E·XFL

NXP USA Inc. - MSC8126VT8000 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC140 Core
Interface	DSI, Ethernet, RS-232
Clock Rate	500MHz
Non-Volatile Memory	External
On-Chip RAM	1.436MB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	431-BFBGA, FCBGA
Supplier Device Package	431-FCPBGA (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc8126vt8000

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Des.	Signal Name	Des.	Signal Name
J3	HA26	K18	CS2
J4	V _{DD}	K19	GND
J5	HA13	K20	A26
J6	GND	K21	A29
J7	PSDAMUX/PGPL5	K22	A28
J8	BADDR27	L2	HA12
J9	V _{DD}	L3	HA14
J10	CLKIN	L4	HA11
J11	BM2/TC2/BNKSEL2	L5	V _{DDH}
J12	DBG	L6	V _{DDH}
J13	V _{DD}	L7	BADDR28
J14	GND	L8	IRQ5/BADDR29
J15	V _{DD}	L9	GND
J16	TT3/CS6	L10	GND
J17	PSDA10/PGPL0	L14	GND
J18	BCTL1/CS5	L15	V _{DDH}
J19	GPIO23/TDM0TDAT/IRQ13	L16	GND
J20	GND	L17	GND
J21	GPIO25/TDM0RCLK/IRQ15	L18	CS3
J22	A30	L19	V _{DDH}
K2	HA15	L20	A27
K3	HA21	L21	A25
K4	HA16	L22	A22
K5	PWE3/PSDDQM3/PBS3	M2	HD28
K6	PWE1/PSDDQM1/PBS1	M3	HD31
K7	POE/PSDRAS/PGPL2	M4	V _{DDH}
K8	IRQ2/BADDR30	M5	GND
K9	Reserved	M6	GND
K10	GND	M7	V _{DDH}
K11	GND	M8	V _{DD}
K12	GND	M9	V _{DDH}
K13	GND	M10	GND
K14	CLKOUT	M14	GND
M15	V _{DDH}	P12	V _{CCSYN}
M16	HBRST	P13	GND
M17	V _{DDH}	P14	GND
M18	V _{DDH}	P15	TA
M19	GND	P16	BR
M20	V _{DDH}	P17	TEA

Table 1. MSC8126 Signal Listing by Ball Designator (continued)

ssignments

Des.	Signal Name	Des.	Signal Name
M21	A24	P18	PSDVAL
M22	A21	P19	DP0/DREQ1/EXT_BR2
N2	HD26	P20	V _{DDH}
N3	HD30	P21	GND
N4	HD29	P22	A19
N5	HD24	R2	HD18
N6	PWE2/PSDDQM2/PBS2	R3	V _{DDH}
N7	V _{DDH}	R4	GND
N8	HWBS0/HDBS0/HWBE0/HDBE0	R5	HD22
N9	HBCS	R6	HWBS6/HDBS6/HWBE6/HDBE6/PWE6/PSDDQM6/PBS6
N10	GND	R7	HWBS4/HDBS4/HWBE4/HDBE4/PWE4/PSDDQM4/PBS4
N14	GND	R8	TSZ1
N15	HRDS/HRW/HRDE	R9	TSZ3
N16	BG	R10	IRQ1/GBL
N17	HCS	R11	V _{DD}
N18	CS0	R12	V _{DD}
N19	PSDWE/PGPL1	R13	V _{DD}
N20	GPIO26/TDM0RDAT	R14	TT0/HA7
N21	A23	R15	IRQ7/DP7/DREQ4
N22	A20	R16	IRQ6/DP6/DREQ3
P2	HD20	R17	IRQ3/DP3/DREQ2/EXT_BR3
P3	HD27	R18	TS
P4	HD25	R19	IRQ2/DP2/DACK2/EXT_DBG2
P5	HD23	R20	A17
P6	HWBS3/HDBS3/HWBE3/HDBE3	R21	A18
P7	HWBS2/HDBS2/HWBE2/HDBE2	R22	A16
P8	HWBS1/HDBS1/HWBE1/HDBE1	T2	HD17
P9	HCLKIN	Т3	HD21
P10	GND	T4	HD1/DSISYNC
P11	GND _{SYN}	T5	HD0/SWTE
Т6	HWBS7/HDBS7/HWBE7/HDBE7/PWE7/PSDDQM7/PBS7	U21	A12
T7	HWBS5/HDBS5/HWBE5/HDBE5/PWE5/PSDDQM5/PBS5	U22	A13
Т8	TSZ0	V2	HD3/MODCK1
Т9	TSZ2	V3	V _{DDH}
T10	TBST	V4	GND
T11	V _{DD}	V5	D0
T12	D16	V6	D1
T13	Π1	V7	D4
T14	D21	V8	D5

Table 1. MSC8126 Signal Listing by Ball Designator (continued)

Des.	Signal Name	Des.	Signal Name
Y6	V _{DD}	AA21	Α2
Y7	HD60/D60/ETHCOL/reserved	AA22	A3
Y8	HD58/D58/ETHMDC	AB2	GND
Y9	GND	AB3	HD13
Y10	V _{DDH}	AB4	HD11
Y11	HD51/D51	AB5	HD8
Y12	GND	AB6	HD62/D62
Y13	V _{DDH}	AB7	HD61/D61
Y14	HD43/D43/ETHRXD3/reserved	AB8	HD57/D57/ETHRX_ER
Y15	GND	AB9	HD56/D56/ETHRX_DV/ETHCRS_DV
Y16	V _{DDH}	AB10	HD55/D55/ETHTX_ER/reserved
Y17	GND	AB11	HD53/D53
Y18	HD37/D37/reserved	AB12	HD50/D50
Y19	HD34/D34/reserved	AB13	HD49/D49/ETHTXD3/reserved
Y20	V _{DDH}	AB14	HD48/D48/ETHTXD2/reserved
Y21	A4	AB15	HD47/D47/ETHTXD1
Y22	A5	AB16	HD45/D45
AA2	V _{DD}	AB17	HD44/D44
AA3	HD14	AB18	HD41/D41/ETHRXD1
AA4	HD12	AB19	HD39/D39/reserved
AA5	HD10	AB20	HD36/D36/reserved
AA6	HD63/D63	AB21	A1
AA7	HD59/D59/ETHMDIO	AB22	V _{DD}
AA8	GND		

Table 1. MSC8126 Signal Listing by Ball Designator (continued)

Electrical Characteristics

This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. For additional information, see the *MSC8126 Reference Manual*.

2.1 Maximum Ratings

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DD}).

In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification never occurs in the same device with a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Table 2 describes the maximum electrical ratings for the MSC8126.

Table 2. Absolute Maxi	mum Ratings
------------------------	-------------

Rating	Symbol	Value	Unit	
Core and PLL supply voltage	V _{DD}	-0.2 to 1.6	V	
I/O supply voltage	V _{DDH}	-0.2 to 4.0	V	
Input voltage	V _{IN}	-0.2 to 4.0	V	
Maximum operating temperature: • 400 MHz • 500 MHz	Тյ	105 90	э С	
Minimum operating temperature • 400 MHz • 500 MHz	Т _Ј	40 0	℃ ℃	
Storage temperature range	T _{STG}	-55 to +150	°C	
 Functional operating conditions are given in Table 3. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the listed limits may affect device reliability or cause permapent damage. 				

3. Section 3.5, Thermal Considerations includes a formula for computing the chip junction temperature (T₁).

rical Characteristics

2.2 Recommended Operating Conditions

Table 3 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed.

Rating	Symbol	Value	Unit
Core and PLL supply voltage: • Standard — 400 MHz — 500 MHz • Reduced (300 and 400 MHz)	V _{DD} V _{CCSYN}	1.14 to 1.26 1.16 to 1.24 1.07 to 1.13	V V V
I/O supply voltage	V _{DDH}	3.135 to 3.465	V
Input voltage	V _{IN}	–0.2 to V _{DDH} +0.2	V
Operating temperature range: • Standard • Extended	T _J TJ	0 to 90 –40 to 105	℃ ℃

Table 3. Recommended	Operating Conditions
----------------------	-----------------------------

2.3 Thermal Characteristics

Table 4 describes thermal characteristics of the MSC8126 for the FC-PBGA packages.

	Characteristic		Symbol	FC-F 20 × 2		
				Natural Convection	200 ft/min (1 m/s) airflow	Unit
Junction-to	o-an	nbient ^{1, 2}	R _{θJA}	26	21	°C/W
Junction-to-ambient, four-layer board ^{1, 3}		R _{θJA}	19	15	°C/W	
Junction-to-board (bottom) ⁴		R _{θJB}	9		°C/W	
Junction-to-case ⁵		R _{θJC}	0.9		°C/W	
Junction-to-package-top ⁶		Ψ _{JT}	1		°C/W	
Notes:	 Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal. Per JEDEC JESD51-6 with the board horizontal. Thermal resistance between the die and the printed circuit board per JEDEC JESD 51-8. Board temperature is measured on the top surface of the board near the package. 				ite (board) nal easured on	
	5.	Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1)			883 Method	

Thermal characterization parameter indicating the temperature difference between package top and the junction temperature

Table 4. Thermal Characteristics for the MSC8126

Section 3.5, *Thermal Considerations* provides a detailed explanation of these characteristics.

6.

per JEDEC JESD51-2.

Electrical Characteristics

2.4 DC Electrical Characteristics

This section describes the DC electrical characteristics for the MSC8126. The measurements in **Table 5** assume the following system conditions:

- $T_A = 25 \ ^{\circ}C$
- V_{DD} =
 - 400 MHz = 1.14–1.26 V_{DC}
 - 500 MHz = 1.16–1.24 V_{DC}
- $V_{\text{DDH}} = 3.3 \ V \pm 5\% \ V_{DC}$
- GND = $0 V_{DC}$

Note: The leakage current is measured for nominal V_{DDH} and V_{DD} .

Table 5. DC Electrical Characteristics

Characteristic	Symbol	Min	Typical	Max	Unit
Input high voltage ¹ , all inputs except CLKIN	V _{IH}	2.0	_	3.465	V
Input low voltage ¹	V _{IL}	GND	0	0.8	V
CLKIN input high voltage	V _{IHC}	2.4	3.0	3.465	V
CLKIN input low voltage	V _{ILC}	GND	0	0.8	V
Input leakage current, V _{IN} = V _{DDH}	I _{IN}	-1.0	0.09	1	μA
Tri-state (high impedance off state) leakage current, $V_{IN} = V_{DDH}$	I _{OZ}	-1.0	0.09	1	μA
Signal low input current, $V_{IL} = 0.8 V^2$	۱ _L	-1.0	0.09	1	μA
Signal high input current, $V_{IH} = 2.0 V^2$	Ι _Η	-1.0	0.09	1	μA
Output high voltage, I _{OH} = -2 mA, except open drain pins	V _{OH}	2.0	3.0	—	V
Output low voltage, I _{OL} = 3.2 mA	V _{OL}	—	0	0.4	V
V _{CCSYN} PLL supply current	IVCCSYN	_	2	4	mA
Internal supply current: Wait mode Stop mode 	I _{DDW} I _{DDS}		375 ³ 290 ³		mA mA
Typical power 400 MHz at 1.2 V ⁴	Р	_	1.15	_	W

2. Not tested. Guaranteed by design.

3. Measured for 1.2 V core at 25°C junction temperature.

4. The typical power values were measured using an EFR code with the device running at a junction temperature of 25°C. No peripherals were enabled and the ICache was not enabled. The source code was optimized to use all the ALUs and AGUs and all four cores. It was created using CodeWarrior[®] 2.5. These values are provided as examples only. Power consumption is application dependent and varies widely. To assure proper board design with regard to thermal dissipation and maintaining proper operating temperatures, evaluate power consumption for your application and use the design guidelines in Chapter 4 of this document and in *MSC8102*, *MSC8122*, and *MSC8126 Thermal Management Design Guidelines* (AN2601).

In all cases, the power-up sequence must follow the guidelines shown in Figure 8.

Figure 8. Power-Up Sequence for V_{DDH} and V_{DD}/V_{CCSYN}

The following rules apply:

- 1. During time interval A, V_{DDH} should always be equal to or less than the V_{DD}/V_{CCSYN} voltage level. The duration of interval A should be kept below 10 ms.
- 2. The duration of timing interval B should be kept as small as possible and less than 10 ms.

2.5.3 Clock and Timing Signals

The following sections include a description of clock signal characteristics. **Table 7** shows the maximum frequency values for internal (Core, Reference, Bus, and DSI) and external (CLKIN and CLKOUT) clocks. The user must ensure that maximum frequency values are not exceeded.

Table 7.	Maximum	Frequencies
----------	---------	-------------

Characteristic	Maximum in MHz
Core frequency	400/500
Reference frequency (REFCLK)	133/166
Internal bus frequency (BLCK)	133/166
DSI clock frequency (HCLKIN)	HCLKIN ≤ (min{100 MHz, CLKOUT})
External clock frequency (CLKIN or CLKOUT)	133/166

Table	8.	Clock	Frequer	ncies
IUNIO	··	01001	1109400	

Characteristics	Symbol	400 MH	z Device	500 MHz Device		
Characteristics	Symbol	Min	Max	Min	Max	
CLKIN frequency	F _{CLKIN}	20	133.3	20	166.7	
BCLK frequency	F _{BCLK}	40	133.3	40	166.7	
Reference clock (REFCLK) frequency	F _{REFCLK}	40	133.3	40	166.7	
Output clock (CLKOUT) frequency	F _{CLKOUT}	40	133.3	40	166.7	
SC140 core clock frequency	F _{CORE}	200	400	200	500	
Note: The rise and fall time of external clocks should be 5 ns maximum						

rical Characteristics

		Value fo	Value for Bus Speed in MHz			
No.	Characteristic	Ref = CL	KIN	Ref = CLKOUT	Units	
		133	166	133		
31	PSDVAL/TEA/TA max delay from the 50% level of the REFCLK rising edge	4.9	4.9	5.8	ns	
32a	Address bus max delay from the 50% level of the REFCLK rising edge Multi-master mode (SIUBCR[EBM] = 1) 	5.5	5.5	6.4	ns	
	• Single-master mode (SIUBCR[EBM] = 0)	4.2	3.9	5.1	ns	
32b	Address attributes: TT[0–1]/TBST/TSZ/GBL max delay from the 50% level of the REFCLK rising edge	5.1	5.1	6.0	ns	
32c	Address attributes: TT[2–4]/TC max delay from the 50% level of the REFCLK rising edge	5.7	5.7	6.6	ns	
32d	BADDR max delay from the 50% level of the REFCLK rising edge	4.2	4.2	5.1	ns	
33a	Data bus max delay from the 50% level of the REFCLK rising edge Data-pipeline mode Non-pipeline mode 	3.9 6.1	3.7 6.1	4.8 7.0	ns ns	
33b	DP max delay from the 50% level of the REFCLK rising edge • Data-pipeline mode • Non-pipeline mode	5.3 6.5	5.3 6.5	6.2 7.4	ns ns	
34	Memory controller signals/ALE/CS[0–4] max delay from the 50% level of the REFCLK rising edge	4.2	3.9	5.1	ns	
35a	DBG/BG/BR/DBB max delay from the 50% level of the REFCLK rising edge	4.7	4.7	5.6	ns	
35b	AACK/ABB/TS/CS[5–7] max delay from the 50% level of the REFCLK rising edge	4.5	4.5	5.4	ns	
Notes:	 Values are measured from the 50% level of the REFCLK rising edge to the 50% signal level and assume a 20 pF load except where otherwise specified. Except for specification 30, which is specified for a 10 pF load, all timings in this table are specified for a 20 pF load. Decreasing the load results in a timing decrease at the rate of 0.3 ns per 5 pF decrease in load. Increasing the load results in a timing increase at the rate of 0.15 ns per 5 pF increase in load. The maximum bus frequency depends on the mode: In 60x-compatible mode connected to another MSC8126 device, the frequency is determined by adding the input and output longest timing values, which results in the total delay for 20 pF output capacitance. You must also account for other influences that can affect timing, such as on-board clock skews, on-board noise delays, and so on. In single-master mode, the frequency depends on the timing of the devices connected to the MSC8126. To achieve maximum performance on the bus in single-master mode, disable the DBB signal by writing a 1 to the SIUMCR[BDD] bit. See the SIU chapter in the <i>MSC8122 Reference Manual</i> for details. 					

Table 15. AC Timing for SIU Outputs (continued)

2.5.5.3 DMA Data Transfers

Table 17 describes the DMA signal timing.

No.	Characteristic	Ref =	CLKIN	Ref = CLKOUT (1.2 V only)		Units
		Min	Max	Min	Max	
37	DREQ set-up time before the 50% level of the falling edge of REFCLK	5.0	—	5.0	—	ns
38	DREQ hold time after the 50% level of the falling edge of REFCLK 0.5 - 0.5			0.5	—	ns
39	DONE set-up time before the 50% level of the rising edge of REFCLK 5.0 — 5.0 —		ns			
40	DONE hold time after the 50% level of the rising edge of REFCLK 0.5 — 0.5 —		ns			
41	DACK/DRACK/DONE delay after the 50% level of the REFCLK rising edge	0.5	7.5	0.5	8.4	ns

Table 17. DMA Signals

The DREQ signal is synchronized with REFCLK. To achieve fast response, a synchronized peripheral should assert DREQ according to the timings in **Table 17**. Figure 13 shows synchronous peripheral interaction.

Figure 13. DMA Signals

2.5.6 DSI Timing

The timings in the following sections are based on a 20 pF capacitive load.

2.5.6.1 DSI Asynchronous Mode

Table 18. DSI Asynchronous Mode Timing

No.	Characteristics	Min	Max	Unit
100	Attributes ¹ set-up time before strobe (HWBS[n]) assertion	1.5	—	ns
101	Attributes ¹ hold time after data strobe deassertion	1.3	—	ns
102	 Read/Write data strobe deassertion width: DCR[HTAAD] = 1 Consecutive access to the same DSI Different device with DCR[HTADT] = 01 Different device with DCR[HTADT] = 10 Different device with DCR[HTADT] = 11 DCR[HTAAD] = 0 	$1.8 + T_{REFCLK}$ $5 + T_{REFCLK}$ $5 + (1.5 \times T_{REFCLK})$ $5 + (2.5 \times T_{REFCLK})$ $1.8 + T_{REFCLK}$	_	ns ns ns ns ns
103	Read data strobe deassertion to output data high impedance	—	8.5	ns
104	Read data strobe assertion to output data active from high impedance	2.0	—	ns
105	Output data hold time after read data strobe deassertion	2.2	—	ns
106	Read/Write data strobe assertion to HTA active from high impedance	2.2	—	ns
107	Output data valid to HTA assertion	3.2	—	ns
108	 Read/Write data strobe assertion to HTA valid² 1.1 V core 1.2 V core 		7.4 6.7	ns ns
109	(DCR[HTAAD] = 0, HTA at end of access released at logic 0)	_	0.5	115
110	Read/Write data strobe deassertion to output $\overline{\text{HTA}}$ deassertion. (DCR[HTAAD] = 1, $\overline{\text{HTA}}$ at end of access released at logic 1)	_	6.5	ns
111	Read/Write data strobe deassertion to output HTA high impedance. (DCR[HTAAD] = 1, HTA at end of access released at logic 1 • DCR[HTADT] = 01 • DCR[HTADT] = 10 • DCR[HTADT] = 11	_	5 + T _{REFCLK} 5 + (1.5 × T _{REFCLK}) 5 + (2.5 × T _{REFCLK})	ns ns ns
112	Read/Write data strobe assertion width	1.8 + T _{REFCLK}	—	ns
201	Host data input set-up time before write data strobe deassertion	1.0	—	ns
202	 Host data input hold time after write data strobe deassertion 1.1 V core 1.2 V core 	1.7 1.5		ns ns
Notes:	 Attributes refers to the following signals: HCS, HA[11–29], HCID[0– This specification is tested in dual-strobe mode. Timing in single-str All values listed in this table are tested or guaranteed by design. 	4], HDST, HRW, HRDS, obe mode is guaranteed	and HWBSn. by design.	

Figure 14 shows DSI asynchronous read signals timing.

Notes: 1. Used for single-strobe mode access.

- **2.** Used for dual-strobe mode access.
- **3.** HTA released at logic 0 (DCR[HTAAD] = 0) at end of access; used with pull-down implementation.
- 4. HTA released at logic 1 (DCR[HTAAD] = 1) at end of access; used with pull-up implementation.

Figure 14. Asynchronous Single- and Dual-Strobe Modes Read Timing Diagram

Figure 15 shows DSI asynchronous write signals timing.

Notes: 1. Used for single-strobe mode access.

- 2. Used for dual-strobe mode access.
- 3. HTA released at logic 0 (DCR[HTAAD] = 0) at end of access; used with pull-down implementation.
- 4. HTA released at logic 1 (DCR[HTAAD] = 1) at end of access; used with pull-up implementation.

Figure 15. Asynchronous Single- and Dual-Strobe Modes Write Timing Diagram

Figure 16 shows DSI asynchronous broadcast write signals timing.

Figure 16. Asynchronous Broadcast Write Timing Diagram

2.5.10.2 MII Mode Timing

No.	Characteristics	Min	Max	Unit
803	ETHRX_DV, ETHRXD[0–3], ETHRX_ER to ETHRX_CLK rising edge set-up time	3.5	—	ns
804	ETHRX_CLK rising edge to ETHRX_DV, ETHRXD[0–3], ETHRX_ER hold time	3.5		ns
805	ETHTX_CLK to ETHTX_EN, ETHTXD[0–3], ETHTX_ER output delay			
	• 1.1 V core	1	14.6	ns
	• 1.2 V core	1	12.6	ns

Figure 24. MII Mode Signal Timing

2.5.10.3 RMII Mode

No	Characteristics		1.1 V Core		1.2 V Core	
		Min	Max	Min	Max	Unit
806	ETHTX_EN,ETHRXD[0–1], ETHCRS_DV, ETHRX_ER to ETHREF_CLK rising edge set-up time	1.6	_	2	_	ns
807	ETHREF_CLK rising edge to ETHRXD[0–1], ETHCRS_DV, ETHRX_ER hold time	1.6	—	1.6	—	ns
811	ETHREF_CLK rising edge to ETHTXD[0–1], ETHTX_EN output delay.	3	12.5	3	11	ns

Figure 25. RMII Mode Signal Timing

ware Design Considerations

3 Hardware Design Considerations

The following sections discuss areas to consider when the MSC8126 device is designed into a system.

3.1 Start-up Sequencing Recommendations

Use the following guidelines for start-up and power-down sequences:

- Assert **PORESET** and **TRST** before applying power and keep the signals driven low until the power reaches the required minimum power levels. This can be implemented via weak pull-down resistors.
- CLKIN can be held low or allowed to toggle during the beginning of the power-up sequence. However, CLKIN must start toggling before the deassertion of PORESET and after both power supplies have reached nominal voltage levels.
- If possible, bring up V_{DD}/V_{CCSYN} and V_{DDH} together. If it is not possible, raise V_{DD}/V_{CCSYN} first and then bring up V_{DDH}. V_{DDH} should not exceed V_{DD}/V_{CCSYN} until V_{DD}/V_{CCSYN} reaches its nominal voltage level. Similarly, bring both voltage levels down together. If that is not possible reverse the power-up sequence, with V_{DDH} going down first and then V_{DD}/V_{CCSYN}.
- **Note:** This recommended power sequencing for the MSC8126 is different from the MSC8102. See Section 2.5.2 for start-up timing specifications.

External voltage applied to any input line must not exceed the I/O supply V_{DDH} by more than 0.8 V at any time, including during power-up. Some designs require pull-up voltages applied to selected input lines during power-up for configuration purposes. This is an acceptable exception to the rule. However, each such input can draw up to 80 mA per input pin per device in the system during start-up.

During the power-up sequence, if V_{DD} rises before V_{DDH} (see **Figure 6**), current can pass from the V_{DD} supply through the device ESD protection circuits to the V_{DDH} supply. The ESD protection diode can allow this to occur when V_{DD} exceeds V_{DDH} by more than 0.8 V. Design the power supply to prevent or minimize this effect using one of the following optional methods:

- Never allow V_{DD} to exceed $V_{DDH} + 0.8V$.
- Design the V_{DDH} supply to prevent reverse current flow by adding a minimum 10 Ω resistor to GND to limit the current. Such a design yields an initial V_{DDH} level of $V_{DD} 0.8$ V before it is enabled.

After power-up, V_{DDH} must not exceed V_{DD}/V_{CCSYN} by more than 2.6 V.

3.2 **Power Supply Design Considerations**

When used as a drop-in replacement in MSC8102 applications or when implementing a new design, use the guidelines described in *Migrating Designs from the MSC8102 to the MSC8122* (AN2716) and the *MSC8126 Design Checklist* (AN3374 for optimal system performance. *MSC8122 and MSC8126 Power Circuit Design Recommendations and Examples* (AN2937) provides detailed design information. See **Section 2.5.2** for start-up timing specifications.

Figure 33 shows the recommended power decoupling circuit for the core power supply. The voltage regulator and the decoupling capacitors should supply the required device current without any drop in voltage on the device pins. The voltage on the package pins should not drop below the minimum specified voltage level even for a very short spikes. This can be achieved by using the following guidelines:

• For the core supply, use a voltage regulator rated at 1.2 V with nominal rating of at least 3 A. This rating does not reflect actual average current draw, but is recommended because it resists changes imposed by transient spikes and has better voltage recovery time than supplies with lower current ratings.

- The maximum load on CLKOUT must not exceed 10 pF.
- Use a zero-delay buffer with a jitter less than 0.3 ns.
- All clock modes are valid in this clock scheme.

Note: See the Clock chapter in the MSC8122 Reference Manual for details.

- If the 60x-compatible system bus is not used and SIUMCR[PBSE] is set, PPBS can be disconnected. Otherwise, it should be pulled up.
- The following signals: SWTE, DSISYNC, DSI64, MODCK[1–2], CNFGS, CHIPID[0–3], RSTCONF and BM[0–2] are
 used to configure the MSC8126 and are sampled on the deassertion of the PORESET signal. Therefore, they should
 be tied to GND or V_{DDH} or through a pull-down or a pull-up resistor until the deassertion of the PORESET signal.
- When they are used, INT_OUT (if SIUMCR[INTODC] is cleared), NMI_OUT, and IRQxx (if not full drive) signals must be pulled up.
- When the Ethernet controller is enabled and the SMII mode is selected, GPIO10 and GPIO14 must not be connected externally to any signal line.
- **Note:** For details on configuration, see the *MSC8126 User's Guide* and *MSC8126 Reference Manual*. For additional information, refer to the *MSC8126 Design Checklist* (AN2903).

3.4 External SDRAM Selection

The external bus speed implemented in a system determines the speed of the SDRAM used on that bus. However, because of differences in timing characteristics among various SDRAM manufacturers, you may have use a faster speed rated SDRAM to assure efficient data transfer across the bus. For example, for 166 MHz operation, you may have to use 183 or 200 MHz SDRAM. Always perform a detailed timing analysis using the MSC8126 bus timing values and the manufacturer specifications for the SDRAM to ensure correct operation within your system design. The output delay listed in SDRAM specifications is usually given for a load of 30 pF. Scale the number to your specific board load using the typical scaling number provided by the SDRAM manufacturer.

ring Information

3.5 Thermal Considerations

An estimation of the chip-junction temperature, T_J, in °C can be obtained from the following:

$$T_J = T_A + (R_{\bigcup JA} \times P_D)$$
 Eqn. 1

where

$$\begin{split} T_A &= \text{ambient temperature near the package (°C)} \\ R_{\Theta JA} &= \text{junction-to-ambient thermal resistance (°C/W)} \\ P_D &= P_{INT} + P_{I/O} = \text{power dissipation in the package (W)} \\ P_{INT} &= I_{DD} \times V_{DD} = \text{internal power dissipation (W)} \\ P_{I/O} &= \text{power dissipated from device on output pins (W)} \end{split}$$

The power dissipation values for the MSC8126 are listed in **Table 2-3**. The ambient temperature for the device is the air temperature in the immediate vicinity that would cool the device. The junction-to-ambient thermal resistances are JEDEC standard values that provide a quick and easy estimation of thermal performance. There are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. The value that more closely approximates a specific application depends on the power dissipated by other components on the printed circuit board (PCB). The value obtained using a single layer board is appropriate for tightly packed PCB configurations. The value obtained using a board with internal planes is more appropriate for boards with low power dissipation (less than 0.02 W/cm² with natural convection) and well separated components. Based on an estimation of junction temperature using this technique, determine whether a more detailed thermal analysis is required. Standard thermal management techniques can be used to maintain the device thermal junction temperature below its maximum. If T_J appears to be too high, either lower the ambient temperature or the power dissipation of the chip. You can verify the junction temperature by measuring the case temperature using a small diameter thermocouple (40 gauge is recommended) or an infrared temperature sensor on a spot on the device case that is painted black. The MSC8126 device case surface is too shiny (low emissivity) to yield an accurate infrared temperature measurement. Use the following equation to determine T_J:

$$T_J = T_T + (\theta_{JA} \times P_D)$$
 Eqn. 2

where

 T_T = thermocouple (or infrared) temperature on top of the package (°C)

 θ_{JA} = thermal characterization parameter (°C/W)

 P_D = power dissipation in the package (W)

Note: See MSC8102, MSC8122, and MSC8126 Thermal Management Design Guidelines (AN2601/D).

4 Ordering Information

Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.

Part	Package Type	Spheres	Core Voltage	Operating Temperature	Core Frequency (MHz)	Order Number
MSC8126	Flip Chip Plastic Ball Grid Array (FC-PBGA)	Lead-free	1.2 V	-40° to 105°C	400	MSC8126TVT6400
		Lead-bearing				MSC8126TMP6400
		Lead-free		0° to 90°C	500	MSC8126VT8000
		Lead-bearing				MSC8126MP8000

5 Package Information

Notes: 1. All dimensions in millimeters.

2. Dimensioning and tolerancing per ASME Y14.5M–1994.

3. Features are symmetrical about the package center lines unless dimensioned otherwise.

A Maximum solder ball diameter measured parallel to Datum A.

Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

Parallelism measurement shall exclude any effect of mark on top surface of package.

Capacitors may not be present on all devices.

Caution must be taken not to short capacitors or exposed metal capacitor pads on package top.

FC CBGA (Ceramic) package code: 5238. FC PBGA (Plastic) package code: 5263.

10.Pin 1 indicator can be in the form of number 1 marking or an "L" shape marking.

Figure 35. MSC8126 Mechanical Information, 431-pin FC-PBGA Package

6 **Product Documentation**

- *MSC8126 Technical Data Sheet* (MSC8126). Details the signals, AC/DC characteristics, clock signal characteristics, package and pinout, and electrical design considerations of the MSC8126 device.
- *MSC8126 Reference Manual* (MSC8126RM). Includes functional descriptions of the extended cores and all the internal subsystems including configuration and programming information.
- Application Notes. Cover various programming topics related to the StarCore DSP core and the MSC8126 device.
- *SC140 DSP Core Reference Manual*. Covers the SC140 core architecture, control registers, clock registers, program control, and instruction set.

son mistory

7 Revision History

Table 31 provides a revision history for this data sheet.

Table 31. Document Revision History

Revision	Date	Description
0	May 2004	Initial release.
1	Jun. 2004	• Updated timing number 32b.
		Updated DSI timing specifications.
2	Sep 2004	 New orderable parts added with other core voltage and temperature options.
		Updated thermal characteristics.
		 In Table 2-14, removed references to 30 pF. Design guidelines and layout recommendations undeted
2	Nov 2004	Design guidennes and layout recommendations updated.
3	NOV. 2004	 Added 500 MHz core and 100 MHz bus speed options. Definitions of GPIO[27-28] undated
		 Bus, TDM, and GPIO timing updated. I²C timing changed to GPIO timing.
		 GPIO[27–28] connections updated. MWBEn replaced with correct name HWBEn.
		• Design guidelines update.
4	Jan. 2005	Package type changed to FC-PBGA for all frequencies.
		• Low-voltage 300 MHz power changed to 1.1 V.
		HRESET and SRESET definitions updated.
		• Undershoot and overshoot values added for V _{DDH} .
		 Kimi unning updated. Design guidelines undated and reorganized
5	May 2005	Multiple AC timing specifications undated
6	May 2005	Multiple AC timing specifications updated.
7	Jul. 2005	Multiple AC timing specifications updated.
8	Jul. 2005	AC specification table layout modified.
9	Sep. 2005	ETHTX_EN type and TRST description updated.
		Package drawing updated.
		Clock specifications updated.
		• Start-up sequence updated.
10	Oct 2005	• $V_{DDH} + 10\%$ changed to $V_{DDH} + 8\%$ in Figure 2-1.
		• V_{DDH} +20% changed to V_{DDH} + 17% in Figure 2-1.
11	Apr 2006	• Reset timing updated to reflect actual values in Table 2-11 .
12	Oct. 2006	• Added new timings 17 and 18 for IRQ set time and pulse width in Table 2-13
13	Dec. 2007	• Converted to new data sheet format.
		• Added PLL supply current to Table 5 in Section 2.4.
		• Modified Figure 5 in Section 2.4 to make it clear that the time limits for undershoot referred to values below -0.3 V and not GND
		 Added cross-references between Sections 2.5.2 and Section 3.1 and 3.2.
		Added power-sequence guidelines to Sections 2.5.2.
		Added CLKIN jitter characteristic specifications to Table 9.
		• Added additional guidelines to prevent reverse current to Section 3.1.
		• Added connectivity guidelines for DSI in sliding windows mode to Section 3.3 .
14	May 2008	• Changed V _{IL} maximum and reference value to 0.8 V in Table 5 .
15	Dec 2008	• Clarified the wording of note 2 in Table 15 on p. 24.

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 010 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™], the Freescale logo, CodeWarrior, StarCore, and QUICC Engine are trademarks of Freescale Semiconductor, Inc. RapidIO is a registered trademark of the RapidIO Trade Association. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2004, 2008. All rights reserved.

Document Number: MSC8126 Rev. 15 12/2008

