

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	15
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 6x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	25-WFLGA
Supplier Device Package	25-LGA (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1008dala-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Flash	Data	RAM		RL78/G13								
ROM	flash		20 pins	24 pins	25 pins	30 pins	32 pins	36 pins				
128	8 KB	12	_	_	_	R5F100AG	R5F100BG	R5F100CG				
KB	-	KB	_	_	_	R5F101AG	R5F101BG	R5F101CG				
96	8 KB	8 KB	-	-	-	R5F100AF	R5F100BF	R5F100CF				
KB	-		_	_	-	R5F101AF	R5F101BF	R5F101CF				
64	4 KB	4 KB	R5F1006E	R5F1007E	R5F1008E	R5F100AE	R5F100BE	R5F100CE				
KB	-	Note	R5F1016E	R5F1017E	R5F1018E	R5F101AE	R5F101BE	R5F101CE				
48	4 KB	3 KB Note	R5F1006D	R5F1007D	R5F1008D	R5F100AD	R5F100BD	R5F100CD				
KB	_		R5F1016D	R5F1017D	R5F1018D	R5F101AD	R5F101BD	R5F101CD				
32	4 KB	2 KB	R5F1006C	R5F1007C	R5F1008C	R5F100AC	R5F100BC	R5F100CC				
KB	-		R5F1016C	R5F1017C	R5F1018C	R5F101AC	R5F101BC	R5F101CC				
16 KB	4 KB	2 KB	R5F1006A	R5F1007A	R5F1008A	R5F100AA	R5F100BA	R5F100CA				
KB	_		R5F1016A	R5F1017A	R5F1018A	R5F101AA	R5F101BA	R5F101CA				

O ROM, RAM capacities

		1								1
Flash	Data	RAM				RL78	3/G13			
ROM	flash		40 pins	44 pins	48 pins	52 pins	64 pins	80 pins	100 pins	128 pins
512	8 KB	32 KB	_	R5F100FL	R5F100GL	R5F100JL	R5F100LL	R5F100ML	R5F100PL	R5F100SL
KB	_	Note	-	R5F101FL	R5F101GL	R5F101JL	R5F101LL	R5F101ML	R5F101PL	R5F101SL
384	8 KB	24 KB	=	R5F100FK	R5F100GK	R5F100JK	R5F100LK	R5F100MK	R5F100PK	R5F100SK
KB	-		-	R5F101FK	R5F101GK	R5F101JK	R5F101LK	R5F101MK	R5F101PK	R5F101SK
256	8 KB	20 KB	-	R5F100FJ	R5F100GJ	R5F100JJ	R5F100LJ	R5F100MJ	R5F100PJ	R5F100SJ
KB	-	Note	-	R5F101FJ	R5F101GJ	R5F101JJ	R5F101LJ	R5F101MJ	R5F101PJ	R5F101SJ
192	8 KB	16 KB	R5F100EH	R5F100FH	R5F100GH	R5F100JH	R5F100LH	R5F100MH	R5F100PH	R5F100SH
KB	1		R5F101EH	R5F101FH	R5F101GH	R5F101JH	R5F101LH	R5F101MH	R5F101PH	R5F101SH
128	8 KB	12 KB	R5F100EG	R5F100FG	R5F100GG	R5F100JG	R5F100LG	R5F100MG	R5F100PG	_
KB	-		R5F101EG	R5F101FG	R5F101GG	R5F101JG	R5F101LG	R5F101MG	R5F101PG	-
96	8 KB	8 KB	R5F100EF	R5F100FF	R5F100GF	R5F100JF	R5F100LF	R5F100MF	R5F100PF	-
KB	-		R5F101EF	R5F101FF	R5F101GF	R5F101JF	R5F101LF	R5F101MF	R5F101PF	-
64	4 KB	4 KB	R5F100EE	R5F100FE	R5F100GE	R5F100JE	R5F100LE	-	-	-
KB	-	Note	R5F101EE	R5F101FE	R5F101GE	R5F101JE	R5F101LE	-	-	-
48	4 KB	3 KB ^{Note}	R5F100ED	R5F100FD	R5F100GD	R5F100JD	R5F100LD	_	-	_
KB	_		R5F101ED	R5F101FD	R5F101GD	R5F101JD	R5F101LD	-	-	-
32	4 KB	2 KB	R5F100EC	R5F100FC	R5F100GC	R5F100JC	R5F100LC	-	_	_
KB	_	1	R5F101EC	R5F101FC	R5F101GC	R5F101JC	R5F101LC	-	-	-
16	4 KB	2 KB	R5F100EA	R5F100FA	R5F100GA	-	-	-	-	-
KB	-		R5F101EA	R5F101FA	R5F101GA	-	-	-	_	-

Note The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

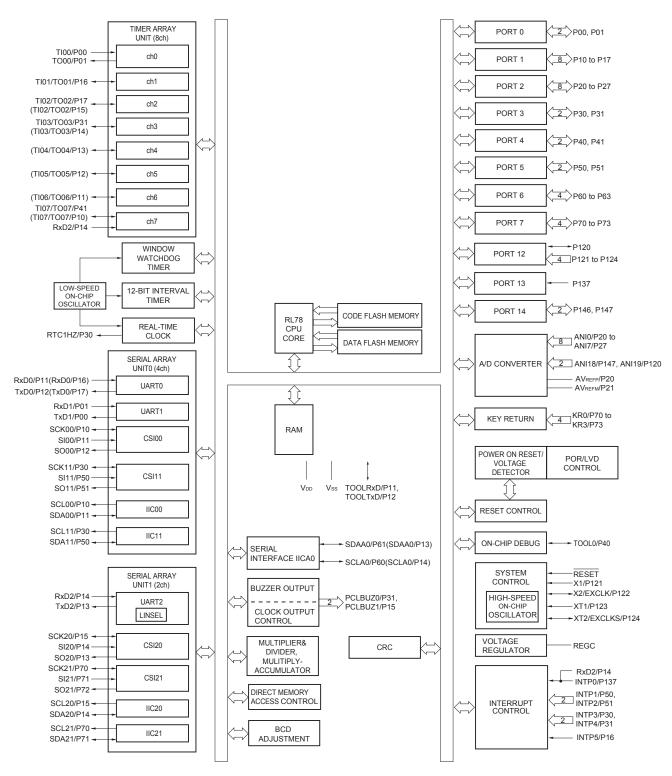
R5F100xD, R5F101xD (x = 6 to 8, A to C, E to G, J, L): Start address FF300H

R5F100xE, R5F101xE (x = 6 to 8, A to C, E to G, J, L): Start address FEF00H

R5F100xJ, R5F101xJ (x = F, G, J, L, M, P): R5F100xL, R5F101xL (x = F, G, J, L, M, P, S): Start address FAF00H Start address F7F00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

Table 1-1.	List of Ordering Part Nu	umbers
------------	--------------------------	--------


				(12/12)
Pin count	Package	Data flash	Fields of Application ^{Note}	Ordering Part Number
128 pins	128-pin plastic LFQFP (14 × 20 mm, 0.5 mm pitch)	Mounted	A	R5F100SHAFB#V0, R5F100SJAFB#V0, R5F100SKAFB#V0, R5F100SLAFB#V0 R5F100SHAFB#X0, R5F100SJAFB#X0, R5F100SKAFB#X0, R5F100SLAFB#X0 R5F100SHDFB#V0, R5F100SJDFB#V0, R5F100SKDFB#V0, R5F100SLDFB#V0 R5F100SKDFB#X0, R5F100SJDFB#X0, R5F100SKDFB#X0, R5F100SLDFB#X0
		Not mounted	D	R5F101SHAFB#V0, R5F101SJAFB#V0, R5F101SKAFB#V0, R5F101SLAFB#V0 R5F101SHAFB#X0, R5F101SJAFB#X0, R5F101SKAFB#X0, R5F101SLAFB#X0 R5F101SHDFB#V0, R5F101SJDFB#V0, R5F101SKDFB#V0, R5F101SLDFB#V0, R5F101SHDFB#X0, R5F101SLDFB#X0, R5F101SKDFB#X0, R5F101SLDFB#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.5.8 44-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.

2.3 DC Characteristics

2.3.1 Pin characteristics

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$1.6~V \leq EV_{DD0} \leq 5.5~V$			-10.0 Note 2	mA
		P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			-55.0	mA
			$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-10.0	mA
			$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			-5.0	mA
			$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			-2.5	mA
		Total of P05, P06, P10 to P17, P30, P31,				-80.0	mA
		P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to	$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-19.0	mA
		P117, P146, P147	$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			-10.0	mA
		(When duty \leq 70% ^{Note 3})	$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			-5.0	mA
		Total of all pins (When duty $\leq 70\%$ ^{Note 3})	$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$			-135.0 Note 4	mA
	Іон2	Per pin for P20 to P27, P150 to P156	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty $\leq 70\%$ ^{Note 3})	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-1.5	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.

- 2. However, do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- **4.** The applied current for the products for industrial application (R5F100xxDxx, R5F101xxDxx, R5F100xxGxx) is -100 mA.
- Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz

2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: $1.8~V \leq V_{\text{DD}} \leq 5.5~V @\,1$ MHz to 8 MHz

LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz

- **Remarks 1.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: ~~ 1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Parameter	Symbol	Conditions	、 U	h-speed Mode	``	/-speed Mode	``	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ p\text{F}, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		1000 Note 1		400 Note 1		400 Note 1	kHz
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$		400 Note 1		400 Note 1		400 Note 1	kHz
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, \text{ R}_b = 5 \text{ k}\Omega$		300 Note 1		300 Note 1		300 Note 1	kHz
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$		250 Note 1		250 Note 1		250 Note 1	kHz
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$		—		250 Note 1		250 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$	1150		1150		1150		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$	1550		1550		1550		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, \text{R}_b = 5 \text{ k}\Omega$	1850		1850		1850		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 5 \text{ k}\Omega$			1850		1850		ns
Hold time when SCLr = "H"	tніgн	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$	1150		1150		1150		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, \text{R}_b = 5 \text{ k}\Omega$	1550		1550		1550		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, \text{R}_b = 5 \text{ k}\Omega$	1850		1850		1850		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, \text{R}_b = 5 \text{ k}\Omega$			1850		1850		ns

(5) During communication at same potential (simplified I²C mode) (1/2)

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

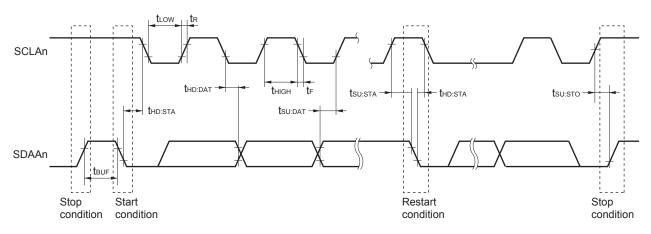
Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$

<R>

(3) I²C fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD0} = EV_{DD1} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS0} = EV_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: fc∟κ≥ 10 MHz	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	1000		_	_	_	kHz
Setup time of restart condition	tsu:sta	$2.7 V \leq EV_{DD0} \leq 5.8$	5 V	0.26		-	_	—		μS
Hold time ^{Note 1}	thd:sta	$2.7 V \le EV_{DD0} \le 5.8$	5 V	0.26		_				μS
Hold time when SCLA0 = "L"	t∟ow	$2.7 V \leq EV_{DD0} \leq 5.8$	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			_		_		μS
Hold time when SCLA0 = "H"	tніgн	$2.7 V \leq EV_{DD0} \leq 5.5$	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			_	_	_	-	μS
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.9$	5 V	50		_	_	_	_	μS
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.9$	5 V	0	0.45	_	_	_	_	μS
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.9$	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			_	_	_	_	μS
Bus-free time	tвиғ	$2.7 V \le EV_{DD0} \le 5.8$	5 V	0.5		_	_	-	_	μS


<R>

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: $C_b = 120 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

Remark n = 0, 1

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - $\label{eq:second} \begin{array}{l} \textbf{3. When } AV_{\text{REFP}} < V_{\text{DD}} \text{, the MAX. values are as follows.} \\ \text{Overall error: } Add \pm 1.0 \ \text{LSB} \text{ to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \text{Zero-scale error/Full-scale error: } Add \pm 0.05\%\text{FSR} \text{ to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \text{Integral linearity error/ Differential linearity error: } Add \pm 0.5 \ \text{LSB} \text{ to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \end{array}$
 - 4. Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).
 - 5. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

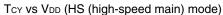
- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or Vss, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

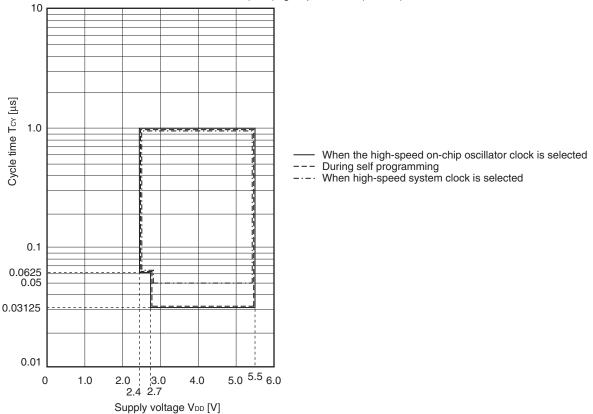
HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz

2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V@1 MHz to 16 MHz

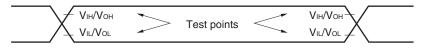
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or Vss, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

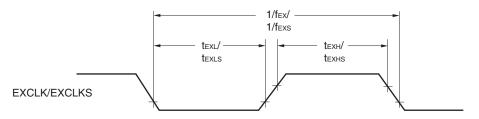

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 32 MHz


2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V@1 MHz to 16 MHz

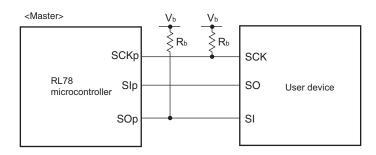
- 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. file: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_{\text{A}}=25^{\circ}\text{C}$



Minimum Instruction Execution Time during Main System Clock Operation



AC Timing Test Points



External System Clock Timing

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number , n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

		Reference Voltage								
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = VBGR							
Input channel	Reference voltage (-) = AVREFM	Reference voltage (-) = Vss	Reference voltage (-) = AVREFM							
ANI0 to ANI14	Refer to 3.6.1 (1).	Refer to 3.6.1 (3) .	Refer to 3.6.1 (4).							
ANI16 to ANI26	Refer to 3.6.1 (2).									
Internal reference voltage	Refer to 3.6.1 (1) .		-							
Temperature sensor output										
voltage										

(1) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(T_A = -40 to +105°C, 2.4 V \leq AV_{REFP} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFM} = 0 V)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \le AV_{\text{REFP}} \le 5.5~V$		1.2	±3.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2 to ANI14	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \le V \text{DD} \le 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μs
	voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V \text{dd} \leq 5.5~V$	17		39	μs	
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 2.4 \hspace{.1in} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 2.4 \hspace{.1in} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Integral linearity error	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 2.4 \hspace{.1cm} V \hspace{.1cm} \leq \hspace{.1cm} AV_{\text{REFP}} \hspace{.1cm} \leq \hspace{.1cm} 5.5 \\ V \end{array}$			±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 2.4 \hspace{.1in} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±1.5	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage output (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode			VBGR ^{Note 4}		V
			Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)				V

(Notes are listed on the next page.)

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{ HS (high-speed main) mode)}$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		$V_{\text{BGR}}{}^{\text{Note 3}}$	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows. Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM. Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM. Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

3.6.2 Temperature sensor/internal reference voltage characteristics

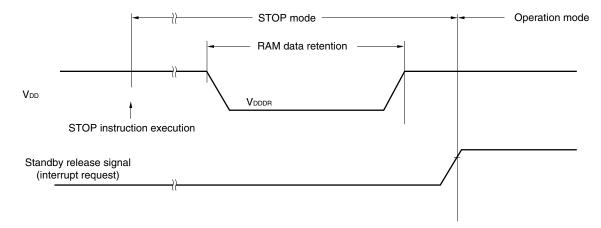
(T_A = -40 to $+105^{\circ}$ C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μS

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

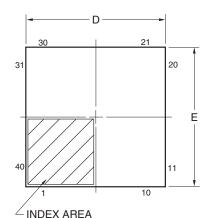

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

3.7 RAM Data Retention Characteristics

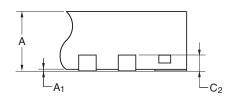
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

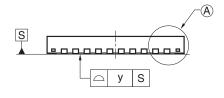
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

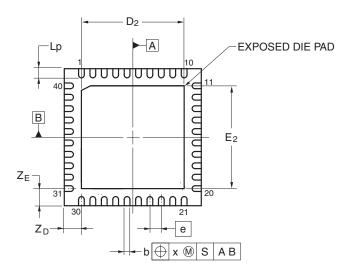
Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.


4.7 40-pin Products

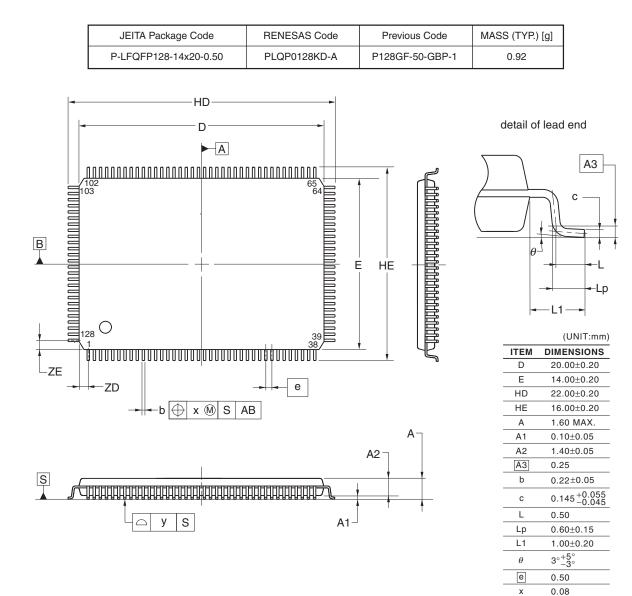
R5F100EAANA, R5F100ECANA, R5F100EDANA, R5F100EEANA, R5F100EFANA, R5F100EGANA, R5F100EHANA R5F101EAANA, R5F101ECANA, R5F101EDANA, R5F101EEANA, R5F101EFANA, R5F101EGANA, R5F101EHANA R5F100EADNA, R5F100ECDNA, R5F100EDDNA, R5F100EEDNA, R5F100EFDNA, R5F100EGDNA, R5F100EHDNA


R5F101EADNA, R5F101ECDNA, R5F101EDDNA, R5F101EEDNA, R5F101EFDNA, R5F101EGDNA, R5F101EHDNA


R5F100EAGNA, R5F100ECGNA, R5F100EDGNA, R5F100EEGNA, R5F100EFGNA, R5F100EGGNA, R5F100EHGNA


JEITA Package code	RENESAS code	Previous code	MASS (TYP.) [g]
P-HWQFN40-6x6-0.50	PWQN0040KC-A	P40K8-50-4B4-5	0.09

Detail of (A) Part


Referance	Dimens	Dimension in Millimeters				
Symbol	Min	Nom	Max			
D	5.95	6.00	6.05			
E	5.95	6.00	6.05			
A			0.80			
A ₁	0.00					
b	0.18	0.25	0.30			
е		0.50				
Lp	0.30	0.40	0.50			
х			0.05			
у			0.05			
ZD		0.75	—			
Z _E		0.75	—			
C ₂	0.15	0.20	0.25			
D ₂		4.50				
E ₂		4.50				

©2013 Renesas Electronics Corporation. All rights reserved.

4.14 128-pin Products

R5F100SHAFB, R5F100SJAFB, R5F100SKAFB, R5F100SLAFB R5F101SHAFB, R5F101SJAFB, R5F101SKAFB, R5F101SLAFB R5F100SHDFB, R5F100SJDFB, R5F100SKDFB, R5F100SLDFB R5F101SHDFB, R5F101SJDFB, R5F101SKDFB, R5F101SLDFB

©2012 Renesas Electronics Corporation. All rights reserved.

х

y ZD

ZE

0.08

0.75

0.75

			Description	
Rev.	Date	Page Summary		
3.00	Aug 02, 2013	163	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2)	
		164, 165	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2)	
		166	Modification of table in 3.5.2 Serial interface IICA	
		166	Modification of IICA serial transfer timing	
		167	Addition of table in 3.6.1 A/D converter characteristics	
		167, 168	Modification of table and notes 3 and 4 in 3.6.1 (1)	
		169	Modification of description in 3.6.1 (2)	
		170	Modification of description and note 3 in 3.6.1 (3)	
		171	Modification of description and notes 3 and 4 in 3.6.1 (4)	
		172	Modification of table and note in 3.6.3 POR circuit characteristics	
		173	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode	
		173	Modification from Supply Voltage Rise Time to 3.6.5 Power supply voltage rising slope characteristics	
		174	Modification of 3.9 Dedicated Flash Memory Programmer Communication (UART)	
		175	Modification of table, figure, and remark in 3.10 Timing Specs for Switching Flash Memory Programming Modes	
3.10	Nov 15, 2013	123	Caution 4 added.	
		125	Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted.	
3.30	Mar 31, 2016		Modification of the position of the index mark in 25-pin plastic WFLGA (3×3 mm, 0.50 mm pitch) of 1.3.3 25-pin products	
			Modification of power supply voltage in 1.6 Outline of Functions [20-pin, 24- pin, 25-pin, 30-pin, 32-pin, 36-pin products]	
			Modification of power supply voltage in 1.6 Outline of Functions [40-pin, 44- pin, 48-pin, 52-pin, 64-pin products]	
			Modification of power supply voltage in 1.6 Outline of Functions [80-pin, 100- pin, 128-pin products]	
			ACK corrected to ACK	
			ACK corrected to ACK	

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash[®] technology licensed from Silicon Storage Technology, Inc.