_IN	H9	V_{DD}
F16	ETHTX_CLK/ETHREF_CLK/ETHCLOCK	H10	BM1/TC1/BNKSEL1
F17	GPIO20/TDM1RDAT	H11	ĀRTRY
F18	GPIO18/TDM1RSYN/DREQ2	H12	AACK
F19	GPIO16/TDM1TCLK/DONE1/DRACK1	H13	DBB/IRQ5
F20	GPIO11/TDM2TDAT/IRQ9/ETHRX_ER/ETHTXD	H14	HTA
F21	GPIO14/TDM2RDAT/IRQ12/ETHRXD0/NC	H15	V _{DD}
F22	GPIO19/TDM1RCLK/DACK2	H16	TT4/ CS7
G2	HA24	H17	CS4
G3	HA27	H18	GPIO24/TDM0RSYN/IRQ14
G4	HA25	H19	GPIO21/TDM0TSYN
G5	HA23	H20	V _{DD}
H21	V_{DDH}	K15	V _{DD}
H22	A31	K16	TT2/CS5
J2	HA18	K17	ALE

Table 1. MSC8126 Signal Listing by Ball Designator (continued)

Des.	Signal Name	Des.	Signal Name
J3	HA26	K18	CS2
J4	V_{DD}	K19	GND
J5	HA13	K20	A26
J6	GND	K21	A29
J7	PSDAMUX/PGPL5	K22	A28
J8	BADDR27	L2	HA12
J9	V_{DD}	L3	HA14
J10	CLKIN	L4	HA11
J11	BM2/TC2/BNKSEL2	L5	V_{DDH}
J12	DBG	L6	V_{DDH}
J13	V_{DD}	L7	BADDR28
J14	GND	L8	ĪRQ5/BADDR29
J15	V_{DD}	L9	GND
J16	TT3/ CS6	L10	GND
J17	PSDA10/PGPL0	L14	GND
J18	BCTL1/CS5	L15	V_{DDH}
J19	GPIO23/TDM0TDAT/IRQ13	L16	GND
J20	GND	L17	GND
J21	GPIO25/TDM0RCLK/IRQ15	L18	CS3
J22	A30	L19	V_{DDH}
K2	HA15	L20	A27
КЗ	HA21	L21	A25
K4	HA16	L22	A22
K5	PWE3/PSDDQM3/PBS3	M2	HD28
K6	PWE1/PSDDQM1/PBS1	M3	HD31
K7	POE/PSDRAS/PGPL2	M4	V _{DDH}
K8	ĪRQ2/BADDR30	M5	GND
К9	Reserved	M6	GND
K10	GND	M7	V_{DDH}
K11	GND	M8	V _{DD}
K12	GND	M9	V_{DDH}
K13	GND	M10	GND
K14	CLKOUT	M14	GND
M15	V_{DDH}	P12	V _{CCSYN}
M16	HBRST	P13	GND
M17	V_{DDH}	P14	GND
M18	V_{DDH}	P15	TA
M19	GND	P16	BR
M20	V_{DDH}	P17	TEA

MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 15

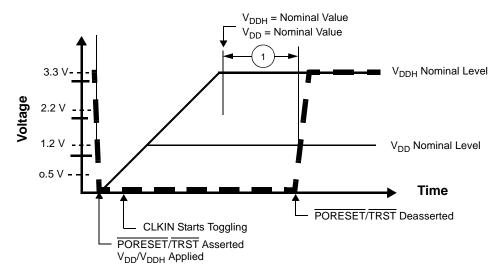


Figure 6. Start-Up Sequence: V_{DD} and V_{DDH} Raised Together

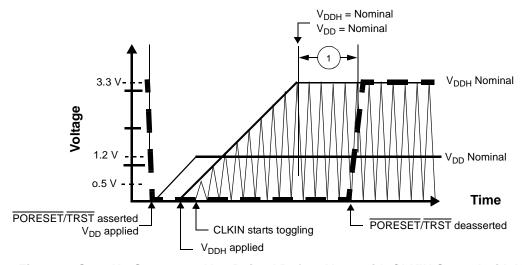


Figure 7. Start-Up Sequence: V_{DD} Raised Before V_{DDH} with CLKIN Started with V_{DDH}

rical Characteristics

In all cases, the power-up sequence must follow the guidelines shown in Figure 8.

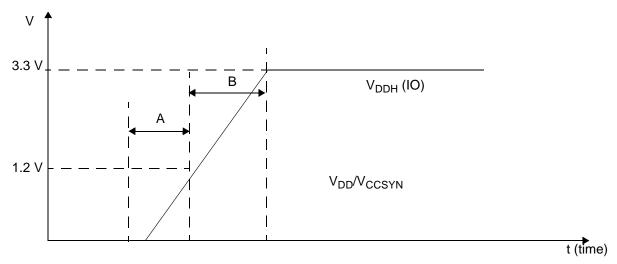


Figure 8. Power-Up Sequence for V_{DDH} and V_{DD}/V_{CCSYN}

The following rules apply:

- 1. During time interval A, V_{DDH} should always be equal to or less than the V_{DD}/V_{CCSYN} voltage level. The duration of interval A should be kept below 10 ms.
- 2. The duration of timing interval B should be kept as small as possible and less than 10 ms.

2.5.3 Clock and Timing Signals

The following sections include a description of clock signal characteristics. **Table 7** shows the maximum frequency values for internal (Core, Reference, Bus, and DSI) and external (CLKIN and CLKOUT) clocks. The user must ensure that maximum frequency values are not exceeded.

 Characteristic
 Maximum in MHz

 Core frequency
 400/500

 Reference frequency (REFCLK)
 133/166

 Internal bus frequency (BLCK)
 133/166

 DSI clock frequency (HCLKIN)
 HCLKIN ≤ (min{100 MHz, CLKOUT})

 External clock frequency (CLKIN or CLKOUT)
 133/166

Table 7. Maximum Frequencies

Table 8. Clock Frequencies

	0	400 MHz Device		500 MHz Device	
Characteristics	Symbol	Min	Max	Min	Max
CLKIN frequency	F _{CLKIN}	20	133.3	20	166.7
BCLK frequency	F _{BCLK}	40	133.3	40	166.7
Reference clock (REFCLK) frequency	F _{REFCLK}	40	133.3	40	166.7
Output clock (CLKOUT) frequency	F _{CLKOUT}	40	133.3	40	166.7
SC140 core clock frequency	F _{CORE}	200	400	200	500
Note: The rise and fall time of external	clocks should be 5	ns maximum			

MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 15

2.5.4.3 Reset Timing Tables

Table 12 and **Figure 9** describe the reset timing for a reset configuration write through the direct slave interface (DSI) or through the system bus.

Table 12. Timing for a Reset Configuration Write through the DSI or System Bus

No.	Characteristics	Expression	Min	Max	Unit
1	Required external PORESET duration minimum CLKIN = 20 MHz CLKIN = 133 MHz (400 MHz core) CLKIN = 166 MHz (500 MHz core)	16/CLKIN	800 120 96	800 — —	ns ns ns
2	Delay from deassertion of external PORESET to deassertion of internal PORESET • CLKIN = 20 MHz to 166 MHz	1024/CLKIN	6.17	51.2	μs
3	Delay from de-assertion of internal PORESET to SPLL lock CLKIN = 20 MHz (RDF = 1) CLKIN = 133 MHz (RDF = 2) (400 MHz core) CLKIN = 166 MHz (RDF = 2) (500 MHz core)	6400/(CLKIN/RDF) (PLL reference clock-division factor)	320 96 77	320 96 77	μs μs μs
5	Delay from SPLL to HRESET deassertion REFCLK = 40 MHz to 166 MHz	512/REFCLK	3.08	12.8	μs
6	Delay from SPLL lock to SRESET deassertion • REFCLK = 40 MHz to 166 MHz	515/REFCLK	3.10	12.88	μs
7	Setup time from assertion of RSTCONF, CNFGS, DSISYNC, DSI64, CHIP_ID[0-3], BM[0-2], SWTE, and MODCK[1-2] before deassertion of PORESET		3	_	ns
8	Hold time from deassertion of PORESET to deassertion of RSTCONF, CNFGS, DSISYNC, DSI64, CHIP_ID[0–3], BM[0–2], SWTE, and MODCK[1–2]		5	_	ns
Note:	Timings are not tested, but are guaranteed by design.	•	-		

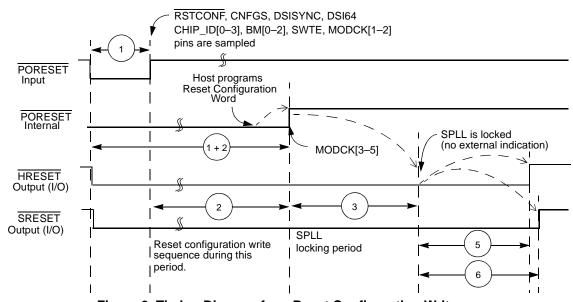
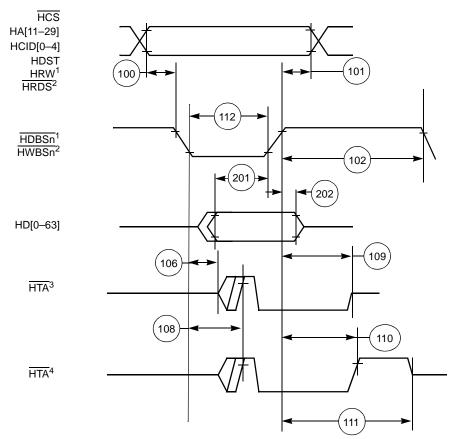


Figure 9. Timing Diagram for a Reset Configuration Write

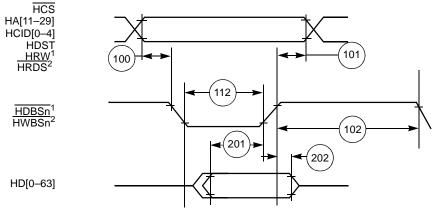
Table 15. AC Timing for SIU Outputs (continued)


		Value fo	or Bus Spe	ed in MHz	
No.	Characteristic	Ref = CL	.KIN	Ref = CLKOUT	Units
		133	166	133	
31	PSDVAL/TEA/TA max delay from the 50% level of the REFCLK rising edge	4.9	4.9	5.8	ns
32a	Address bus max delay from the 50% level of the REFCLK rising edge • Multi-master mode (SIUBCR[EBM] = 1) • Single-master mode (SIUBCR[EBM] = 0)	5.5 4.2	5.5 3.9	6.4 5.1	ns ns
32b	Address attributes: TT[0–1]/TBST/TSZ/GBL max delay from the 50% level of the REFCLK rising edge	5.1	5.1	6.0	ns
32c	Address attributes: TT[2–4]/TC max delay from the 50% level of the REFCLK rising edge	5.7	5.7	6.6	ns
32d	BADDR max delay from the 50% level of the REFCLK rising edge	4.2	4.2	5.1	ns
33a	Data bus max delay from the 50% level of the REFCLK rising edge Data-pipeline mode Non-pipeline mode	3.9 6.1	3.7 6.1	4.8 7.0	ns ns
33b	DP max delay from the 50% level of the REFCLK rising edge Data-pipeline mode Non-pipeline mode	5.3 6.5	5.3 6.5	6.2 7.4	ns ns
34	Memory controller signals/ALE/CS[0–4] max delay from the 50% level of the REFCLK rising edge	4.2	3.9	5.1	ns
35a	DBG/BG/BR/DBB max delay from the 50% level of the REFCLK rising edge	4.7	4.7	5.6	ns
35b	AACK/ABB/TS/CS[5–7] max delay from the 50% level of the REFCLK rising edge	4.5	4.5	5.4	ns

Notes:

- 1. Values are measured from the 50% level of the REFCLK rising edge to the 50% signal level and assume a 20 pF load except where otherwise specified.
- 2. Except for specification 30, which is specified for a 10 pF load, all timings in this table are specified for a 20 pF load. Decreasing the load results in a timing decrease at the rate of 0.3 ns per 5 pF decrease in load. Increasing the load results in a timing increase at the rate of 0.15 ns per 5 pF increase in load.
- 3. The maximum bus frequency depends on the mode:
- 4. In 60x-compatible mode connected to another MSC8126 device, the frequency is determined by adding the input and output longest timing values, which results in the total delay for 20 pF output capacitance. You must also account for other influences that can affect timing, such as on-board clock skews, on-board noise delays, and so on.
 - In single-master mode, the frequency depends on the timing of the devices connected to the MSC8126.
 - To achieve maximum performance on the bus in single-master mode, disable the \overline{DBB} signal by writing a 1 to the SIUMCR[BDD] bit. See the SIU chapter in the MSC8122 Reference Manual for details.

Figure 15 shows DSI asynchronous write signals timing.



Notes:

- 1. Used for single-strobe mode access.
- 2. Used for dual-strobe mode access.
- 3. HTA released at logic 0 (DCR[HTAAD] = 0) at end of access; used with pull-down implementation.
- 4. HTA released at logic 1 (DCR[HTAAD] = 1) at end of access; used with pull-up implementation.

Figure 15. Asynchronous Single- and Dual-Strobe Modes Write Timing Diagram

Figure 16 shows DSI asynchronous broadcast write signals timing.

Notes:

- 1. Used for single-strobe mode access.
- 2. Used for dual-strobe mode access.

Figure 16. Asynchronous Broadcast Write Timing Diagram

MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 15

2.5.6.2 DSI Synchronous Mode

Table 19. DSI Inputs—Synchronous Mode

No.	Characteristic	Expression	Min	Max	Units
120	HCLKIN Cycle Time ^{1, 2}	HTC	10.0	55.6	ns
121	HCLKIN high Pulse Width	(0.5 ± 0.1) × HTC	4.0	33.3	ns
122	HCLKIN low Pulse Width	$(0.5\pm0.1) imes HTC$	4.0	33.3	ns
123	HA[11–29] inputs set-up time	_	1.2	_	ns
124	HD[0-63] inputs set-up time	_	0.4	_	ns
125	HCID[0-4] inputs set-up time	_	1.3	_	ns
126	All other inputs set-up time	_	1.2	_	ns
127	All inputs hold time	_	1.5	_	ns
Notes:	 Values are based on a frequency range of 18–100 MH Refer to Table 7 for HCLKIN frequency limits. 	Z.			

Table 20. DSI Outputs—Synchronous Mode

No.	Characteristic	Min	Max	Units
128	HCLKIN high to HD[0-63] output active	2.0	_	ns
129	HCLKIN high to HD[0–63] output valid	_	6.3	ns
130	HD[0-63] output hold time	1.7	_	ns
131	HCLKIN high to HD[0–63] output high impedance	_	7.6	ns
132	HCLKIN high to HTA output active	2.0	_	ns
133	HCLKIN high to HTA output valid	_	5.9	ns
134	HTA output hold time	1.7	_	ns
135	HCLKIN high to HTA high impedance	_	6.3	ns

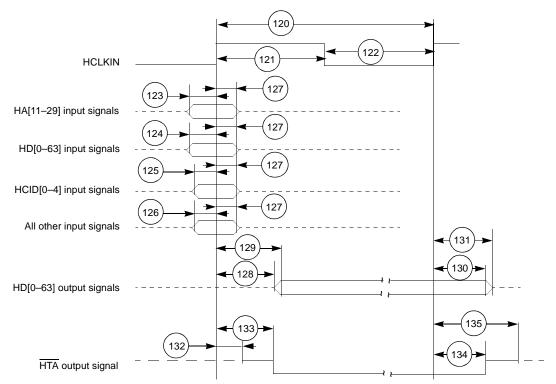


Figure 17. DSI Synchronous Mode Signals Timing Diagram

MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 15

2.5.8 UART Timing

Table 22. UART Timing

No.	Characteristics	Expression	Min	Max	Unit
400	URXD and UTXD inputs high/low duration	16 × T _{REFCLK}	160.0	_	ns
401	URXD and UTXD inputs rise/fall time			10	ns
402	UTXD output rise/fall time			10	ns

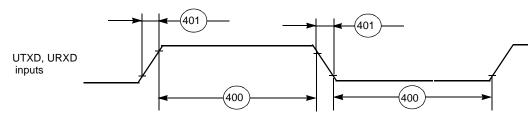


Figure 20. UART Input Timing

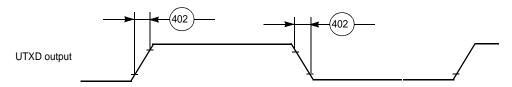


Figure 21. UART Output Timing

2.5.10.2 MII Mode Timing

Table 25. MII Mode Signal Timing

No.	Characteristics	Min	Max	Unit
803	ETHRX_DV, ETHRXD[0-3], ETHRX_ER to ETHRX_CLK rising edge set-up time	3.5		ns
804	ETHRX_CLK rising edge to ETHRX_DV, ETHRXD[0–3], ETHRX_ER hold time	3.5	_	ns
805	ETHTX_CLK to ETHTX_EN, ETHTXD[0-3], ETHTX_ER output delay			
	• 1.1 V core	1	14.6	ns
	• 1.2 V core	1	12.6	ns

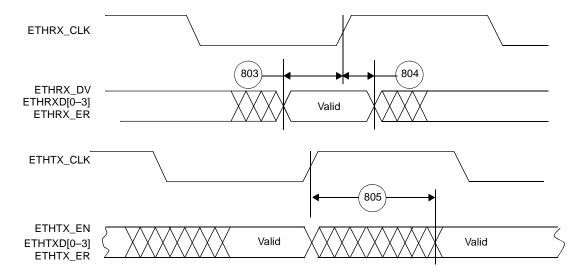


Figure 24. MII Mode Signal Timing

2.5.10.3 RMII Mode

Table 26. RMII Mode Signal Timing

No.	Characteristics		1.1 V Core		1.2 V Core	
			Max	Min	Max	Unit
806	ETHTX_EN,ETHRXD[0-1], ETHCRS_DV, ETHRX_ER to ETHREF_CLK rising edge set-up time	1.6		2		ns
807	ETHREF_CLK rising edge to ETHRXD[0–1], ETHCRS_DV, ETHRX_ER hold time	1.6	_	1.6	_	ns
811	ETHREF_CLK rising edge to ETHTXD[0-1], ETHTX_EN output delay.	3	12.5	3	11	ns

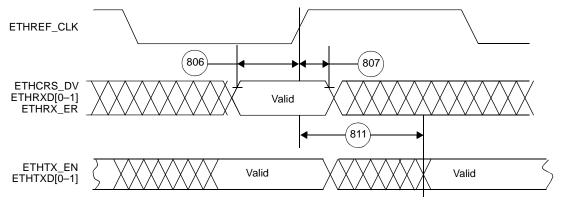


Figure 25. RMII Mode Signal Timing

MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 15

Table 30. JTAG Timing (continued)

No.	Characteristics	All frequencies		Unit	
		Min	Max		
704	Boundary scan input data set-up time	5.0	_	ns	
705	Boundary scan input data hold time	20.0	_	ns	
706	TCK low to output data valid	0.0	30.0	ns	
707	TCK low to output high impedance	0.0	30.0	ns	
708	TMS, TDI data set-up time	5.0	_	ns	
709	TMS, TDI data hold time	20.0	_	ns	
710	TCK low to TDO data valid	0.0	20.0	ns	
711	TCK low to TDO high impedance	0.0	20.0	ns	
712	TRST assert time	100.0	_	ns	
713	TRST set-up time to TCK low	30.0	_	ns	
Note:	All timings apply to OnCE module data transfers as well as any other transfers via the JTAG port.				

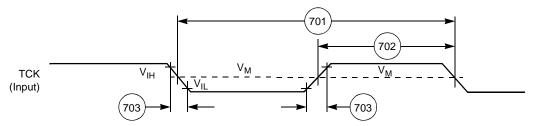


Figure 29. Test Clock Input Timing Diagram

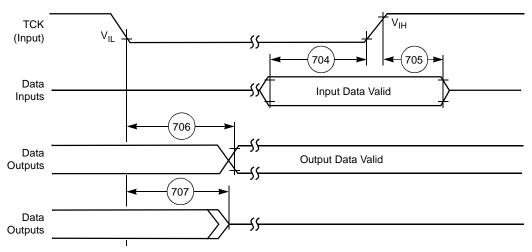


Figure 30. Boundary Scan (JTAG) Timing Diagram

3 Hardware Design Considerations

The following sections discuss areas to consider when the MSC8126 device is designed into a system.

3.1 Start-up Sequencing Recommendations

Use the following guidelines for start-up and power-down sequences:

- Assert PORESET and TRST before applying power and keep the signals driven low until the power reaches the required minimum power levels. This can be implemented via weak pull-down resistors.
- CLKIN can be held low or allowed to toggle during the beginning of the power-up sequence. However, CLKIN must start toggling before the deassertion of PORESET and after both power supplies have reached nominal voltage levels.
- If possible, bring up V_{DD}/V_{CCSYN} and V_{DDH} together. If it is not possible, raise V_{DD}/V_{CCSYN} first and then bring up V_{DDH}. V_{DDH} should not exceed V_{DD}/V_{CCSYN} until V_{DD}/V_{CCSYN} reaches its nominal voltage level. Similarly, bring both voltage levels down together. If that is not possible reverse the power-up sequence, with V_{DDH} going down first and then V_{DD}/V_{CCSYN}.

Note: This recommended power sequencing for the MSC8126 is different from the MSC8102. See **Section 2.5.2** for start-up timing specifications.

External voltage applied to any input line must not exceed the I/O supply V_{DDH} by more than 0.8 V at any time, including during power-up. Some designs require pull-up voltages applied to selected input lines during power-up for configuration purposes. This is an acceptable exception to the rule. However, each such input can draw up to 80 mA per input pin per device in the system during start-up.

During the power-up sequence, if V_{DD} rises before V_{DDH} (see **Figure 6**), current can pass from the V_{DD} supply through the device ESD protection circuits to the V_{DDH} supply. The ESD protection diode can allow this to occur when V_{DD} exceeds V_{DDH} by more than 0.8 V. Design the power supply to prevent or minimize this effect using one of the following optional methods:

- Never allow V_{DD} to exceed $V_{DDH} + 0.8V$.
- Design the V_{DDH} supply to prevent reverse current flow by adding a minimum 10Ω resistor to GND to limit the current. Such a design yields an initial V_{DDH} level of $V_{DD} 0.8 V$ before it is enabled.

After power-up, V_{DDH} must not exceed V_{DD}/V_{CCSYN} by more than 2.6 V.

3.2 Power Supply Design Considerations

When used as a drop-in replacement in MSC8102 applications or when implementing a new design, use the guidelines described in *Migrating Designs from the MSC8102 to the MSC8122* (AN2716) and the *MSC8126 Design Checklist* (AN3374 for optimal system performance. *MSC8122 and MSC8126 Power Circuit Design Recommendations and Examples* (AN2937) provides detailed design information. See **Section 2.5.2** for start-up timing specifications.

Figure 33 shows the recommended power decoupling circuit for the core power supply. The voltage regulator and the decoupling capacitors should supply the required device current without any drop in voltage on the device pins. The voltage on the package pins should not drop below the minimum specified voltage level even for a very short spikes. This can be achieved by using the following guidelines:

• For the core supply, use a voltage regulator rated at 1.2 V with nominal rating of at least 3 A. This rating does not reflect actual average current draw, but is recommended because it resists changes imposed by transient spikes and has better voltage recovery time than supplies with lower current ratings.

- The maximum load on CLKOUT must not exceed 10 pF.
- Use a zero-delay buffer with a jitter less than 0.3 ns.
- All clock modes are valid in this clock scheme.

Note: See the Clock chapter in the MSC8122 Reference Manual for details.

- If the 60x-compatible system bus is not used and SIUMCR[PBSE] is set, PPBS can be disconnected. Otherwise, it should be pulled up.
- The following signals: SWTE, DSISYNC, DSI64, MODCK[1-2], CNFGS, CHIPID[0-3], RSTCONF and BM[0-2] are used to configure the MSC8126 and are sampled on the deassertion of the PORESET signal. Therefore, they should be tied to GND or V_{DDH} or through a pull-down or a pull-up resistor until the deassertion of the $\overline{PORESET}$ signal.
- When they are used, INT OUT (if SIUMCR[INTODC] is cleared), NMI OUT, and IRQxx (if not full drive) signals must be pulled up.
- When the Ethernet controller is enabled and the SMII mode is selected, GPIO10 and GPIO14 must not be connected externally to any signal line.

For details on configuration, see the MSC8126 User's Guide and MSC8126 Reference Manual. For additional Note: information, refer to the MSC8126 Design Checklist (AN2903).

3.4 External SDRAM Selection

The external bus speed implemented in a system determines the speed of the SDRAM used on that bus. However, because of differences in timing characteristics among various SDRAM manufacturers, you may have use a faster speed rated SDRAM to assure efficient data transfer across the bus. For example, for 166 MHz operation, you may have to use 183 or 200 MHz SDRAM. Always perform a detailed timing analysis using the MSC8126 bus timing values and the manufacturer specifications for the SDRAM to ensure correct operation within your system design. The output delay listed in SDRAM specifications is usually given for a load of 30 pF. Scale the number to your specific board load using the typical scaling number provided by the SDRAM manufacturer.

MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 15 Freescale Semiconductor 43

3.5 Thermal Considerations

An estimation of the chip-junction temperature, T_I, in °C can be obtained from the following:

$$T_J = T_A + (R_{\Theta JA} \times P_D)$$
 Eqn. 1

where

 T_A = ambient temperature near the package (°C)

 R_{AJA} = junction-to-ambient thermal resistance (°C/W)

 $P_D = P_{INT} + P_{I/O} = power dissipation in the package (W)$

 $P_{INT} = I_{DD} \times V_{DD} = internal power dissipation (W)$

 $P_{I/O}$ = power dissipated from device on output pins (W)

The power dissipation values for the MSC8126 are listed in **Table 2-3**. The ambient temperature for the device is the air temperature in the immediate vicinity that would cool the device. The junction-to-ambient thermal resistances are JEDEC standard values that provide a quick and easy estimation of thermal performance. There are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. The value that more closely approximates a specific application depends on the power dissipated by other components on the printed circuit board (PCB). The value obtained using a single layer board is appropriate for tightly packed PCB configurations. The value obtained using a board with internal planes is more appropriate for boards with low power dissipation (less than 0.02 W/cm^2 with natural convection) and well separated components. Based on an estimation of junction temperature using this technique, determine whether a more detailed thermal analysis is required. Standard thermal management techniques can be used to maintain the device thermal junction temperature below its maximum. If T_J appears to be too high, either lower the ambient temperature or the power dissipation of the chip. You can verify the junction temperature by measuring the case temperature using a small diameter thermocouple (40 gauge is recommended) or an infrared temperature sensor on a spot on the device case that is painted black. The MSC8126 device case surface is too shiny (low emissivity) to yield an accurate infrared temperature measurement. Use the following equation to determine T_J :

$$T_I = T_T + (\theta_{IA} \times P_D)$$
 Eqn. 2

where

 T_T = thermocouple (or infrared) temperature on top of the package (°C)

 θ_{JA} = thermal characterization parameter (°C/W)

 P_D = power dissipation in the package (W)

Note: See MSC8102, MSC8122, and MSC8126 Thermal Management Design Guidelines (AN2601/D).

4 Ordering Information

Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.

Part	Package Type	Spheres	Core Voltage	Operating Temperature	Core Frequency (MHz)	Order Number
MSC8126	Flip Chip Plastic Ball Grid Array (FC-PBGA)	Lead-free	1.2 V	-40° to 105°C	400	MSC8126TVT6400
		Lead-bearing				MSC8126TMP6400
		Lead-free		0° to 90°C	500	MSC8126VT8000
		Lead-bearing				MSC8126MP8000

7 Revision History

Table 31 provides a revision history for this data sheet.

Table 31. Document Revision History

Revision	Date	Description
0	May 2004	Initial release.
1	Jun. 2004	 Updated timing number 32b. Updated DSI timing specifications.
2	Sep 2004	 New orderable parts added with other core voltage and temperature options. Updated thermal characteristics. In Table 2-14, removed references to 30 pF. Design guidelines and layout recommendations updated.
3	Nov. 2004	 Added 500 MHz core and 166 MHz bus speed options. Definitions of GPIO[27–28] updated. Bus, TDM, and GPIO timing updated. I²C timing changed to GPIO timing. GPIO[27–28] connections updated. MWBEn replaced with correct name HWBEn. Design guidelines update.
4	Jan. 2005	 Package type changed to FC-PBGA for all frequencies. Low-voltage 300 MHz power changed to 1.1 V. HRESET and SRESET definitions updated. Undershoot and overshoot values added for V_{DDH}. RMII timing updated. Design guidelines updated and reorganized.
5	May 2005	Multiple AC timing specifications updated.
6	May 2005	Multiple AC timing specifications updated.
7	Jul. 2005	Multiple AC timing specifications updated.
8	Jul. 2005	AC specification table layout modified.
9	Sep. 2005	 ETHTX_EN type and TRST description updated. Package drawing updated. Clock specifications updated. Start-up sequence updated.
10	Oct 2005	 V_{DDH} + 10% changed to V_{DDH} + 8% in Figure 2-1. V_{DDH} +20% changed to V_{DDH} + 17% in Figure 2-1.
11	Apr 2006	Reset timing updated to reflect actual values in Table 2-11 .
12	Oct. 2006	Added new timings 17 and 18 for IRQ set time and pulse width in Table 2-13
13	Dec. 2007	 Converted to new data sheet format. Added PLL supply current to Table 5 in Section 2.4. Modified Figure 5 in Section 2.4 to make it clear that the time limits for undershoot referred to values below -0.3 V and not GND. Added cross-references between Sections 2.5.2 and Section 3.1 and 3.2. Added power-sequence guidelines to Sections 2.5.2. Added CLKIN jitter characteristic specifications to Table 9. Added additional guidelines to prevent reverse current to Section 3.1. Added connectivity guidelines for DSI in sliding windows mode to Section 3.3.
14	May 2008	Changed V _{IL} maximum and reference value to 0.8 V in Table 5 .
15	Dec 2008	• Clarified the wording of note 2 in Table 15 on p. 24.

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French)

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

www.freescale.com/support

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 010 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor
@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™], the Freescale logo, CodeWarrior, StarCore, and QUICC Engine are trademarks of Freescale Semiconductor, Inc. RapidIO is a registered trademark of the RapidIO Trade Association. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2004, 2008. All rights reserved.

Document Number: MSC8126

Rev. 15 12/2008

