

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XFI

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K × 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100aegsp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5.5 32-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

2.3 DC Characteristics

2.3.1 Pin characteristics

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$1.6~V \leq EV_{DD0} \leq 5.5~V$			-10.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			-55.0	mA
		P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145 (When duty $\leq 70\%^{\text{Note 3}}$)	$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-10.0	mA
			$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			-5.0	mA
			$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			-2.5	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			-80.0	mA
			$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-19.0	mA
			$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			-10.0	mA
		(When duty $\leq 70\%$ ^{Note 3})	$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			-5.0	mA
		Total of all pins (When duty $\leq 70\%$ ^{Note 3})	$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$			-135.0 Note 4	mA
	Іон2	Per pin for P20 to P27, P150 to P156	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-1.5	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.

- 2. However, do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- **4.** The applied current for the products for industrial application (R5F100xxDxx, R5F101xxDxx, R5F100xxGxx) is -100 mA.
- Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$ (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	$f_{\text{IH}} = 32 \text{ MHz}^{\text{Note 3}}$	Basic	$V_{DD} = 5.0 V$		2.1		mA
current Note 1		mode	speed main)		operation	V _{DD} = 3.0 V		2.1		mA
			mode		Normal	$V_{DD} = 5.0 V$		4.6	7.0	mA
					operation	V _{DD} = 3.0 V		4.6	7.0	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 V$		3.7	5.5	mA
					operation	V _{DD} = 3.0 V		3.7	5.5	mA
				f⊪ = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.7	4.0	mA
					operation	V _{DD} = 3.0 V		2.7	4.0	mA
			LS (low-	$f_{IH} = 8 \text{ MHz}^{Note 3}$	Normal	V _{DD} = 3.0 V		1.2	1.8	mA
			speed main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.2	1.8	mA
			LV (low-	$f_{\text{IH}} = 4 \text{ MHz}^{\text{Note 3}}$	Normal	$V_{DD} = 3.0 V$		1.2	1.7	mA
			voltage main) mode		operation	$V_{DD} = 2.0 V$		1.2	1.7	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal	Square wave input		3.0	4.6	mA
			speed main) mode ^{Note 5}	$V_{DD} = 5.0 V$	operation	Resonator connection		3.2	4.8	mA
				$f_{MX} = 20 \text{ MHz}^{Note 2}$,	Normal	Square wave input		3.0	4.6	mA
				$V_{DD} = 3.0 V$	operation	Resonator connection		3.2	4.8	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	2.7	mA
				$V_{DD} = 5.0 V$	operation	Resonator connection		1.9	2.7	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	2.7	mA
				$V_{DD} = 3.0 V$	operation	Resonator connection		1.9	2.7	mA
			LS (low-	$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal operation	Square wave input		1.1	1.7	mA
			speed main) mode ^{Note 5}	$V_{DD} = 3.0 V$		Resonator connection		1.1	1.7	mA
				$f_{MX} = 8 MHz^{Note 2}$,	Normal	Square wave input		1.1	1.7	mA
				$V_{DD} = 2.0 V$	operation	Resonator connection		1.1	1.7	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
			clock operation	Note 4 $T_A = -40^{\circ}C$	operation	Resonator connection		4.2	5.0	μA
				fsub = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
				$T_A = +25^{\circ}C$	operation	Resonator connection		4.2	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	5.5	μA
				Note 4 $T_A = +50^{\circ}C$	operation	Resonator connection		4.3	5.6	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μA
				Note 4 TA = $+70^{\circ}$ C	operation	Resonator connection		4.4	6.4	μA
				fsug = 32,768 kHz	Normal	Square wave input		4.6	77	//Α
				Note 4	operation	Resonator		4.7	7.8	μA
				1A = +85°C						

(Notes and Remarks are listed on the next page.)

2.4 AC Characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Items	Symbol		MIN.	TYP.	MAX.	Unit		
Instruction cycle (minimum	Тсү	Main	HS (high-	$2.7V\!\leq\!V_{DD}\!\leq\!5.5V$	0.03125		1	μS
instruction execution time)		system clock (fmain)	speed main) mode	$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μs
		operation	LS (low-speed main) mode	$1.8 V \le V_{DD} \le 5.5 V$	0.125		1	μS
			LV (low- voltage main) mode	$1.6~V \le V_{DD} \le 5.5~V$	0.25		1	μs
		Subsystem of	clock (fsua)	$1.8V\!\le\!V_{DD}\!\le\!5.5V$	28.5	30.5	31.3	μS
		operation	[
		In the self	HS (high-	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	0.03125		1	μS
		mode	mode	$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μS
			LS (low-speed main) mode	$1.8V\!\leq\!V_{DD}\!\leq\!5.5V$	0.125		1	μS
			LV (low- voltage main) mode	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	0.25		1	μS
External system clock	fex	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	I	1.0		20.0	MHz
frequency		$2.4 V \le V_{DD}$	< 2.7 V		1.0		16.0	MHz
		$1.8 V \le V_{DD}$	< 2.4 V		1.0		8.0	MHz
		$1.6 V \le V_{DD}$	< 1.8 V		1.0		4.0	MHz
	fexs				32		35	kHz
External system clock input	texh, texl	$2.7 \ V \le V_{DD}$	≤ 5.5 V		24			ns
high-level width, low-level width		$2.4 V \le V_{DD}$.	< 2.7 V		30			ns
		$1.8 V \le V_{DD}$	< 2.4 V		60			ns
		$1.6 V \le V_{DD}$	< 1.8 V		120			ns
	texhs, texls				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтıн, tтı∟				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	fтo	HS (high-spe	eed 4.0 V	$\leq EV_{DD0} \leq 5.5 V$			16	MHz
output frequency		main) mode	2.7 V	$\leq EV_{DD0} < 4.0 V$			8	MHz
			1.8 V	$\leq EV_{DD0} < 2.7 V$			4	MHz
			1.6 V	\leq EV _{DD0} < 1.8 V			2	MHz
		LS (low-spee	ed 1.8 V	$\leq EV_{DD0} \leq 5.5 V$			4	MHz
			1.6 V	$\leq EV_{DD0} < 1.8 V$			2	MHz
		LV (low-volta main) mode	age 1.6 V	$\leq EV$ DD0 $\leq 5.5 V$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe	eed 4.0 V	$\leq EV_{DD0} \leq 5.5 V$			16	MHz
nequency		main) mode	2.7 V	$\leq EV_{DD0} < 4.0 V$			8	MHz
			1.8 V	$\leq EV_{DD0} < 2.7 V$			4	MHz
		10 //	1.6 V	\leq EV _{DD0} < 1.8 V			2	MHz
		LS (IOW-Spee main) mode	ea 1.8 V	$\leq EVDD0 \leq 5.5 V$			4	MIHZ
			1.6 V	$\leq EVDD0 < 1.8 V$			2	
		main) mode	1.8 V	$\geq EVDD0 \leq 5.5 V$			4	IVIHZ M⊔⇒
Interrupt input high-lovel width	tiniti i		1.0 V		1		2	IVII⊓∠ ./e
low-level width	tINTL		1.0 V	< EVDD < 5.5 V	1			μs
Key interrupt input low-level tree KB0 to KB7 1		1.0 V	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$				μο ne	
width			1.6 V	< EV _{DD0} < 1.8 V	1	1	<u> </u>	45
RESET low-level width	trsl				10			μs

(Note and Remark are listed on the next page.)

AC Timing Test Points Vін/Vон Vін/Vон Test points VIL/VOL VIL/VOL **External System Clock Timing** 1/f_{EX}/ 1/f_{EXS} texl/ texн/ **t**EXLS **t**EXHS EXCLK/EXCLKS **TI/TO Timing** t⊤ı∟ tтıн TI00 to TI07, TI10 to TI17 **1/f**то TO00 to TO07, TO10 to TO17 **Interrupt Request Input Timing t**INTL **t**INTH INTP0 to INTP11 **Key Interrupt Input Timing t**ĸĸ KR0 to KR7 **RESET** Input Timing tRSL RESET

Parameter	Symbol	Conditions	HS (hig main)	h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$		1000 Note 1		400 Note 1		400 Note 1	kHz
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$		400 Note 1		400 Note 1		400 Note 1	kHz
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$		300 Note 1		300 Note 1		300 Note 1	kHz
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$		250 Note 1		250 Note 1		250 Note 1	kHz
		1.6 V ≤ EV _{DD0} < 1.8 V, C₀ = 100 pF, R₀ = 5 kΩ		_		250 Note 1		250 Note 1	kHz
Hold time when SCLr = "L"	t∟ow	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$	1150		1150		1150		ns
		1.8 V \leq EV _{DD0} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1550		1550		1550		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$	1850		1850		1850		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$			1850		1850		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$	1150		1150		1150		ns
		1.8 V \leq EV _{DD0} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1550		1550		1550		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$	1850		1850		1850		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$	_		1850		1850		ns

(5) During communication at same potential (simplified I²C mode) (1/2)

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
 h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Parameter	Symbol	ol Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	$ \begin{array}{c} \mbox{tkcy1} \\ \mbox{tkcy1} \geq 4/f_{CLK} \\ \mbox{tkcy1} \geq 4/f_{CLK} \\ \mbox{2.7 V} \leq V_b \leq 4.0 \ V, \\ \mbox{2.7 V} \leq V_b \leq 4.0 \ V, \\ \mbox{cky1} \\ \mbox{tkcy1} \geq 4/f_{CLK} \\ \$		$4.0 V \le EV_{DD0} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$, $C_{1} = 20 pE_{1} P_{2} = 1.4 kC$	300		1150		1150		ns
			$C_0 = 30 \text{ pr}$, $H_0 = 1.4 \text{ KS2}$ 2.7 V \leq EV _{DD0} < 4.0 V, 2.3 V \leq V _b \leq 2.7 V, C _b = 30 pE B _b = 2.7 kQ	500		1150		1150		ns
			$\begin{split} & 0.5 = 0.0 \ \text{pr} \ \text{, the} = 2.0 \ \text{Nat} \\ & 1.8 \ \text{V} \leq \text{EV}_{\text{DD0}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note}}, \end{split}$	1150		1150		1150		ns
			$C_{\text{b}}=30 \text{ pF}, \text{R}_{\text{b}}=5.5 \text{k}\Omega$							
SCKp high-level width	tкнı	$\label{eq:loss} \begin{split} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \end{split}$				tксү1/2 – 75		tксү1/2 – 75		ns
		$C_b = 30 \text{ pF}, I$								
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} \\ 2.3 \ V \leq V_b \leq \\ C_b = 30 \ pF, \ l \end{array}$	tксү1/2 – 170		tксү1/2 – 170		tксү1/2 – 170		ns	
		$1.8 V \le EV_{DE}$ $1.6 V \le V_b \le C_b = 30 \text{ pE}.$	tксү1/2 – 458		tксү1/2 – 458		tксү1/2 – 458		ns	
SCKp low-level width	tĸ∟1	$4.0 V \le EV_{DE}$ $2.7 V \le V_b \le C_b = 30 pF, I$	∞ ≤ 5.5 V, 4.0 V, Rь = 1.4 kΩ	tксү1/2 – 12		tксү1/2 – 50		tксү1/2 – 50		ns
	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ 2.3 V \leq V _b \leq 2.7 V, C _b = 30 pF, R _b = 2.7 kΩ		tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns	
	$\label{eq:cb} \begin{array}{l} C_b = 30 \ \text{pr}, \ \text{H}_b = 2.7 \ \text{K}\Omega \\ \\ \hline 1.8 \ \text{V} \leq \text{EV}_{\text{DD0}} < 3.3 \ \text{V}, \\ 1.6 \ \text{V} \leq \text{V}_b \leq 2.0 \ \text{V}^{\text{Note}}, \\ \\ C_b = 30 \ \text{pF}, \ \text{R}_b = 5.5 \ \text{k}\Omega \end{array}$					tксү1/2 – 50		tксү1/2 – 50		ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Note Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

Parameter	Symbol	Conditions	HS (higl main)	h-speed Mode	LS (low main)	r-speed Mode	LV (low main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 1}	tsıкı	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD0}} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \end{array}$	44		110		110		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$							
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \end{array}$	44		110		110		ns
		C_{b} = 30 pF, R_{b} = 2.7 $k\Omega$							
		$ \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{split} $	110		110		110		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
Slp hold time (from SCKp↓) ^{Note 1}	tksii	$\label{eq:linear_states} \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \end{array}$	19		19		19		ns
		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \end{array}$	19		19		19		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$ \begin{aligned} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{aligned} $	19		19		19		ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=5.5 \text{k}\Omega$							
Delay time from SCKp↑ to	tkso1	$\label{eq:linear_states} \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$		25		25		25	ns
SOp output Note 1		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$		25		25		25	ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{array}$		25		25		25	ns
		C_b = 30 pF, R_b = 5.5 k Ω							

1	$(T_A = -40 \text{ to } +85^{\circ}\text{C} + 1.8 \text{ V} \le \text{EV}_{DD} = \text{EV}_{D1} \le \text{V}_{D2} \le 5.5$	5 V	$V_{SS} = FV_{SS0} = FV_{SS1} = 0 V$
١.	$(1A = -40 10 + 05 0, 1.0 4 \le 24000 = 24001 \le 400 \le 5.5$, v ;	$, v_{33} - \Box v_{330} - \Box v_{331} - O v_{j}$

Notes 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

2. Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

2.5.2 Serial interface IICA

(1) I^2C standard mode

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	C	Conditions		h-speed Mode	LS (low main)	LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Standard	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	100	0	100	0	100	kHz
		mode:	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	100	0	100	0	100	kHz
			$1.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	100	0	100	0	100	kHz
			$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$	-		0	100	0	100	kHz
Setup time of restart	tsu:sta	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
condition		$1.8 V \le EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.6~V \leq EV_{DD0} \leq 5.5~V$		-	_	4.7		4.7		μs
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$		4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V			4.0		4.0		μs
Hold time when SCLA0 =	tLOW	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
"L"		$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		4.7		4.7		4.7		μs
		$1.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		4.7		4.7		4.7		μs
		$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$		-	_	4.7		4.7		μs
Hold time when SCLA0 =	tніgн	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		4.0		4.0		4.0		μs
"H"		$1.8 \text{ V} \leq EV_{\text{DD0}}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.7 V \le EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	-	_	4.0		4.0		μs
Data setup time	tsu:dat	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	250		250		250		ns
(reception)		$1.8 V \le EV_{DD0}$	≤ 5.5 V	250		250		250		ns
		$1.7 V \leq EV_{DD0}$	≤ 5.5 V	250		250		250		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	-	_	250		250		ns
Data hold time	thd:dat	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
(transmission) ^{Note 2}		$1.8 V \le EV_{DD0}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
		$1.7 V \le EV_{DD0}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	_	_	0	3.45	0	3.45	μs
Setup time of stop	tsu:sto	$2.7 V \leq EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
condition		$1.8 V \le EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.7~V \le EV_{\text{DD0}} \le 5.5~V$		4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		_	4.0		4.0		μs
Bus-free time	t BUF	$2.7 V \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		4.7		4.7		4.7		μs
		$1.7 V \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		-	_	4.7		4.7		μs

(Notes, Caution and Remark are listed on the next page.)

(3) I²C fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD0} = EV_{DD1} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS0} = EV_{SS1} = 0 \text{ V})$

Parameter	Symbol	Con	iditions	HS (higl main)	h-speed Mode	LS (low main)	/-speed Mode	LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode plus: fc∟κ≥ 10 MHz	$2.7~V \le EV_{\text{DD0}} \le 5.5~V$	0	1000		_	—		kHz
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \leq EV_{DD0} \leq 5.5$	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$					—		μs
Hold time ^{Note 1}	thd:sta	$2.7 V \le EV_{DD0} \le 5.5$	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$					—		μS
Hold time when SCLA0 = "L"	t∟ow	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5$	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			—		—		μs
Hold time when SCLA0 = "H"	tніgн	$2.7 V \le EV_{DD0} \le 5.5$	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$					_		μs
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq EV_{DD0} \leq 5.5$	5 V	50		—			-	μS
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$	5 V	0	0.45		_		-	μs
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \leq EV_{DD0} \leq 5.5$	5 V	0.26	-		-	_		μS
Bus-free time	tbur	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5$	5 V	0.5			_	_	_	μs

<R>

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: $C_b = 120 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

Remark n = 0, 1

2.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, $T_A = +25^{\circ}C$		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

(T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode)

2.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	TPW		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

This chapter describes the following electrical specifications.

Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$ R5F100xxGxx

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product.
 - 4. Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.

Remark When RL78/G13 is used in the range of $T_A = -40$ to +85°C, see **CHAPTER 2 ELECTRICAL** SPECIFICATIONS ($T_A = -40$ to +85°C).

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$)" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	Application				
	A: Consumer applications, D: Industrial applications	G: Industrial applications			
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C			
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:			
Operating voltage range	2.7 V \leq V _{DD} \leq 5.5 V@1 MHz to 32 MHz	2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz			
	2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz	2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz			
	LS (low-speed main) mode:				
	1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz				
	LV (low-voltage main) mode:				
	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 4 MHz				
High-speed on-chip oscillator clock	$1.8 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	$2.4~V \le V_{\text{DD}} \le 5.5~V$			
accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C			
	±1.5%@ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C			
	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	±1.5%@ T _A = -40 to -20°C			
	±5.0%@ T _A = -20 to +85°C				
	±5.5%@ T _A = -40 to -20°C				
Serial array unit	UART	UART			
	CSI: fcLK/2 (supporting 16 Mbps), fcLK/4	CSI: fclk/4			
	Simplified I ² C communication	Simplified I ² C communication			
IICA	Normal mode	Normal mode			
	Fast mode	Fast mode			
	Fast mode plus				
Voltage detector	Rise detection voltage: 1.67 V to 4.06 V	Rise detection voltage: 2.61 V to 4.06 V			
	(14 levels)	(8 levels)			
	Fall detection voltage: 1.63 V to 3.98 V	Fall detection voltage: 2.55 V to 3.98 V			
	(14 levels)	(8 levels)			

(Remark is listed on the next page.)

•									
Parameter	Symbol		1	Conditions		MIN.	TYP.	MAX.	Unit
Supply current	IDD2 Note 2	HALT	HS (high- speed main)	$f_{IH} = 32 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		0.54	2.90	mA
		mode	mode ^{Note 7}		$V_{DD} = 3.0 V$		0.54	2.90	mA
				$f_{\text{IH}} = 24 \text{ MHz}^{\text{Note 4}}$	$V_{DD} = 5.0 V$		0.44	2.30	mA
					$V_{DD} = 3.0 V$		0.44	2.30	mA
				$f_{\text{IH}} = 16 \text{ MHz}^{\text{Note 4}}$	$V_{DD} = 5.0 V$		0.40	1.70	mA
					$V_{DD} = 3.0 V$		0.40	1.70	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		0.28	1.90	mA
			mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.45	2.00	mA
				$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		0.28	1.90	mA
				VDD = 3.0 V	Resonator connection		0.45	2.00	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		0.19	1.02	mA
				VDD = 5.0 V	Resonator connection		0.26	1.10	mA
			$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		0.19	1.02	mA	
			VDD = 3.0 V	Resonator connection		0.26	1.10	mA	
			Subsystem clock operation	fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA
				$T_A = -40^{\circ}C$	Resonator connection		0.44	0.76	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μA
			$T_A = +25^{\circ}C$	Resonator connection		0.49	0.76	μA	
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.37	1.17	μA
				$T_A = +50^{\circ}C$	Resonator connection		0.56	1.36	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.53	1.97	μA
				$T_A = +70^{\circ}C$	Resonator connection		0.72	2.16	μA
			fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.82	3.37	μA	
			$T_A = +85^{\circ}C$	Resonator connection		1.01	3.56	μA	
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		3.01	15.37	μA
				$T_A = +105^{\circ}C$	Resonator connection		3.20	15.56	μA
		STOP	$T_A = -40^{\circ}C$				0.18	0.50	μA
	mode [№]	mode ^{Note 8}	mode ^{Note 8} $T_A = +25^{\circ}C$				0.23	0.50	μA
			$T_A = +50^{\circ}C$				0.30	1.10	μA
			$T_A = +70^{\circ}C$				0.46	1.90	μA
			T _A = +85°C				0.75	3.30	μA
			T _A = +105°C	;			2.94	15.30	μA

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (TA = -40 to $+105^{\circ}$ C, 2.4 V $\leq EV_{DD0} \leq V_{DD} \leq 5.5$ V, Vss = EVss₀ = 0 V) (2/2)

(Notes and Remarks are listed on the next page.)

Parameter	Symbol			Conditions		MIN.	TYP	MAX.	Unit
Supply		HAI T	HS (high-	$f_{\rm H} = 32 \text{ MHz}^{\rm Note 4}$	$V_{DD} = 5.0 V$		0.62	3 40	mA
current	Note 2	mode	speed main)		$V_{DD} = 3.0 \text{ V}$		0.62	3.40	mA
Note 1			mode ^{Note 7}	fін = 24 MHz ^{Note 4}	$V_{DD} = 5.0 V$		0.50	2.70	mA
					$V_{DD} = 3.0 \text{ V}$		0.50	2.70	mA
				fін = 16 MHz ^{Note 4}	$V_{DD} = 5.0 V$		0.44	1.90	mA
					V _{DD} = 3.0 V		0.44	1.90	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	2.10	mA
			speed main) mode ^{Note 7}	Vdd = 5.0 V	Resonator connection		0.48	2.20	mA
				fмx = 20 MHz ^{Note 3} ,	Square wave input		0.31	2.10	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.48	2.20	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	1.10	mA
				$V_{DD} = 5.0 V$	Resonator connection		0.28	1.20	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		0.21	1.10	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.28	1.20	mA
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μA
			clock operation	$T_A = -40^{\circ}C$	Resonator connection		0.47	0.80	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μA
				T _A = +25°C	Resonator connection		0.53	0.80	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μA
				T _A = +50°C	Resonator connection		0.60	2.49	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.64	4.03	μA
				$T_A = +70^{\circ}C$	Resonator connection		0.83	4.22	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μA
				T _A = +85°C	Resonator connection		1.28	8.23	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		5.50	41.00	μA
				T _A = +105°C	Resonator connection		5.50	41.00	μA
	DD3	STOP	$T_A = -40^{\circ}C$				0.19	0.52	μA
		mode ^{™ote 8}	mode ^{Note 8} $T_A = +25^{\circ}C$				0.25	0.52	μA
			T _A = +50°C				0.32	2.21	μA
			T _A = +70°C				0.55	3.94	μA
			$T_A = +85^{\circ}C$				1.00	7.95	μA
			T _A = +105°C				5.00	40.00	μA

((2) Flash ROM: 96 to 256 KB of 30- to 100-pin products		
($(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$	(2	/2)

(Notes and Remarks are listed on the next page.)

•	,		,		,		
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	IFIL Note 1				0.20		μA
RTC operating current	RTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	IT Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter	ADC	When conversion	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
operating current		at maximum speed	Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		0.5	0.7	mA
A/D converter reference voltage current	ADREF Note 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	ILVD Notes 1, 7				0.08		μA
Self programming operating current	FSP Notes 1, 9				2.50	12.20	mA
BGO operating current	BGO Notes 1, 8				2.50	12.20	mA
SNOOZE	Isnoz	ADC operation	The mode is performed Note 10		0.50	1.10	mA
operating current	Note 1		The A/D conversion operations are performed, Loe voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		1.20	2.04	mA
		CSI/UART operation	on		0.70	1.54	mA

(3) Peripheral Functions (Common to all products) (TA = -40 to $+105^{\circ}$ C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.

- Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter is in operation.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- **9.** Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode in the RL78/G13 User's Manual.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number , n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

4. PACKAGE DRAWINGS

4.1 20-pin Products

R5F1006AASP, R5F1006CASP, R5F1006DASP, R5F1006EASP R5F1016AASP, R5F1016CASP, R5F1016DASP, R5F1016EASP R5F1006ADSP, R5F1006CDSP, R5F1006DDSP, R5F1006EDSP R5F1016ADSP, R5F1016CDSP, R5F1016DDSP, R5F1016EDSP R5F1006AGSP, R5F1006CGSP, R5F1006DGSP, R5F1006EGSP

° i		
P-LSSOP20-0300-0.65 PLS	SP0020JC-A S20MC-	65-5A4-3 0.12

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

D	$0.24^{+0.08}_{-0.07}$
Е	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
K	0.17±0.03
L	0.5
М	0.13
Ν	0.10
Ρ	3° ^{+5°} -3°
Т	0.25
U	0.6±0.15

© 2012 Renesas Electronics Corporation. All rights reserved.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.