Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | RL78 | | Core Size | 16-Bit | | Speed | 32MHz | | Connectivity | CSI, I ² C, LINbus, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 21 | | Program Memory Size | 48KB (48K x 8) | | Program Memory Type | FLASH | | EEPROM Size | 4K x 8 | | RAM Size | 3K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V | | Data Converters | A/D 8x8/10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 30-LSSOP (0.240", 6.10mm Width) | | Supplier Device Package | 30-LSSOP | | Purchase URL | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100addsp-v0 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Table 1-1. List of Ordering Part Numbers (3/12) | Pin
count | Package | Data flash | Fields of
Application | Ordering Part Number | |--------------|---|----------------|--------------------------|---| | | | | Note | | | 36 pins | 36-pin plastic WFLGA
(4 × 4 mm, 0.5 mm
pitch) | Mounted | A
G | R5F100CAALA#U0, R5F100CCALA#U0, R5F100CDALA#U0, R5F100CEALA#U0, R5F100CFALA#U0, R5F100CGALA#U0 R5F100CAALA#W0, R5F100CAALA#W0, R5F100CAALA#W0, R5F100CEALA#W0, R5F100CGALA#W0 R5F100CAGLA#W0, R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0 | | | | Not
mounted | A | R5F101CAALA#U0, R5F101CCALA#U0, R5F101CDALA#U0, R5F101CEALA#U0, R5F101CFALA#U0, R5F101CAALA#W0, R5F10AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | | | | | | R5F101CEALA#W0, R5F101CFALA#W0, R5F101CGALA#W0 | | 40 pins | 40-pin plastic HWQFN
(6 × 6 mm, 0.5 mm
pitch) | Mounted | A | R5F100EAANA#U0, R5F100ECANA#U0, R5F100EDANA#U0, R5F100EEANA#U0, R5F100EFANA#U0, R5F100EGANA#U0, R5F100EHANA#U0 | | | | | | R5F100EAANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100EEANA#W0, R5F100EFANA#W0, R5F100EGANA#W0, R5F100EHANA#W0 | | | | | D | R5F100EADNA#U0, R5F100ECDNA#U0, R5F100EDDNA#U0, R5F100EEDNA#U0, R5F100EFDNA#U0, R5F100EGDNA#U0, R5F100EHDNA#U0 | | | | | | R5F100EADNA#W0, R5F100ECDNA#W0,
R5F100EDDNA#W0, R5F100EEDNA#W0, R5F100EFDNA#W0,
R5F100EGDNA#W0, R5F100EHDNA#W0 | | | | | G | R5F100EAGNA#U0, R5F100ECGNA#U0, R5F100EDGNA#U0, R5F100EEGNA#U0, R5F100EFGNA#U0, R5F100EHGNA#U0 R5F100EAGNA#W0, R5F100ECGNA#W0, | | | | | | R5F100EDGNA#W0, R5F100ECGNA#W0, | | | | | | R5F100EFGNA#W0, R5F100EGGNA#W0, R5F100EHGNA#W0 | | | | Not
mounted | А | R5F101EAANA#U0, R5F101ECANA#U0, R5F101EDANA#U0, R5F101EEANA#U0, R5F101EFANA#U0, R5F101EGANA#U0, | | | | mounted | | R5F101EEANA#00, R5F101EFANA#00, R5F101EGANA#00,
R5F101EAANA#W0, R5F101ECANA#W0, R5F101EDANA#W0,
R5F101EEANA#W0, R5F101EFANA#W0, R5F101EGANA#W0,
R5F101EHANA#W0 | | | | | D | R5F101EADNA#U0, R5F101ECDNA#U0, R5F101EDDNA#U0, R5F101EEDNA#U0, R5F101EFDNA#U0, R5F101EGDNA#U0, R5F101EHDNA#U0 R5F101EADNA#W0, R5F101ECDNA#W0, R5F101EFDNA#W0, R5F101EDNA#W0, R5F101EFDNA#W0, | | | | | | R5F101EGDNA#W0, R5F101EHDNA#W0 | Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. #### 1.3.4 30-pin products • 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. ### 1.5.3 25-pin products ### 1.5.6 36-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. ### 1.5.13 100-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. - Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. When high-speed on-chip oscillator and subsystem clock are stopped. - 3. When high-speed system clock and subsystem clock are stopped. - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 4 MHz - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fih: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C #### **UART** mode connection diagram (during communication at same potential) ## **UART** mode bit width (during communication at same potential) (reference) **Remarks 1.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14) 2. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13)) # (3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Parameter Symbol Conditions | | Conditions | HS (high
main) | • | LS (low-speed main) Mode | | LV (low-voltage main) Mode | | Unit | |------------------------------|-----------------------------|---|------------------------------------|-------------------|------|--------------------------|------|----------------------------|------|------| | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SCKp cycle time | tkcy1 | tксү1 ≥ 4/fс∟к | $2.7~V \leq EV_{DD0} \leq 5.5$ V | 125 | | 500 | | 1000 | | ns | | | | | $2.4~V \le EV_{DD0} \le 5.5$ V | 250 | | 500 | | 1000 | | ns | | | | | $1.8~V \le EV_{DD0} \le 5.5$ V | 500 | | 500 | | 1000 | | ns | | | | | $1.7~V \leq EV_{DD0} \leq 5.5$ V | 1000 | | 1000 | | 1000 | | ns | | | | | $1.6~V \le EV_{DD0} \le 5.5$ V | _ | | 1000 | | 1000 | | ns | | SCKp high-/low-level width | tkhi,
tkli | 4.0 V ≤ EV _D | 00 ≤ 5.5 V | tксу1/2 –
12 | | tксу1/2 —
50 | | tксү1/2 –
50 | | ns | | | | $2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$ | | tксу1/2 —
18 | | tксу1/2 — 50 | | tксу1/2 —
50 | | ns | | | | $2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$ | | tксү1/2 —
38 | | tксу1/2 — 50 | | tксү1/2 —
50 | | ns | | | | $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$ $1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$ | | tксү1/2 —
50 | | tксу1/2 —
50 | | tксү1/2 —
50 | | ns | | | | | | tксу1/2 —
100 | | tксу1/2 —
100 | | tксу1/2 —
100 | | ns | | | | 1.6 V ≤ EVD | ₀₀ ≤ 5.5 V | _ | | tксу1/2 —
100 | | tксу1/2 —
100 | | ns | | SIp setup time | tsıĸı | 4.0 V ≤ EV _{DI} | 00 ≤ 5.5 V | 44 | | 110 | | 110 | | ns | | (to SCKp↑) | | 2.7 V ≤ EV _{DI} | 00 ≤ 5.5 V | 44 | | 110 | | 110 | | ns | | | | 2.4 V ≤ EVD | 00 ≤ 5.5 V | 75 | | 110 | | 110 | | ns | | | | 1.8 V ≤ EV _{DI} | 00 ≤ 5.5 V | 110 | | 110 | | 110 | | ns | | | | 1.7 V ≤ EV _{DI} | oo ≤ 5.5 V | 220 | | 220 | | 220 | | ns | | | | 1.6 V ≤ EV _{DD0} ≤ 5.5 V | | _ | | 220 | | 220 | | ns | | Slp hold time | tksi1 | 1.7 V ≤ EV _{DI} | 00 ≤ 5.5 V | 19 | | 19 | | 19 | | ns | | (from SCKp↑) Note 2 | | 1.6 V ≤ EV _{DI} | 00 ≤ 5.5 V | | | 19 | | 19 | | ns | | Delay time from SCKp↓ to SOp | tkso1 | $1.7 \text{ V} \le \text{EV}_{DI}$ $C = 30 \text{ pF}^{\text{Note}}$ | | | 25 | | 25 | | 25 | ns | | output Note 3 | | $1.6 \text{ V} \leq \text{EV}_{DI}$ $C = 30 \text{ pF}^{\text{Note}}$ | | | _ | | 25 | | 25 | ns | **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 4. C is the load capacitance of the SCKp and SOp output lines. Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). # CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) # CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. ### Simplified I²C mode connection diagram (during communication at different potential) #### Simplified I²C mode serial transfer timing (during communication at different potential) - **Remarks 1.** $R_b[\Omega]$:Communication line (SDAr, SCLr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance, $V_b[V]$: Communication line voltage - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14) - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13) #### 2.8 Flash Memory Programming Characteristics $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$ | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |---|--------|-------------------------------------|---------|-----------|------|-------| | CPU/peripheral hardware clock frequency | fclk | $1.8~V \leq V \text{dd} \leq 5.5~V$ | 1 | | 32 | MHz | | Number of code flash rewrites | Cerwr | Retained for 20 years TA = 85°C | 1,000 | | | Times | | Number of data flash rewrites | | Retained for 1 years TA = 25°C | | 1,000,000 | | | | | | Retained for 5 years TA = 85°C | 100,000 | | | | | | | Retained for 20 years TA = 85°C | 10,000 | | | | **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite. - 2. When using flash memory programmer and Renesas Electronics self programming library - **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation. #### 2.9 Dedicated Flash Memory Programmer Communication (UART) #### $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |---------------|--------|---------------------------|---------|------|-----------|------| | Transfer rate | | During serial programming | 115,200 | | 1,000,000 | bps | | $(T_A = -40 \text{ to } +105^{\circ}\text{C}.$ | 2 4 V / EVano | _ EVan. < Van | CEEV Voc | _ EV EV. | $\alpha_{\rm col} = 0.1/(2/E)$ | |--|-------------------------------|-------------------------------|-----------------------------|-------------------------------|--------------------------------| | $(1A = -40 10 + 105^{\circ}C.$ | . 2.4 V > E V DD0 : | = ⊏∨ ∪∪1 ≤ ∨ ∪∪ |) > 3.3 v. v ss : | = CV SS0 = CV : | SS1 = U V I (2/3) | | Items | Symbol | Conditions | | MIN. | TYP. | MAX. | Unit | |---------------------------------------|--------|--|---|------|------|-------------|------| | Output current, low ^{Note 1} | lol1 | Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 | | | | 8.5 Note 2 | mA | | | | Per pin for P60 to P63 | | | | 15.0 Note 2 | mA | | | | P37,
P40 to P47, P102 to P106, P120, | $4.0~V \leq EV_{DD0} \leq 5.5~V$ | | | 40.0 | mA | | | | | $2.7~V \leq EV_{DD0} < 4.0~V$ | | | 15.0 | mA | | | | | $2.4~\text{V} \leq \text{EV}_{\text{DD0}} < 2.7~\text{V}$ | | | 9.0 | mA | | | | P31, P50 to P57, P60 to P67, | $4.0~V \leq EV_{DD0} \leq 5.5~V$ | | | 40.0 | mA | | | | | $2.7~V \leq EV_{DD0} < 4.0~V$ | | | 35.0 | mA | | | | P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 $(\text{When duty} \leq 70\%^{\text{Note 3}})$ | 2,4 V ≤ EV _{DD0} < 2.7 V | | | 20.0 | mA | | | | Total of all pins (When duty ≤ 70% Note 3) | | | | 80.0 | mA | | | lol2 | Per pin for P20 to P27, P150 to P156 | | | | 0.4 Note 2 | mA | | | | Total of all pins (When duty ≤ 70% Note 3) | $2.4~V \leq V_{DD} \leq 5.5~V$ | | | 5.0 | mA | - **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1 and Vss pin. - 2. Do not exceed the total current value. - **3.** Specification under conditions where the duty factor $\leq 70\%$. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%). • Total output current of pins = $(lol \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and IoL = 10.0 mA Total output current of pins = (10.0 \times 0.7)/(80 \times 0.01) \cong 8.7 mA However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin. **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (5/5)$ | Items | Symbol | Condition | ons | | MIN. | TYP. | MAX. | Unit | |--------------------------------|--------|--|------------------------|---------------------------------------|------|------|-----------|------| | Input leakage
current, high | Ішн1 | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 | | | | | 1 | μΑ | | | ILIH2 | P20 to P27, P137,
P150 to P156, RESET | $V_{I} = V_{DD}$ | | | | 1 | μΑ | | | Ішнз | P121 to P124
(X1, X2, XT1, XT2, EXCLK,
EXCLKS) | $V_{I} = V_{DD}$ | In input port or external clock input | | | 1 | μΑ | | | | | | In resonator connection | | | 10 | μΑ | | Input leakage
current, low | lut1 | P00 to P07, P10 to P17,
P30 to P37, P40 to P47,
P50 to P57, P60 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100 to P106,
P110 to P117, P120,
P125 to P127, P140 to P147 | Vi = EVsso | | | | -1 | μΑ | | | ILIL2 | P20 to P27, P137,
P150 to P156, RESET | Vı = Vss | | | | -1 | μΑ | | Гикз | | P121 to P124
(X1, X2, XT1, XT2, EXCLK,
EXCLKS) | Vı = Vss | In input port or external clock input | | | -1 | μΑ | | | | | | In resonator connection | | | -10 | μΑ | | On-chip pll-up resistance | Rυ | P00 to P07, P10 to P17,
P30 to P37, P40 to P47,
P50 to P57, P64 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100 to P106,
P110 to P117, P120,
P125 to P127, P140 to P147 | V _I = EVsso | , In input port | 10 | 20 | 100 | kΩ | **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. - Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. During HALT instruction execution by flash memory. - 3. When high-speed on-chip oscillator and subsystem clock are stopped. - 4. When high-speed system clock and subsystem clock are stopped. - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer. - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 32~MHz $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 16~MHz - **8.** Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode. - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fin: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$ ## (2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | Conditions | | HS (high-spee | d main) Mode | Unit | |--|-------------------|-----------------------------------|---|---------------|--------------|------| | | | | | MIN. | MAX. | | | SCKp cycle time | tkcy1 | tkcy1 ≥ 4/fclk | $2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$ | 250 | | ns | | | | | $2.4~V \leq EV_{DD0} \leq 5.5~V$ | 500 | | ns | | SCKp high-/low-level width | t кн1, | 4.0 V ≤ EV _{DD} | ₀ ≤ 5.5 V | tксү1/2 – 24 | | ns | | | t _{KL1} | 2.7 V ≤ EV _{DD0} ≤ 5.5 V | | tkcy1/2 - 36 | | ns | | | | 2.4 V ≤ EV _{DD} | 2.4 V ≤ EV _{DD0} ≤ 5.5 V | | | ns | | SIp setup time (to SCKp↑) Note 1 | tsıĸı | 4.0 V ≤ EV _{DD} | ₀ ≤ 5.5 V | 66 | | ns | | | | 2.7 V ≤ EV _{DD} | 0 ≤ 5.5 V | 66 | | ns | | | | 2.4 V ≤ EV _{DD} | ₀ ≤ 5.5 V | 113 | | ns | | SIp hold time (from SCKp↑) Note 2 | t _{KSI1} | | | 38 | | ns | | Delay time from SCKp↓ to SOp output Note 3 | tkso1 | C = 30 pF Note 4 | | | 50 | ns | - **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 4. C is the load capacitance of the SCKp and SOp output lines. Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). - **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3). - g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14) - 2. fmck: Serial array unit operation clock frequency - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, - n: Channel number (mn = 00 to 03, 10 to 13)) 5. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.4 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V Maximum transfer rate = $$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$ [bps] Baud rate error (theoretical value) = $$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{1.5}{V_b})}\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$ - * This value is the theoretical value of the relative difference between the transmission and reception sides. - **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer. Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. **UART** mode connection diagram (during communication at different potential) - Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VIL, see the DC characteristics with TTL input buffer selected. #### CSI mode connection diagram (during communication at different potential) - **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 00, 01, 02, - 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13)) - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. ## Simplified I²C mode connection diagram (during communication at different potential) #### Simplified I²C mode serial transfer timing (during communication at different potential) Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VIL, see the DC characteristics with TTL input buffer selected. - **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14) - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00, 01, 02, 10, 12, 13) #### 4.10 52-pin Products R5F100JCAFA, R5F100JDAFA, R5F100JEAFA, R5F100JFAFA, R5F100JGAFA, R5F100JHAFA, R5F100JJAFA, R5F100JKAFA, R5F100JLAFA R5F101JCAFA, R5F101JDAFA, R5F101JEAFA, R5F101JFAFA, R5F101JJAFA, R5F101JJAFA, R5F101JJAFA, R5F101JAFA, R5F101JKAFA, R5F101JLAFA R5F100JCDFA, R5F100JDDFA, R5F100JEDFA, R5F100JFDFA, R5F100JDFA, R5F100JPA, R R5F100JKDFA, R5F100JLDFA R5F101JCDFA, R5F101JDDFA, R5F101JEDFA, R5F101JFDFA, R5F101JDFA, R5 R5F101JKDFA, R5F101JLDFA R5F100JCGFA, R5F100JDGFA, R5F100JEGFA, R5F100JFGFA, R5F100JGGFA, R5F100JHGFA, R5F100JJGFA | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |---------------------|--------------|----------------|-----------------| | P-LQFP52-10x10-0.65 | PLQP0052JA-A | P52GB-65-GBS-1 | 0.3 | © 2012 Renesas Electronics Corporation. All rights reserved. (UNIT:mm) | | | | Description | |------|--------------|----------|---| | Rev. | Date | Page | Summary | | 3.00 | Aug 02, 2013 | 163 | Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2) | | | | 164, 165 | Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2) | | | | 166 | Modification of table in 3.5.2 Serial interface IICA | | | | 166 | Modification of IICA serial transfer timing | | | | 167 | Addition of table in 3.6.1 A/D converter characteristics | | | | 167, 168 | Modification of table and notes 3 and 4 in 3.6.1 (1) | | | | 169 | Modification of description in 3.6.1 (2) | | | | 170 | Modification of description and note 3 in 3.6.1 (3) | | | | 171 | Modification of description and notes 3 and 4 in 3.6.1 (4) | | | | 172 | Modification of table and note in 3.6.3 POR circuit characteristics | | | | 173 | Modification of table of LVD Detection Voltage of Interrupt & Reset Mode | | | | 173 | Modification from Supply Voltage Rise Time to 3.6.5 Power supply voltage rising slope characteristics | | | | 174 | Modification of 3.9 Dedicated Flash Memory Programmer Communication (UART) | | | | 175 | Modification of table, figure, and remark in 3.10 Timing Specs for Switching Flash Memory Programming Modes | | 3.10 | Nov 15, 2013 | 123 | Caution 4 added. | | | | 125 | Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted. | | 3.30 | Mar 31, 2016 | | Modification of the position of the index mark in 25-pin plastic WFLGA (3 \times 3 mm, 0.50 mm pitch) of 1.3.3 25-pin products | | | | | Modification of power supply voltage in 1.6 Outline of Functions [20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products] | | | | | Modification of power supply voltage in 1.6 Outline of Functions [40-pin, 44-pin, 48-pin, 52-pin, 64-pin products] | | | | | Modification of power supply voltage in 1.6 Outline of Functions [80-pin, 100-pin, 128-pin products] | | | | | ACK corrected to ACK | | | | | ACK corrected to ACK | All trademarks and registered trademarks are the property of their respective owners. SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan. Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.