

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

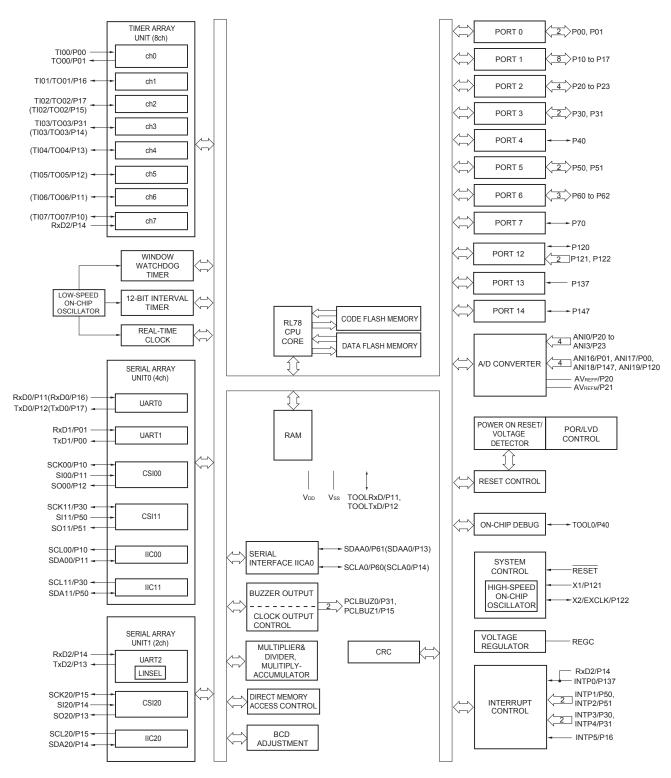
Details

 \sim -

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	13
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 6x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1006easp-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Pin	Package	Data	Fields of	(5/12) Ordering Part Number
count		flash	Application	
48 pins	48-pin plastic	Mounted	A	R5F100GAAFB#V0, R5F100GCAFB#V0, R5F100GDAFB#V0,
	LFQFP (7 \times 7 mm,			R5F100GEAFB#V0, R5F100GFAFB#V0, R5F100GGAFB#V0,
	0.5 mm pitch)			R5F100GHAFB#V0, R5F100GJAFB#V0, R5F100GKAFB#V0,
				R5F100GLAFB#V0
				R5F100GAAFB#X0, R5F100GCAFB#X0, R5F100GDAFB#X0,
				R5F100GEAFB#X0, R5F100GFAFB#X0, R5F100GGAFB#X0,
				R5F100GHAFB#X0, R5F100GJAFB#X0, R5F100GKAFB#X0,
				R5F100GLAFB#X0
			D	R5F100GADFB#V0, R5F100GCDFB#V0, R5F100GDDFB#V0,
				R5F100GEDFB#V0, R5F100GFDFB#V0, R5F100GGDFB#V0,
				R5F100GHDFB#V0, R5F100GJDFB#V0, R5F100GKDFB#V0,
				R5F100GLDFB#V0
				R5F100GADFB#X0, R5F100GCDFB#X0, R5F100GDDFB#X0,
				R5F100GEDFB#X0, R5F100GFDFB#X0, R5F100GGDFB#X0,
				R5F100GHDFB#X0, R5F100GJDFB#X0, R5F100GKDFB#X0,
				R5F100GLDFB#X0
			G	R5F100GAGFB#V0, R5F100GCGFB#V0, R5F100GDGFB#V0,
				R5F100GEGFB#V0, R5F100GFGFB#V0, R5F100GGGFB#V0,
				R5F100GHGFB#V0, R5F100GJGFB#V0
				R5F100GAGFB#X0, R5F100GCGFB#X0, R5F100GDGFB#X0,
				R5F100GEGFB#X0, R5F100GFGFB#X0, R5F100GGGFB#X0,
				R5F100GHGFB#X0, R5F100GJGFB#X0
		Not	А	R5F101GAAFB#V0, R5F101GCAFB#V0, R5F101GDAFB#V0,
		mounted		R5F101GEAFB#V0, R5F101GFAFB#V0, R5F101GGAFB#V0,
				R5F101GHAFB#V0, R5F101GJAFB#V0, R5F101GKAFB#V0,
				R5F101GLAFB#V0
				R5F101GAAFB#X0, R5F101GCAFB#X0, R5F101GDAFB#X0,
				R5F101GEAFB#X0, R5F101GFAFB#X0, R5F101GGAFB#X0,
				R5F101GHAFB#X0, R5F101GJAFB#X0, R5F101GKAFB#X0,
				R5F101GLAFB#X0
			D	R5F101GADFB#V0, R5F101GCDFB#V0, R5F101GDDFB#V0,
				R5F101GEDFB#V0, R5F101GFDFB#V0, R5F101GGDFB#V0,
				R5F101GHDFB#V0, R5F101GJDFB#V0, R5F101GKDFB#V0,
				R5F101GLDFB#V0
				R5F101GADFB#X0, R5F101GCDFB#X0, R5F101GDDFB#X0,
				R5F101GEDFB#X0, R5F101GFDFB#X0, R5F101GGDFB#X0,
				R5F101GHDFB#X0, R5F101GJDFB#X0, R5F101GKDFB#X0,
				R5F101GLDFB#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.5.5 32-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz

2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: $1.8~V \leq V_{\text{DD}} \leq 5.5~V @\,1$ MHz to 8 MHz

LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz

- **Remarks 1.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT					0.62	1.86	mA
current	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.62	1.86	mA
			mode	fiH = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.50	1.45	mA
					V _{DD} = 3.0 V		0.50	1.45	mA
				fiH = 16 MHz ^{Note 4}	$V_{DD} = 5.0 V$		0.44	1.11	mA
					$V_{DD} = 3.0 V$		0.44	1.11	
			10//						mA
			LS (low- speed main) mode ^{Note 7}	$f_{IH} = 8 MHz^{Note 4}$	V _{DD} = 3.0 V V _{DD} = 2.0 V		290 290	620 620	μΑ μΑ
			LV (low-	file = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		440	680	μA
		voltage main) mode		V _{DD} = 2.0 V		440	680	μA	
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA
			speed main) mode ^{Note 7}	$V_{DD} = 5.0 V$	Resonator connection		0.48	1.28	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.48	1.28	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	0.63	mA
		$V_{DD} = 5.0 V$	Resonator connection		0.28	0.71	mA		
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.63	mA
			$V_{DD} = 3.0 \text{ V}$	Resonator connection		0.28	0.71	mA	
			LS (low-	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	360	μA
		speed main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		160	420	μA	
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	360	μA
				V _{DD} = 2.0 V	Resonator connection		160	420	μA
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μA
			clock operation	$T_A = -40^{\circ}C$	Resonator		0.47	0.80	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μA
				$T_A = +25^{\circ}C$	Resonator connection		0.53	0.80	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μA
				$T_A = +50^{\circ}C$	Resonator connection		0.60	2.49	μA
				fs∪B = 32.768 kHz ^{Note 5}	Square wave input	1	0.64	4.03	μA
				$T_A = +70^{\circ}C$	Resonator connection		0.83	4.22	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μA
				$T_{A} = +85^{\circ}C$	Resonator connection		1.28	8.23	μA
	STOP	$T_A = -40^{\circ}C$				0.19	0.52	μA	
	mode ^{Note 8}	T _A = +25°C			1	0.25	0.52	μΑ	
		T _A = +50°C				0.32	2.21	μA	
	$T_A = +70^{\circ}C$					0.55	3.94	μA	
		$T_{A} = +85^{\circ}C$				1.00	7.95	μA	

(Notes and Remarks are listed on the next page.)

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}) (1/2)$

Parameter	Symbol			Conditions	-		MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 3}$	Basic	V _{DD} = 5.0 V		2.6		mA
current Note 1		mode	speed main) mode ^{Note 5}		operation	$V_{DD} = 3.0 V$		2.6		mA
					Normal	$V_{DD} = 5.0 V$		6.1	9.5	mA
				operation	$V_{DD} = 3.0 V$		6.1	9.5	mA	
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 V$		4.8	7.4	mA
				operation	$V_{DD} = 3.0 V$		4.8	7.4	mA	
				$f_{IH} = 16 \ MHz^{Note \ 3}$	Normal	$V_{DD} = 5.0 V$		3.5	5.3	mA
					operation	V _{DD} = 3.0 V		3.5	5.3	mA
			LS (low-	$f_{IH} = 8 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 3.0 V$		1.5	2.3	mA
			speed main) mode ^{Note 5}		operation	$V_{DD} = 2.0 V$		1.5	2.3	mA
			LV (low-	$f_{IH} = 4 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 3.0 V$		1.5	2.0	mA
		voltage main) mode		operation	V _{DD} = 2.0 V		1.5	2.0	mA	
			HS (high-	f _{MX} = 20 MHz ^{Note 2} , N	Normal	Square wave input		3.9	6.1	mA
		speed main) mode ^{Note 5}	V _{DD} = 5.0 V	operation	Resonator connection		4.1	6.3	mA	
				f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.9	6.1	mA
			$V_{DD} = 3.0 V$	operation	Resonator connection		4.1	6.3	mA	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.5	3.7	mA
				$V_{DD} = 5.0 V$	operation	Resonator connection		2.5	3.7	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.5	3.7	mA
			$V_{DD} = 3.0 V$	operation	Resonator connection		2.5	3.7	mA	
			$\label{eq:speed_main} \begin{array}{l} \text{LS (low-} \\ \text{speed main}) \\ \text{mode}^{\text{Note 5}} \end{array} \qquad \begin{array}{l} \text{f}_{\text{MX}} = 8 \ \text{MHz}^{\text{Note 2}}, \\ \text{V}_{\text{DD}} = 3.0 \ \text{V} \\ \\ \hline \text{f}_{\text{MX}} = 8 \ \text{MHz}^{\text{Note 2}}, \end{array}$	V _{DD} = 3.0 V	Normal	Square wave input		1.4	2.2	mA
					operation	Resonator connection		1.4	2.2	mA
				Normal	Square wave input		1.4	2.2	mA	
				$V_{DD} = 2.0 V$	operation	Resonator connection		1.4	2.2	mA
			Subsystem	fsub = 32.768 kHz	Normal	Square wave input		5.4	6.5	μA
			clock operation	$T_A = -40^{\circ}C$	operation	Resonator connection		5.5	6.6	μA
				fsub = 32.768 kHz	Normal	Square wave input		5.5	6.5	μA
				$T_A = +25^{\circ}C$	operation	Resonator connection		5.6	6.6	μA
				fsub = 32.768 kHz	Normal	Square wave input		5.6	9.4	μA
			$T_{A} = +50^{\circ}C$	operation	Resonator connection		5.7	9.5	μA	
				fsuв = 32.768 kHz	Normal	Square wave input		5.9	12.0	μA
	Not T <i>i</i> fsi	Note 4 $T_A = +70^{\circ}C$		operation	Resonator connection		6.0	12.1	μA	
		fsuв = 32.768 kHz	Normal	Square wave input		6.6	16.3	μA		
			Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		6.7	16.4	μA	

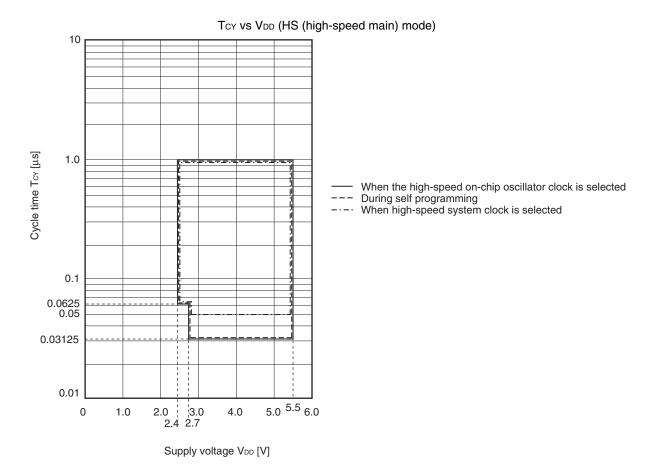
(Notes and Remarks are listed on the next page.)

2.4 AC Characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Items	Symbol		Conditions	;	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main	HS (high-	$2.7V{\leq}V_{DD}{\leq}5.5V$	0.03125		1	μS
instruction execution time)		system clock (fmain)	speed main) mode	$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μS
		operation	LS (low-speed main) mode	$1.8 V \le V_{DD} \le 5.5 V$	0.125		1	μS
			LV (low- voltage main) mode	$1.6 V \le V_{DD} \le 5.5 V$	0.25		1	μS
		Subsystem of operation	clock (fsuв)	$1.8 V \! \le \! V_{DD} \! \le \! 5.5 V$	28.5	30.5	31.3	μS
		In the self	HS (high-	$2.7V{\leq}V_{\text{DD}}{\leq}5.5V$	0.03125		1	μS
		programming mode	speed main) mode	$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μS
			LS (low-speed main) mode	$1.8V\!\leq\!V_{DD}\!\leq\!5.5V$	0.125		1	μS
			LV (low- voltage main) mode	$1.8 V \le V_{DD} \le 5.5 V$	0.25		1	μS
External system clock	fex	$2.7 \text{ V} \leq \text{V}_{DD} \leq$		1	1.0		20.0	MHz
frequency		2.4 V ≤ V _{DD} <			1.0		16.0	MHz
		1.8 V ≤ V _{DD} <			1.0		8.0	MHz
		1.6 V ≤ V _{DD} <			1.0		4.0	MHz
	fexs				32		35	kHz
External system clock input	texh, texl	$2.7 \text{ V} \leq \text{V}_{DD} \leq$	< 5.5 V		24			ns
high-level width, low-level width		2.4 V ≤ V _{DD} <			30			ns
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.4 \text{ V}$			60			ns
		1.6 V ≤ V _{DD} <			120			ns
	texhs, texls				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтıн, tтı∟				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	fтo	HS (high-spe	eed 4.0 V	$\leq EV_{DD0} \leq 5.5 V$			16	MHz
output frequency		main) mode		\leq EV _{DD0} < 4.0 V			8	MHz
			1.8 V	\leq EV _{DD0} < 2.7 V			4	MHz
			1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
		LS (low-spee	ed 1.8 V	$\leq EV_{DD0} \leq 5.5 V$			4	MHz
		main) mode	1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-volta main) mode	age 1.6 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe	eed 4.0 V	$\leq EV_{DD0} \leq 5.5 V$			16	MHz
frequency		main) mode	2.7 V	$\leq EV_{DD0} < 4.0 V$			8	MHz
			1.8 V	\leq EV _{DD0} < 2.7 V			4	MHz
			1.6 V	$\leq EV_{DD0} < 1.8 V$			2	MHz
		LS (low-spee	ed 1.8 V	$\leq EV_{DD0} \leq 5.5 V$			4	MHz
		main) mode	1.6 V	$\leq EV_{DD0} < 1.8 V$			2	MHz
		LV (low-volta	age 1.8 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			4	MHz
		main) mode	1.6 V	\leq EV _{DD0} < 1.8 V			2	MHz
Interrupt input high-level width,	tintн,	INTP0	1.6 V	$\leq V_{\text{DD}} \leq 5.5 \text{ V}$	1			μS
low-level width	tintl	INTP1 to INT	[P11 1.6 V	$\leq EV_{DD0} \leq 5.5 V$	1			μS
Key interrupt input low-level	tкв	KR0 to KR7	1.8 V	$\leq EV_{DD0} \leq 5.5 V$	250			ns
width			1.6 V	$\leq EV_{DD0} < 1.8 V$	1			μS
RESET low-level width	trsl				10			μS

(Note and Remark are listed on the next page.)

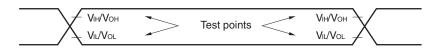


NoteThe following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$ $1.8 V \le EV_{DD0} < 2.7 V : MIN. 125 ns$ $1.6 V \le EV_{DD0} < 1.8 V : MIN. 250 ns$

 $\label{eq:rescaled} \textbf{Remark} \quad \text{f_{MCK}: Timer array unit operation clock frequency}$

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation



R01DS0131EJ0330 Rev.3.30 Mar 31, 2016

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode) (T_A = -40 to +85°C, 1.6 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V)

Parameter	Symbol		Conditions I		h-speed Mode	``	/-speed Mode	``	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1	2.4 V≤ EV		5.5 V		fMCK/6 Note 2		fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		5.3		1.3		0.6	Mbps
		1.8 V ≤ EV	$T_{\text{DD0}} \leq 5.5 \text{ V}$		fмск/6 Note 2		fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		5.3		1.3		0.6	Mbps
		1.7 V ≤ EV	$T_{\text{DD0}} \leq 5.5 \text{ V}$		fMCK/6 Note 2		fмск/6 Note 2		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		5.3		1.3		0.6	Mbps
	1.6 V ≤ E		$T_{\text{DD0}} \leq 5.5 \text{ V}$	_	_		fмск/6 Note 2		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$	_	_		1.3		0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$.

 $2.4~V \leq EV_{\text{DD0}}$ < 2.7 V : MAX. 2.6 Mbps

- $1.8~\text{V} \leq \text{EV}_\text{DD0} < 2.4~\text{V}$: MAX. 1.3 Mbps
- $1.6~V \leq EV_{\text{DD0}} < 1.8~V$: MAX. 0.6 Mbps
- 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

 $\begin{array}{lll} \text{HS (high-speed main) mode:} & 32 \ \text{MHz} \ (2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \\ & 16 \ \text{MHz} \ (2.4 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \\ \text{LS (low-speed main) mode:} & 8 \ \text{MHz} \ (1.8 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \\ \text{LV (low-voltage main) mode:} & 4 \ \text{MHz} \ (1.6 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \\ \end{array}$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low- main)	-voltage Mode	Unit		
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tксү1 \geq 2/fclк	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$	62.5		250		500		ns
			$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	83.3		250		500		ns
SCKp high-/low-level width	tкнı, tк∟ı	$4.0 V \le EV_{DI}$	$4.0~V \leq EV_{DD0} \leq 5.5~V$			tксү1/2 – 50		tксү1/2 – 50		ns
		2.7 V ≤ EV _D	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$			tксү1/2 – 50		tксү1/2 – 50		ns
SIp setup time (to SCKp [↑])	tsik1	$4.0 \ V \le EV_{DI}$	$00 \leq 5.5 \text{ V}$	23		110		110		ns
Note 1		$2.7 \text{ V} \leq EV_{\text{DI}}$	$00 \leq 5.5 \text{ V}$	33		110		110		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksii	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tĸso1	C = 20 pF ^{Not}	te 4		10		10		10	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

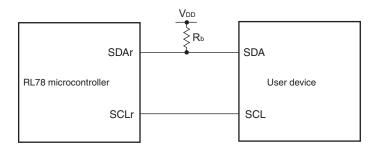
- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

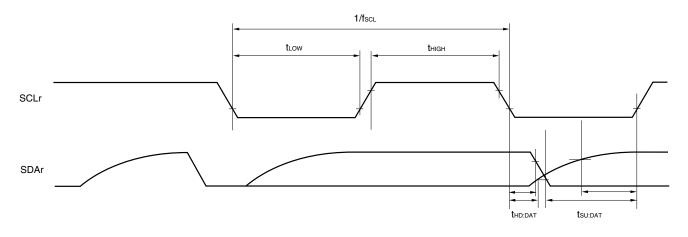
- **Remarks 1.** This value is valid only when CSI00's peripheral I/O redirect function is not used.
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM numbers (g = 1)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00))



Parameter	Symbol	C	Conditions	HS (high main)	•	LS (low main)	r-speed Mode	LV (low- main)	-	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 4/fclk	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	125		500		1000		ns
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	250		500		1000		ns
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	500		500		1000		ns
			$\begin{array}{l} 1.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	1000		1000		1000		ns
			$\begin{array}{l} 1.6 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	—		1000		1000		ns
SCKp high-/low-level width	tкнı, tк∟ı	$4.0 V \le EV_{DI}$	5.5 V	tксү1/2 – 12		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DI}}$	$500 \leq 5.5 \text{ V}$	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DI}}$	$500 \leq 5.5 \text{ V}$	tксү1/2 – 38		tксү1/2 – 50		tксү1/2 – 50		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DI}}$	$500 \leq 5.5 \text{ V}$	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DI}}$	$100 \leq 5.5 \text{ V}$	tксү1/2 – 100		tксү1/2 – 100		tксү1/2 – 100		ns
		$1.6 V \le EV_{DI}$	$500 \leq 5.5 \text{ V}$	—		tксү1/2 – 100		tксү1/2 – 100		ns
SIp setup time	tsik1	$4.0 V \le EV_{DI}$	$100 \leq 5.5 \text{ V}$	44		110		110		ns
(to SCKp↑) Note 1		$2.7 \text{ V} \leq \text{EV}_{\text{DI}}$	$00 \leq 5.5 \text{ V}$	44		110		110		ns
		$2.4 V \le EV_{DI}$	$0.0 \leq 5.5 \text{ V}$	75		110		110		ns
		$1.8 V \le EV_{DI}$	$0.0 \leq 5.5 \text{ V}$	110		110		110		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DI}}$	$0.0 \leq 5.5 \text{ V}$	220		220		220		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DI}}$	5.5 V			220		220		ns
SIp hold time	tksi1	$1.7 \text{ V} \leq \text{EV}_{\text{DI}}$	5.5 V	19		19		19		ns
(from SCKp \uparrow) Note 2		$1.6 \text{ V} \leq \text{EV}_{\text{DI}}$	5.5 V	—		19		19		ns
Delay time from SCKp↓ to SOp	tkso1	$\begin{array}{l} 1.7 \ V \leq EV_{DI} \\ C = 30 \ pF^{\text{Note}} \end{array}$			25		25		25	ns
output Note 3		$1.6 V \le EV_{DI}$ C = 30 pF ^{Note}			_		25		25	ns


(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($T_4 = -40$ to $+85^{\circ}$ C, 1.6 V \leq EVppa = EVpp1 \leq Vpp \leq 5.5 V, Vss = EVssa = EVssa = 0 V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
 h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

2.5.2 Serial interface IICA

(1) I^2C standard mode

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	C	Conditions		h-speed Mode		v-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Standard	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	100	0	100	0	100	kHz
		mode:	$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	0	100	0	100	0	100	kHz
		fclk≥ 1 MHz	$1.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$	0	100	0	100	0	100	kHz
			$1.6 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$	_		0	100	0	100	kHz
Setup time of restart	tsu:sta	2.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.7		4.7		4.7		μs
condition		$1.8 V \le EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.7 V \le EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		1.6 V ≤ EV _{DD0} ≤	5.5 V	-	_	4.7		4.7		μs
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.8 V \le EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V	_	_	4.0		4.0		μs
Hold time when SCLA0 =	t∟ow	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
"L"		$1.8 V \le EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.7 V \le EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V	-	_	4.7		4.7		μs
Hold time when SCLA0 =	tніgн	$2.7 V \le EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
"H"		$1.8 V \le EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.7 V \le EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		1.6 V ≤ EV _{DD0} ≤	≤5.5 V	-	_	4.0		4.0		μs
Data setup time	tsu:dat	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	250		250		250		ns
(reception)		$1.8 V \le EV_{DD0}$	≤ 5.5 V	250		250		250		ns
		$1.7 V \le EV_{DD0}$	≤ 5.5 V	250		250		250		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	≤ 5.5 V	-		250		250		ns
Data hold time	thd:dat	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
(transmission) ^{Note 2}		$1.8 V \le EV_{DD0}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
		$1.7 V \le EV_{DD0}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le$	≤ 5.5 V	-	_	0	3.45	0	3.45	μs
Setup time of stop	tsu:sto	$2.7 \text{ V} \leq EV_{\text{DD0}}$	≤ 5.5 V	4.0		4.0		4.0		μs
condition		$1.8 V \le EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.7 V \le EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	≤ 5.5 V	-		4.0		4.0		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.8 \text{ V} \leq EV_{\text{DD0}}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.7 V \le EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V	-		4.7		4.7		μs

(Notes, Caution and Remark are listed on the next page.)

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		VLVD1	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pu	ulse width	t∟w		300			μs
Detection d	elay time					300	μS

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

This chapter describes the following electrical specifications.

Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$ R5F100xxGxx

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product.
 - 4. Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.

Remark When RL78/G13 is used in the range of $T_A = -40$ to +85°C, see **CHAPTER 2 ELECTRICAL SPECIFICATIONS (T_A = -40 to +85°C)**.

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$)" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	Ар	pplication
	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode Operating voltage range	$\begin{array}{l} \text{HS (high-speed main) mode:} \\ \text{2.7 V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 32 MHz} \\ \text{2.4 V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 16 MHz} \\ \text{LS (low-speed main) mode:} \\ \text{1.8 V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 8 MHz} \\ \text{LV (low-voltage main) mode:} \\ \text{1.6 V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 4 MHz} \end{array}$	HS (high-speed main) mode only: 2.7 V \leq V _{DD} \leq 5.5 V@1 MHz to 32 MHz 2.4 V \leq V _{DD} \leq 5.5 V@1 MHz to 16 MHz
High-speed on-chip oscillator clock accuracy	$\begin{array}{l} 1.8 \ V \leq V_{DD} \leq 5.5 \ V \\ \pm 1.0\% @ \ T_{A} = -20 \ to \ +85^{\circ}C \\ \pm 1.5\% @ \ T_{A} = -40 \ to \ -20^{\circ}C \\ 1.6 \ V \leq V_{DD} < 1.8 \ V \\ \pm 5.0\% @ \ T_{A} = -20 \ to \ +85^{\circ}C \\ \pm 5.5\% @ \ T_{A} = -40 \ to \ -20^{\circ}C \end{array}$	$\begin{array}{l} 2.4 \ V \leq V_{DD} \leq 5.5 \ V \\ \pm 2.0\% @ \ T_{A} = +85 \ to \ +105^{\circ}C \\ \pm 1.0\% @ \ T_{A} = -20 \ to \ +85^{\circ}C \\ \pm 1.5\% @ \ T_{A} = -40 \ to \ -20^{\circ}C \end{array}$
Serial array unit	UART CSI: fcLk/2 (supporting 16 Mbps), fcLk/4 Simplified I ² C communication	UART CSI: fcLk/4 Simplified I ² C communication
IICA	Normal mode Fast mode Fast mode plus	Normal mode Fast mode
Voltage detector	Rise detection voltage: 1.67 V to 4.06 V (14 levels) Fall detection voltage: 1.63 V to 3.98 V (14 levels)	Rise detection voltage: 2.61 V to 4.06 V (8 levels) Fall detection voltage: 2.55 V to 3.98 V (8 levels)

(Remark is listed on the next page.)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$		400 Note1	kHz
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$		100 Note1	kHz
		$C_b = 100 \text{ pF}, \text{ R}_b = 3 \text{k}\Omega$			
Hold time when SCLr = "L"	tLow	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	1200		ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Hold time when SCLr = "H"	tніgн	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	1200		ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, \text{ R}_b = 3 \text{k}\Omega$			
Data setup time (reception)	tsu:dat	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	1/fмск + 220 Note2		ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$	Note2		
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V,$	1/fмск + 580 Note2		ns
		$C_b = 100 \text{ pF}, \text{ R}_b = 3 \text{k}\Omega$	Note2		
Data hold time (transmission)	thd:dat	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	0	770	ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$	0	1420	ns
		$C_b = 100 \text{ pF}, \text{ R}_b = 3 \text{k}\Omega$			

(4) During communication at same potential (simplified l²C mode) (T_A = -40 to +105°C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V)

- Notes 1. The value must also be equal to or less than $f_{MCK}/4$.
 - **2.** Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the normal input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(Remarks are listed on the next page.)

Parameter	Symbol	Conditions	HS (high-spee	Unit	
			MIN.	MAX.	
SIp setup time	tsik1	$4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$	88		ns
(to SCKp↓) ^{Note}		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le EV_{\text{DD0}} < 4.0 \text{ V}, 2.3 \text{ V} \le V_b \le 2.7 \text{ V},$	88		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$	220		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 5.5 \text{ k}\Omega$			
SIp hold time	tksi1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$	38		ns
(from SCKp↓) ^{№te}		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	38		ns
		$C_b = 30 \text{ pF}, \text{R}_b = 2.7 \text{k}\Omega$			
		$2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$	38		ns
		$C_b = 30 \text{ pF}, \text{R}_b = 5.5 \text{k}\Omega$			
Delay time from SCKp↑ to	tkso1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$		50	ns
SOp output ^{Note}		$C_b = 30 \text{ pF}, \text{R}_b = 1.4 \text{k}\Omega$			
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$		50	ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$		50	ns
		$C_{b} = 30 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega$			

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

3.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclĸ	$2.4~V \leq V_{DD} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites Notes 1,2,3	Cerwr	Retained for 20 years TA = 85° C ^{Note 4}	1,000			Times
Number of data flash rewrites Notes 1,2,3		Retained for 1 years TA = 25°C		1,000,000		
		Retained for 5 years TA = 85° C ^{Note 4}	100,000			
		Retained for 20 years TA = 85°C ^{Note 4}	10,000			

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

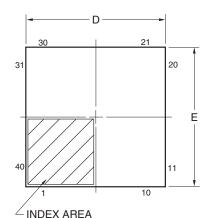
Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library.
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- 4. This temperature is the average value at which data are retained.

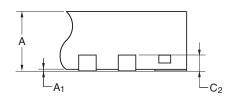
3.9 Dedicated Flash Memory Programmer Communication (UART)

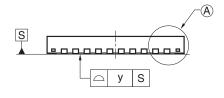
$(T_{\text{A}} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \leq \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

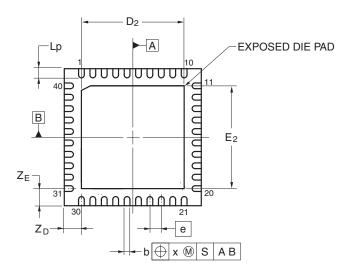
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps


4.7 40-pin Products

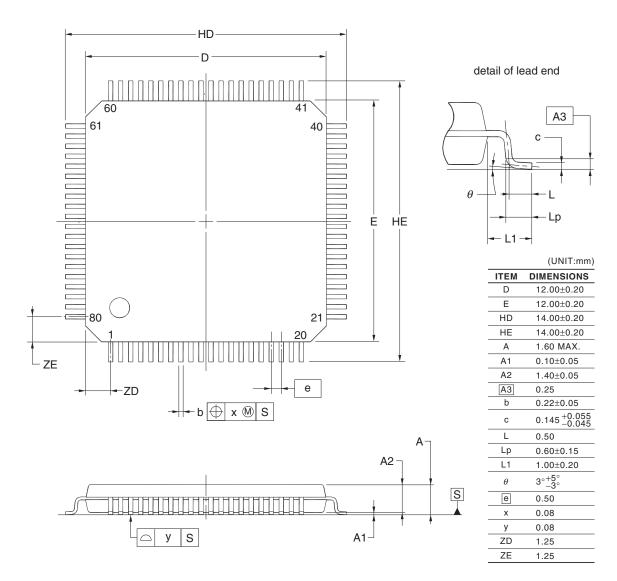
R5F100EAANA, R5F100ECANA, R5F100EDANA, R5F100EEANA, R5F100EFANA, R5F100EGANA, R5F100EHANA R5F101EAANA, R5F101ECANA, R5F101EDANA, R5F101EEANA, R5F101EFANA, R5F101EGANA, R5F101EHANA R5F100EADNA, R5F100ECDNA, R5F100EDDNA, R5F100EEDNA, R5F100EFDNA, R5F100EGDNA, R5F100EHDNA


R5F101EADNA, R5F101ECDNA, R5F101EDDNA, R5F101EEDNA, R5F101EFDNA, R5F101EGDNA, R5F101EHDNA


R5F100EAGNA, R5F100ECGNA, R5F100EDGNA, R5F100EEGNA, R5F100EFGNA, R5F100EGGNA, R5F100EHGNA


JEITA Package code	RENESAS code	Previous code	MASS (TYP.) [g]
P-HWQFN40-6x6-0.50	PWQN0040KC-A	P40K8-50-4B4-5	0.09

Detail of (A) Part


Referance	Dimens	sion in Mil	limeters
Symbol	Min	Nom	Max
D	5.95	6.00	6.05
E	5.95	6.00	6.05
A			0.80
A ₁	0.00		
b	0.18	0.25	0.30
е		0.50	
Lp	0.30	0.40	0.50
х			0.05
у			0.05
ZD		0.75	—
Z _E		0.75	—
C ₂	0.15	0.20	0.25
D ₂		4.50	
E ₂		4.50	

©2013 Renesas Electronics Corporation. All rights reserved.

R5F100MFAFB, R5F100MGAFB, R5F100MHAFB, R5F100MJAFB, R5F100MKAFB, R5F100MLAFB R5F101MFAFB, R5F101MGAFB, R5F101MHAFB, R5F101MJAFB, R5F101MKAFB, R5F101MLAFB R5F100MFDFB, R5F100MGDFB, R5F100MHDFB, R5F100MJDFB, R5F100MKDFB, R5F100MLDFB R5F101MFDFB, R5F101MGDFB, R5F101MHDFB, R5F101MJDFB, R5F101MKDFB, R5F101MLDFB R5F100MFGFB, R5F100MGGFB, R5F100MHGFB, R5F100MJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP80-12x12-0.50	PLQP0080KE-A	P80GK-50-8EU-2	0.53

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

Rev.			Description
	Date	Page	Summary
3.00	Aug 02, 2013	81	Modification of figure of AC Timing Test Points
		81	Modification of description and note 3 in (1) During communication at same potential (UART mode)
		83	Modification of description in (2) During communication at same potential (CSI mode)
		84	Modification of description in (3) During communication at same potential (CSI mode)
		85	Modification of description in (4) During communication at same potential (CSI mode) (1/2)
		86	Modification of description in (4) During communication at same potential (CSI mode) (2/2)
		88	Modification of table in (5) During communication at same potential (simplified I ² C mode) (1/2)
		89	Modification of table and caution in (5) During communication at same potential (simplified I ² C mode) (2/2)
		91	Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)
		92, 93	Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)
		94	Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)
		95	Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2)
		96	Modification of table and caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (2/2)
		97	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)
		98	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)
		99	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)
		100	Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)
		102	Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)
		103	Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)
		106	Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2)
		107	Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2)
		109	Addition of (1) I ² C standard mode
		111	Addition of (2) I ² C fast mode
		112	Addition of (3) I ² C fast mode plus
		112	Modification of IICA serial transfer timing
		113	Addition of table in 2.6.1 A/D converter characteristics
		113	Modification of description in 2.6.1 (1)
		114	Modification of notes 3 to 5 in 2.6.1 (1)
		115	Modification of description and notes 2, 4, and 5 in 2.6.1 (2)
		116	Modification of description and notes 3 and 4 in 2.6.1 (3)
		117	Modification of description and notes 3 and 4 in 2.6.1 (4)