

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100afasp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1.	List of Ordering Part Numbers
------------	-------------------------------

Pin count	Package	Data flash	Fields of Application ^{Note}	Ordering Part Number
64 pins	64-pin plastic LQFP	Mounted	А	R5F100LCAFA#V0, R5F100LDAFA#V0,
	(12 × 12 mm, 0.65			R5F100LEAFA#V0, R5F100LFAFA#V0,
	mm pitch)			R5F100LGAFA#V0, R5F100LHAFA#V0,
	. ,			R5F100LJAFA#V0, R5F100LKAFA#V0, R5F100LLAFA#V0
				R5F100LCAFA#X0, R5F100LDAFA#X0,
				R5F100LEAFA#X0, R5F100LFAFA#X0,
			D	R5F100LGAFA#X0, R5F100LHAFA#X0,
				R5F100LJAFA#X0, R5F100LKAFA#X0, R5F100LLAFA#X0
				R5F100LCDFA#V0, R5F100LDDFA#V0,
				R5F100LEDFA#V0, R5F100LFDFA#V0,
				R5F100LGDFA#V0, R5F100LHDFA#V0,
				R5F100LJDFA#V0, R5F100LKDFA#V0, R5F100LLDFA#V0
			G	R5F100LCDFA#X0, R5F100LDDFA#X0,
				R5F100LEDFA#X0, R5F100LFDFA#X0,
				R5F100LGDFA#X0, R5F100LHDFA#X0,
				R5F100LJDFA#X0, R5F100LKDFA#X0, R5F100LLDFA#X0
				R5F100LCGFA#V0, R5F100LDGFA#V0,
				R5F100LEGFA#V0, R5F100LFGFA#V0
				R5F100LCGFA#X0, R5F100LDGFA#X0,
				R5F100LEGFA#X0, R5F100LFGFA#X0
				R5F100LGGFA#V0, R5F100LHGFA#V0,
				R5F100LJGFA#V0
				R5F100LGGFA#X0, R5F100LHGFA#X0,
				R5F100LJGFA#X0
		Not	А	R5F101LCAFA#V0, R5F101LDAFA#V0,
		mounted		R5F101LEAFA#V0, R5F101LFAFA#V0,
				R5F101LGAFA#V0, R5F101LHAFA#V0,
				R5F101LJAFA#V0, R5F101LKAFA#V0, R5F101LLAFA#V0
				R5F101LCAFA#X0, R5F101LDAFA#X0,
				R5F101LEAFA#X0, R5F101LFAFA#X0,
			D	R5F101LGAFA#X0, R5F101LHAFA#X0,
				R5F101LJAFA#X0, R5F101LKAFA#X0, R5F101LLAFA#X0
				R5F101LCDFA#V0, R5F101LDDFA#V0,
				R5F101LEDFA#V0, R5F101LFDFA#V0,
				R5F101LGDFA#V0, R5F101LHDFA#V0,
				R5F101LJDFA#V0, R5F101LKDFA#V0, R5F101LLDFA#V0
				R5F101LCDFA#X0, R5F101LDDFA#X0,
				R5F101LEDFA#X0, R5F101LFDFA#X0,
				R5F101LGDFA#X0, R5F101LHDFA#X0,
				R5F101LJDFA#X0, R5F101LKDFA#X0, R5F101LLDFA#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.12 80-pin products

- 80-pin plastic LQFP (14 \times 14 mm, 0.65 mm pitch)
- 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)

Cautions 1. Make EVsso pin the same potential as Vss pin.

- 2. Make VDD pin the potential that is higher than EVDD0 pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the V_{SS} and EV_{SS0} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.14 128-pin products

• 128-pin plastic LFQFP (14 × 20 mm, 0.5 mm pitch)

Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin.

- 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1).
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVDD0 and EVDD1 pins and connect the Vss, EVss0 and EVss1 pins to separate ground lines.
- **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

[40-pin, 44-pin, 48-pin, 52-pin, 64-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

	lt a sa	40				40		50		(1/2	/	
	Item	40-		44-	pin		pin	52-	pin	64-	pin	
		R5F100Ex	R5F101Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx	
Code flash m	nemory (KB)	16 to	o 192	16 t	o 512	16 t	o 512	32 to 512 32 to			512	
Data flash m	emory (KB)	4 to 8	_	4 to 8	-	4 to 8	_	4 to 8	_	4 to 8	-	
RAM (KB)		2 to 1	16 ^{Note1}	2 to 3	32 ^{Note1}	2 to 3	32 ^{Note1}	2 to 3	32 ^{Note1}	2 to 32 ^{Note1}		
Address spa	ce	1 MB										
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode: 1 to 20 MHz ($V_{DD} = 2.7$ to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz ($V_{DD} = 2.4$ to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz ($V_{DD} = 1.8$ to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz ($V_{DD} = 1.6$ to 5.5 V)										
	High-speed on-chip oscillator	HS (High LS (Low-	S (High-speed main) mode: 1 to 32 MHz ($V_{DD} = 2.7$ to 5.5 V), S (High-speed main) mode: 1 to 16 MHz ($V_{DD} = 2.4$ to 5.5 V), S (Low-speed main) mode: 1 to 8 MHz ($V_{DD} = 1.8$ to 5.5 V), V (Low-voltage main) mode: 1 to 4 MHz ($V_{DD} = 1.6$ to 5.5 V)									
Subsystem c	lock	· · ·	[1 (crystal) oscillation, external subsystem clock input (EXCLKS) 2.768 kHz									
Low-speed o	n-chip oscillator	15 kHz (ΓYP.)									
General-purp	oose registers	(8-bit reg	ister \times 8)	× 4 banks								
Minimum ins	truction execution time	execution time 0.03125 μ s (High-speed on-chip oscillator: f _{IH} = 32 MHz operation)										
		0.05 <i>μ</i> s (High-spee	ed system	clock: f _{MX}	= 20 MHz	operation)					
		30.5 μs (Subsyster	n clock: fs	ив = 32.76	8 kHz ope	ration)					
Instruction se	et	AdderMultipl	ication (8	actor/logic bits \times 8 bit	s)			and Boole	ean opera	tion), etc.		
I/O port	Total	0	36	4	10	4	14	2	18	5	8	
	CMOS I/O	(N-ch ([V _{DD} wi	28 D.D. I/O ithstand je]: 10)	(N-ch ([V _{DD} w	31 D.D. I/O ithstand je]: 10)	(N-ch ([V _{DD} w	34 D.D. I/O ithstand je]: 11)	(N-ch ([V _{DD} wi	38 D.D. I/O ithstand je]: 13)	4 (N-ch C [V₀₀ wit voltag	D.D. I/C thstanc	
	CMOS input		5		5		5		5	5	5	
	CMOS output				_		1		1	1	1	
	N-ch O.D. I/O (withstand voltage: 6 V)	:	3		4		4		4	4	1	
Timer	16-bit timer					8 cha	nnels					
	Watchdog timer					1 cha	annel					
	Real-time clock (RTC)					1 cha	annel					
	12-bit interval timer (IT)						annel					
	Timer output	4 channels outputs: 3 8 channels outputs: 7	^{Note 2}), s (PWM	5 channe 8 channe	ls (PWM o ls (PWM o	utputs: 4 [∾] utputs: 7 [∾]	ote ²), ote ²) Note ³			8 channels outputs: 7		
	RTC output	1 channe • 1 Hz (s		i clock: fsu	B = 32 768	kHz)						

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = E to G, J, L): Start address FF300H

- R5F100xE, R5F101xE (x = E to G, J, L): Start address FEF00H
- R5F100xJ, R5F101xJ (x = F, G, J, L): Start address FAF00H
 - Start address F7F00H

R5F100xL, R5F101xL (x = F, G, J, L): For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

^{3.} When setting to PIOR = 1

lt o	m	40	40-pin 44-pin 48-pin		nin	EO	nin	(2/2) 64-pin			
Ite					İ.			52	-pin I		
		R5F100Ex	R5F101Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx
Clock output/buzz	er output	:	2		2		2		2		2
·		(Main s • 256 Hz	 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsuB = 32.768 kHz operation) 								
8/10-bit resolution	A/D converter	9 channe	ls	10 chanr	nels	10 chanr	nels	12 chan	nels	12 chanr	nels
Serial interface		[40-pin, 4	4-pin prod	ducts]							
	 CSI: 1 CSI: 2 [48-pin, 5 CSI: 2 CSI: 1 CSI: 2 [64-pin pineter of the second sec	 CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel [48-pin, 52-pin products] CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 1 channel/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel [64-pin products] CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel 									
	I ² C bus	1 channe		1 channe		1 channe		1 channe		1 channe	
Multiplier and divid		 16 bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 									
		• 16 bits	× 16 bits +	- 32 bits =	32 bits (U	nsigned or	r signed)				
DMA controller		2 channe	ls								
Vectored	Internal	2	27	:	27	2	27		27	2	27
interrupt sources	External		7		7		10		12		13
Key interrupt			4		4		6		8		8
Reset		 Interna Interna Interna Interna Interna 	I reset by I reset by I reset by I reset by	watchdog power-on- voltage de	reset etector ruction ex sy error	ecution ^{Note}					
Power-on-reset ci	rcuit		on-reset: down-res	1.51 V et: 1.50 V	. ,						
Voltage detector		RisingFalling	-			14 stages 14 stages					
On-chip debug fur	nction	Provided									
Power supply volta				$T_A = -40 \text{ to}$ $T_A = -40 \text{ to}$							
Operating ambien	t temperature	$T_A = 40 to$	o +85°C (/		ner applica	itions, D: Ii ations)	ndustrial a	pplication	s)		

<R>

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($T_A = 25^{\circ}C$) ((1/2)	
--	-------	--

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		–0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	–0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	–0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	VII	P00 to P07, P10 to P17, P30 to P37, P40 to P47,	-0.3 to EVDD0 +0.3	V
		P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	and –0.3 to V _{DD} +0.3 ^{Note 2}	
	VI2	P60 to P63 (N-ch open-drain)	–0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	Voi	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147		V
	V ₀₂	P20 to P27, P150 to P156	-0.3 to VDD +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI26	-0.3 to EV _{DD0} +0.3 and -0.3 to AV _{REF} (+) +0.3 ^{Notes 2, 3}	V
	Vai2	ANI0 to ANI14	-0.3 to V_DD +0.3 and -0.3 to AV_REF(+) +0.3 Notes2,3	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Юн1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	Iol1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins] [5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +85	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (TA = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		16.0	MHz
		$1.8~V \leq V_{\text{DD}} < 2.4~V$	1.0		8.0	MHz
		$1.6~V \leq V_{\text{DD}} < 1.8~V$	1.0		4.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

- **Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to **5.4 System Clock Oscillator**.

2.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		32	MHz
High-speed on-chip oscillator		–20 to +85 °C	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	-1.0		+1.0	%
clock frequency accuracy			$1.6~V \leq V_{\text{DD}} < 1.8~V$	-5.0		+5.0	%
		–40 to –20 °C	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	-1.5		+1.5	%
			$1.6~V \leq V_{\text{DD}} < 1.8~V$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	(Conditions H		h-speed Mode	``	/-speed Mode	LV (low- main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tксү1 \geq 2/fclк	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$	62.5		250		500		ns
			$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	83.3		250		500		ns
SCKp high-/low-level width	tкнı, tк∟ı	$4.0 V \le EV_{DI}$	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			tксү1/2 – 50		tксү1/2 – 50		ns
		2.7 V ≤ EV _D	$500 \leq 5.5 \text{ V}$	tксү1/2 – 10		tксү1/2 – 50		tксү1/2 – 50		ns
SIp setup time (to SCKp [↑])	tsik1	$4.0 \ V \le EV_{DI}$	$00 \leq 5.5 \text{ V}$	23		110		110		ns
Note 1		$2.7 \text{ V} \leq EV_{\text{DI}}$	$00 \leq 5.5 \text{ V}$	33		110		110		ns
Slp hold time (from SCKp↑) ^{Note 2}	tksii	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tĸso1	C = 20 pF ^{Not}	te 4		10		10		10	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** This value is valid only when CSI00's peripheral I/O redirect function is not used.
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM numbers (g = 1)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00))

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat		1/fмск + 135 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
		$\label{eq:V} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 135 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
			1/fмск + 190 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
	$\label{eq:linear} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 190 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz	
	$ \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split} $	1/f _{MCK} + 190 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz	
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	ns
		$\label{eq:linear} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	ns
			0	355	0	355	0	355	ns
		$\label{eq:linear} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	355	0	355	0	355	ns
		$\label{eq:VDD} \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	0	405	0	405	0	405	ns

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2) (T_A = -40 to +85°C. 1.8 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V. Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. The value must also be equal to or less than f_MCK/4.

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
	VLVD1	Power supply rise time	3.68	3.75	3.82	V	
		Power supply fall time	3.60	3.67	3.74	V	
	VLVD2	Power supply rise time	3.07	3.13	3.19	V	
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
		Power supply fall time	2.70	2.75	2.81	V	
	VLVD6	Power supply rise time	2.66	2.71	2.76	V	
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pu	ulse width	t∟w		300			μs
Detection d	elay time					300	μS

2.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclк	$1.8~V \leq V_{DD} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 years Ta = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \leq \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \leq 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

This chapter describes the following electrical specifications.

Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$ R5F100xxGxx

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product.
 - 4. Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.

Remark When RL78/G13 is used in the range of $T_A = -40$ to +85°C, see **CHAPTER 2 ELECTRICAL SPECIFICATIONS (T_A = -40 to +85°C)**.

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$)" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	Ap	pplication
	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode Operating voltage range	$\begin{array}{l} \text{HS (high-speed main) mode:} \\ \text{2.7 V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 32 MHz} \\ \text{2.4 V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 16 MHz} \\ \text{LS (low-speed main) mode:} \\ \text{1.8 V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 8 MHz} \\ \text{LV (low-voltage main) mode:} \\ \text{1.6 V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 4 MHz} \end{array}$	HS (high-speed main) mode only: 2.7 V \leq V _{DD} \leq 5.5 V@1 MHz to 32 MHz 2.4 V \leq V _{DD} \leq 5.5 V@1 MHz to 16 MHz
High-speed on-chip oscillator clock accuracy	$\begin{array}{l} 1.8 \ V \leq V_{DD} \leq 5.5 \ V \\ \pm 1.0\% @ \ T_{A} = -20 \ to \ +85^{\circ}C \\ \pm 1.5\% @ \ T_{A} = -40 \ to \ -20^{\circ}C \\ 1.6 \ V \leq V_{DD} < 1.8 \ V \\ \pm 5.0\% @ \ T_{A} = -20 \ to \ +85^{\circ}C \\ \pm 5.5\% @ \ T_{A} = -40 \ to \ -20^{\circ}C \end{array}$	$\begin{array}{l} 2.4 \ V \leq V_{DD} \leq 5.5 \ V \\ \pm 2.0\% @ \ T_{A} = +85 \ to \ +105^{\circ}C \\ \pm 1.0\% @ \ T_{A} = -20 \ to \ +85^{\circ}C \\ \pm 1.5\% @ \ T_{A} = -40 \ to \ -20^{\circ}C \end{array}$
Serial array unit	UART CSI: fcLk/2 (supporting 16 Mbps), fcLk/4 Simplified I ² C communication	UART CSI: fcLK/4 Simplified I ² C communication
IICA	Normal mode Fast mode Fast mode plus	Normal mode Fast mode
Voltage detector	Rise detection voltage: 1.67 V to 4.06 V (14 levels) Fall detection voltage: 1.63 V to 3.98 V (14 levels)	Rise detection voltage: 2.61 V to 4.06 V (8 levels) Fall detection voltage: 2.55 V to 3.98 V (8 levels)

(Remark is listed on the next page.)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	·	0.8EV _{DD0}		EVDDO	V
	VIH2	P13 to P17, P43, P44, P53 to P55, 4.	TTL input buffer $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	2.2		EVDD0	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EVDD0	V
			TTL input buffer $2.4 \text{ V} \leq EV_{\text{DD0}} < 3.3 \text{ V}$	1.5		EVDDO	V
	VIH3	P20 to P27, P150 to P156	0.7V _{DD}		VDD	V	
	VIH4	P60 to P63	0.7EVDD0		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EXCL	0.8Vdd		VDD	V	
Input voltage, Iow	VIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		0		0.2EV _{DD0}	V
	VIL2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V \leq EV _{DD0} \leq 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V	0		0.5	V
			TTL input buffer 2.4 V \leq EV _{DD0} $<$ 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3VDD	V
	VIL4	P60 to P63		0		0.3EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	0		0.2VDD	V	

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (3/5)

- Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or Vss, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz

2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V@1 MHz to 16 MHz

- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

TI/TO Timing

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	0	Conditions	HS (high-spe	HS (high-speed main) Mode		
				MIN.	MAX.		
SCKp cycle time Note 1	t ксү2	$4.0~V \leq EV_{DD0} \leq 5.5$	24 MHz < fмск	28/f мск		ns	
		V,	$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	24/f мск		ns	
		$2.7 \: V {\le} V_b {\le} 4.0 \: V$	$8 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	20/f мск		ns	
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns	
			fмск \leq 4 MHz	12/fмск		ns	
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \label{eq:VDD0}$ V,	24 MHz < fмск	40/f мск		ns	
			$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	32/f мск		ns	
		$2.3V{\leq}V_b{\leq}2.7V$	$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	28/f мск		ns	
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	24/f мск		ns	
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns	
			fмск \leq 4 MHz	12/f мск		ns	
		$2.4~V \leq EV_{\text{DD0}} < 3.3$	24 MHz < fмск	96/f мск		ns	
		V, 1.6 V \leq V _b \leq 2.0 V	$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	72/ fмск		ns	
			$16 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	64/f мск		ns	
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	52/f мск		ns	
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	32/ fмск		ns	
			fмск \leq 4 MHz	20/fмск		ns	
SCKp high-/low-level width	tкн2, tкL2			tkcy2/2 - 24		ns	
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4. \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V \end{array}$		tkcy2/2 - 36		ns	
		$\label{eq:V_bound} \begin{split} 2.4 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{split}$		tkcy2/2 - 100		ns	
SIp setup time (to SCKp↑) ^{Note2}	tsik2	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD0}} \leq 5. \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		1/fмск + 40		ns	
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ \hline \\ 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		1/fмск + 40		ns	
				1/fмск + 60		ns	
SIp hold time (from SCKp↑) ^{№te 3}	tksi2			1/fмск + 62		ns	
Delay time from SCKp↓ to SOp output ^{№te 4}	tkso2	$\label{eq:linear} \begin{array}{l} 4.0 \; V \leq EV_{\text{DD0}} \leq 5. \\ C_{\text{b}} = 30 \; pF, \; R_{\text{b}} = 1 \end{array}$	5 V, 2.7 V \leq Vb \leq 4.0 V, .4 k\Omega		2/fмск + 240	ns	
		$\label{eq:linear} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4. \\ C_{\text{b}} = 30 \ p\text{F}, \ R_{\text{b}} = 2 \end{array}$	0 V, 2.3 V \leq V _b \leq 2.7 V, 2.7 kΩ		2/fмск + 428	ns	
			3 V, 1.6 V \leq Vb \leq 2.0 V		2/fмск + 1146	ns	

(Notes, Caution and Remarks are listed on the next page.)

3.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	/POR Power supply rise time		1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width	TPW		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.10 Timing of Entry to Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level
 - thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

