

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

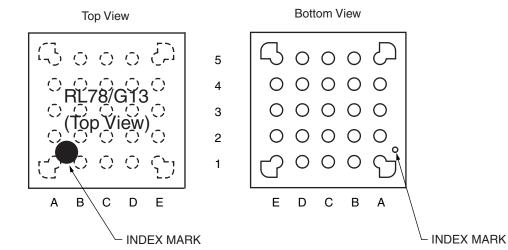
Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100agdsp-v0

Table 1-1. List of Ordering Part Numbers

(4/12)

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
44 pins	44-pin plastic LQFP (10 × 10 mm, 0.8 mm	Mounted	А	R5F100FAAFP#V0, R5F100FCAFP#V0, R5F100FDAFP#V0, R5F100FEAFP#V0, R5F100FFAFP#V0, R5F100FGAFP#V0,
	pitch)			R5F100FHAFP#V0, R5F100FJAFP#V0, R5F100FKAFP#V0,
	,			R5F100FLAFP#V0
				R5F100FAAFP#X0, R5F100FCAFP#X0, R5F100FDAFP#X0,
				R5F100FEAFP#X0, R5F100FFAFP#X0, R5F100FGAFP#X0,
				R5F100FHAFP#X0, R5F100FJAFP#X0, R5F100FKAFP#X0,
				R5F100FLAFP#X0
			D	R5F100FADFP#V0, R5F100FCDFP#V0, R5F100FDDFP#V0,
				R5F100FEDFP#V0, R5F100FFDFP#V0, R5F100FGDFP#V0,
				R5F100FHDFP#V0, R5F100FJDFP#V0, R5F100FKDFP#V0,
				R5F100FLDFP#V0
				R5F100FADFP#X0, R5F100FCDFP#X0, R5F100FDDFP#X0,
				R5F100FEDFP#X0, R5F100FFDFP#X0, R5F100FGDFP#X0,
				R5F100FHDFP#X0, R5F100FJDFP#X0, R5F100FKDFP#X0,
				R5F100FLDFP#X0
			G	R5F100FAGFP#V0, R5F100FCGFP#V0, R5F100FDGFP#V0,
				R5F100FEGFP#V0, R5F100FFGFP#V0, R5F100FGGFP#V0,
				R5F100FHGFP#V0, R5F100FJGFP#V0
				R5F100FAGFP#X0, R5F100FCGFP#X0, R5F100FDGFP#X0,
				R5F100FEGFP#X0, R5F100FFGFP#X0, R5F100FGGFP#X0,
				R5F100FHGFP#X0, R5F100FJGFP#X0
		Not	Α	R5F101FAAFP#V0, R5F101FCAFP#V0, R5F101FDAFP#V0,
		mounted		R5F101FEAFP#V0, R5F101FFAFP#V0, R5F101FGAFP#V0,
				R5F101FHAFP#V0, R5F101FJAFP#V0, R5F101FKAFP#V0,
				R5F101FLAFP#V0
				R5F101FAAFP#X0, R5F101FCAFP#X0, R5F101FDAFP#X0,
				R5F101FEAFP#X0, R5F101FFAFP#X0, R5F101FGAFP#X0,
				R5F101FHAFP#X0, R5F101FJAFP#X0, R5F101FKAFP#X0,
				R5F101FLAFP#X0
			D	R5F101FADFP#V0, R5F101FCDFP#V0, R5F101FDDFP#V0,
				R5F101FEDFP#V0, R5F101FFDFP#V0, R5F101FGDFP#V0,
				R5F101FHDFP#V0, R5F101FJDFP#V0, R5F101FKDFP#V0,
				R5F101FLDFP#V0
				R5F101FADFP#X0, R5F101FCDFP#X0, R5F101FDDFP#X0,
				R5F101FEDFP#X0, R5F101FFDFP#X0, R5F101FGDFP#X0,
				R5F101FHDFP#X0, R5F101FJDFP#X0, R5F101FKDFP#X0,
				R5F101FLDFP#X0

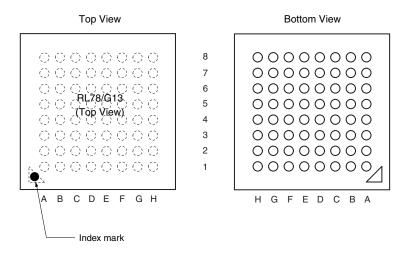
Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.


Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.3 25-pin products

<R>

• 25-pin plastic WFLGA (3 × 3 mm, 0.50 mm pitch)



	Α	В	С	D	E	
5	P40/TOOL0	RESET	P01/ANI16/ TO00/RxD1	P22/ANI2	P147/ANI18	5
4	P122/X2/ EXCLK	P137/INTP0	P00/ANI17/ TI00/TxD1	P21/ANI1/ AVREFM	P10/SCK00/ SCL00	4
3	P121/X1	V _{DD}	P20/ANI0/ AV _{REFP}	P12/SO00/ TxD0/ TOOLTxD	P11/SI00/ RxD0/ TOOLRxD/ SDA00	3
2	REGC	Vss	P30/INTP3/ SCK11/SCL11	P17/TI02/ TO02/SO11	P50/INTP1/ SI11/SDA11	2
1	P60/SCLA0	P61/SDAA0	P31/TI03/ TO03/INTP4/ PCLBUZ0	P16/TI01/ TO01/INTP5	P130	1
	A	В	С	D	Е	

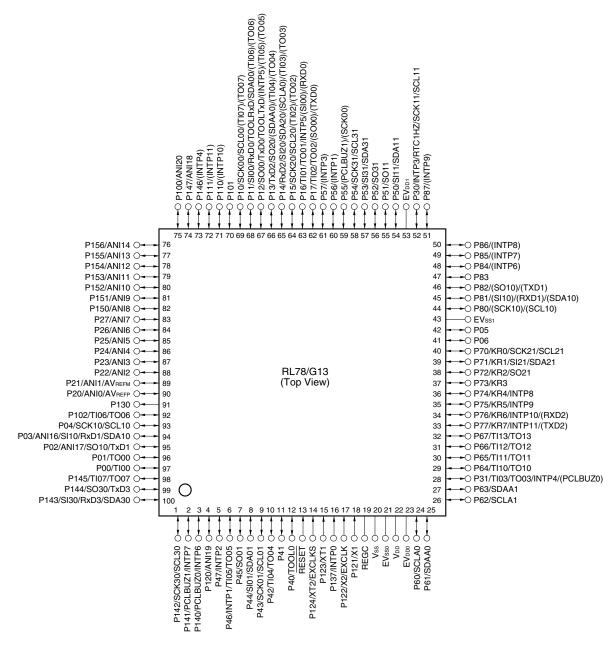
Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark For pin identification, see **1.4 Pin Identification**.

• 64-pin plastic VFBGA (4 × 4 mm, 0.4 mm pitch)

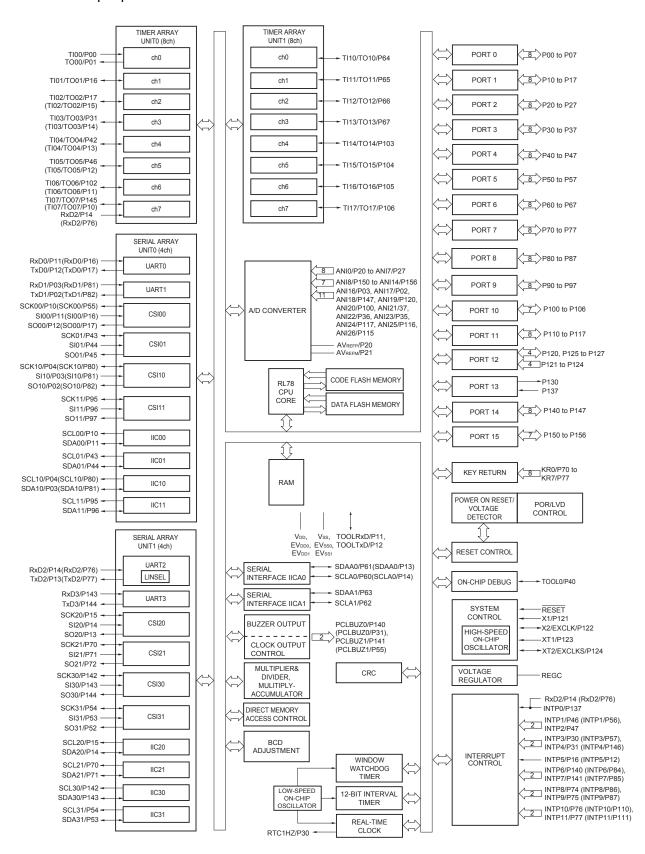
Pin No.	Name	Pin No.	Name	Pin No.	Name	Pin No.	Name
A1	P05/TI05/TO05	C1	P51/INTP2/SO11	E1	P13/TxD2/SO20/ (SDAA0)/(TI04)/(TO04)	G1	P146
A2	P30/INTP3/RTC1HZ /SCK11/SCL11	C2	P71/KR1/SI21/SDA21	E2	P14/RxD2/SI20/SDA20 /(SCLA0)/(TI03)/(TO03)	-	P25/ANI5
A3	P70/KR0/SCK21 /SCL21	СЗ	P74/KR4/INTP8/SI01 /SDA01	E3	P15/SCK20/SCL20/ (TI02)/(TO02)	G3	P24/ANI4
A4	P75/KR5/INTP9 /SCK01/SCL01	C4	P52/(INTP10)	E4	P16/TI01/TO01/INTP5 /(SI00)/(RxD0)	G4	P22/ANI2
A5	P77/KR7/INTP11/ (TxD2)	C5	P53/(INTP11)	E5	P03/ANI16/SI10/RxD1 /SDA10	G5	P130
A6	P61/SDAA0	C6	P63	E6	P41/TI07/TO07	G6	P02/ANI17/SO10/TxD1
A7	P60/SCLA0	C7	Vss	E7	RESET	G7	P00/TI00
A8	EV _{DD0}	C8	P121/X1	E8	P137/INTP0	G8	P124/XT2/EXCLKS
B1	P50/INTP1/SI11 /SDA11	D1	P55/(PCLBUZ1)/ (SCK00)	F1	P10/SCK00/SCL00/ (TI07)/(TO07)	H1	P147/ANI18
B2	P72/KR2/SO21	D2	P06/TI06/TO06	F2	P11/SI00/RxD0 /TOOLRxD/SDA00/ (TI06)/(TO06)	H2	P27/ANI7
B3	P73/KR3/SO01	D3	P17/TI02/TO02/ (SO00)/(TxD0)	F3	P12/SO00/TxD0 /TOOLTxD/(INTP5)/ (TI05)/(TO05)	H3	P26/ANI6
B4	P76/KR6/INTP10/ (RxD2)	D4	P54	F4	P21/ANI1/AVREFM	H4	P23/ANI3
B5	P31/TI03/TO03 /INTP4/(PCLBUZ0)	D5	P42/TI04/TO04	F5	P04/SCK10/SCL10	H5	P20/ANI0/AVREFP
B6	P62	D6	P40/TOOL0	F6	P43	H6	P141/PCLBUZ1/INTP7
B7	V _{DD}	D7	REGC	F7	P01/TO00	H7	P140/PCLBUZ0/INTP6
B8	EVsso	D8	P122/X2/EXCLK	F8	P123/XT1	H8	P120/ANI19

Cautions 1. Make EVsso pin the same potential as Vss pin.


- 2. Make V_{DD} pin the potential that is higher than EV_{DD0} pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the Vss and EV_{SS0} pins to separate ground lines.
- **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.


1.3.13 100-pin products

• 100-pin plastic LQFP (14 × 14 mm, 0.5 mm pitch)

- Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin.
 - 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1).
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD}, EV_{DDO} and EV_{DD1} pins and connect the Vss, EV_{SS0} and EV_{SS1} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.

1.5.14 128-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

(2/2)

							(2/2)		
Ite	m	80-	pin	100	-pin	128	3-pin		
		R5F100Mx	R5F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx		
Clock output/buzz	er output		2	1	2		2		
		• 2.44 kHz, 4.8	8 kHz, 9.76 kHz,	1.25 MHz, 2.5 M	Hz, 5 MHz, 10 M	ИНz			
		· ·	clock: fmain = 20						
				.048 kHz, 4.096 k		16.384 kHz, 32.76	68 kHz		
0/40 1 "	A /D		CIOCK: ISUB = 32.70	68 kHz operation)		I			
8/10-bit resolution	A/D converter	17 channels 20 channels 26 channels							
Serial interface			, 128-pin product						
		 CSI: 2 channels/simplified l²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified l²C: 2 channels/UART: 1 channel 							
				2 channels/UAR 2 channels/UAR		tina I IN-hus): 1 (channel		
				2 channels/UAR		ung En v buoj. T c	onamo:		
	I ² C bus	2 channels	·	2 channels		2 channels			
Multiplier and divid	der/multiply-	• 16 bits × 16 bi	ts = 32 bits (Uns	igned or signed)					
accumulator		• 32 bits ÷ 32 bits = 32 bits (Unsigned)							
		• 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)							
DMA controller		4 channels							
Vectored	Internal		37	3	37		41		
interrupt sources	External		13	1	3		13		
Key interrupt			8	1	8		8		
Reset		Reset by RES							
			by watchdog tim						
			by power-on-res by voltage detec						
				tion execution Note					
			by RAM parity e						
			by illegal-memor						
Power-on-reset cir	rcuit	Power-on-res	et: 1.51 V (TY	P.)					
		Power-down-	reset: 1.50 V (TY	P.)					
Voltage detector		Rising edge :		.06 V (14 stages))				
		Falling edge:	1.63 V to 3	3.98 V (14 stages)	1				
On-chip debug fur	nction	Provided							
Power supply volta	age	$V_{DD} = 1.6 \text{ to } 5.5$	$V (T_A = -40 \text{ to } +8$	5°C)					
		$V_{DD} = 2.4 \text{ to } 5.5 \text{ V } (T_A = -40 \text{ to } +105^{\circ}\text{C})$							
Operating ambien	t temperature	$T_A = 40 \text{ to } +85^\circ$	C (A: Consumer	applications, D: Ir	ndustrial applicat	ions)			
		$T_A = 40 \text{ to } +105$	°C (G: Industrial	applications)					
		1							

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Absolute Maximum Ratings (TA = 25°C) (2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins -170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	І ОН2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lo _{L1}	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	lo _{L2}	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +85	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2}	HALT	HS (high-	f _{IH} = 32 MHz ^{Note 4}	V _{DD} = 5.0 V		0.62	1.89	mA
current	Note 2	mode	speed main) mode Note 7		V _{DD} = 3.0 V		0.62	1.89	mA
			mode	fih = 24 MHz Note 4	V _{DD} = 5.0 V		0.50	1.48	mA
					V _{DD} = 3.0 V		0.50	1.48	mA
				fih = 16 MHz Note 4	V _{DD} = 5.0 V		0.44	1.12	mA
					V _{DD} = 3.0 V		0.44	1.12	mA
			LS (low-	fih = 8 MHz Note 4	V _{DD} = 3.0 V		290	620	μΑ
			speed main) mode Note 7		V _{DD} = 2.0 V		290	620	μΑ
			LV (low-	f _{IH} = 4 MHz Note 4	V _{DD} = 3.0 V		460	700	μΑ
			voltage main) mode		V _{DD} = 2.0 V		460	700	μΑ
			HS (high-	fmx = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.14	mA
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.48	1.34	mA
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		0.31	1.14	mA
			V _{DD} = 3.0 V	Resonator connection		0.48	1.34	mA	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.21	0.68	mA
				V _{DD} = 5.0 V	Resonator connection		0.28	0.76	mA
			$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.21	0.68	mA	
				V _{DD} = 3.0 V	Resonator connection		0.28	0.76	mA
			LS (low-	$f_{MX} = 8 MHz^{Note 3}$	Square wave input		110	390	μΑ
			speed main) mode Note 7	V _{DD} = 3.0 V	Resonator connection		160	450	μΑ
				$f_{MX} = 8 MHz^{Note 3}$	Square wave input		110	390	μΑ
				V _{DD} = 2.0 V	Resonator connection		160	450	μΑ
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.66	μΑ
			clock operation	T _A = -40°C	Resonator connection		0.50	0.85	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.38	0.66	μΑ
				T _A = +25°C	Resonator connection		0.57	0.85	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.47	3.49	μΑ
				T _A = +50°C	Resonator connection		0.66	3.68	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.80	6.10	μΑ
				T _A = +70°C	Resonator connection		0.99	6.29	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		1.52	10.46	μΑ
				T _A = +85°C	Resonator connection		1.71	10.65	μΑ
	IDD3 Note 6	STOP mode ^{Note 8}	T _A = -40°C				0.19	0.54	μΑ
		mode	T _A = +25°C				0.26	0.54	μΑ
			T _A = +50°C				0.35	3.37	μΑ
			T _A = +70°C				0.68	5.98	μA
			T _A = +85°C				1.40	10.34	μΑ

(Notes and Remarks are listed on the next page.)

2.5.2 Serial interface IICA

(1) I2C standard mode

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	С	Conditions	, ,	h-speed Mode	,	v-speed Mode	,	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Standard	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	0	100	0	100	0	100	kHz
		mode:	1.8 V ≤ EV _{DD0} ≤ 5.5 V	0	100	0	100	0	100	kHz
		fc∟k≥ 1 MHz	1.7 V ≤ EV _{DD0} ≤ 5.5 V	0	100	0	100	0	100	kHz
			1.6 V ≤ EV _{DD0} ≤ 5.5 V	_	_	0	100	0	100	kHz
Setup time of restart	tsu:sta	2.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.7		4.7		4.7		μS
condition		1.8 V ≤ EV _{DD0} :	≤ 5.5 V	4.7		4.7		4.7		μS
		1.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.7		4.7		4.7		μS
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V	_	_	4.7		4.7		μS
Hold time ^{Note 1}	thd:STA	2.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.0		4.0		4.0		μS
		1.8 V ≤ EV _{DD0} :	≤ 5.5 V	4.0		4.0		4.0		μS
		1.7 V ≤ EV _{DD0} :	1.7 V ≤ EV _{DD0} ≤ 5.5 V			4.0		4.0		μS
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V	_	_	4.0		4.0		μS
Hold time when SCLA0 =	tLOW	2.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.7		4.7		4.7		μS
" <u>L</u> "		1.8 V ≤ EV _{DD0} :	4.7		4.7		4.7		μS	
		1.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.7		4.7		4.7		μS
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V	_	_	4.7		4.7		μS
Hold time when SCLA0 =	tніgн	2.7 V ≤ EV _{DD0} :	$2.7~V \le EV_{DD0} \le 5.5~V$			4.0		4.0		μS
"H"		1.8 V ≤ EV _{DD0} :	≤ 5.5 V	4.0		4.0		4.0		μS
		1.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.0		4.0		4.0		μS
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V	_	_	4.0		4.0		μS
Data setup time	tsu:dat	2.7 V ≤ EV _{DD0} :	≤ 5.5 V	250		250		250		ns
(reception)		1.8 V ≤ EV _{DD0} :	≤ 5.5 V	250		250		250		ns
		1.7 V ≤ EV _{DD0} :	≤ 5.5 V	250		250		250		ns
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V	-	_	250		250		ns
Data hold time	thd:dat	2.7 V ≤ EV _{DD0} :	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μS
(transmission)Note 2		1.8 V ≤ EV _{DD0} :	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μS
		1.7 V ≤ EV _{DD0} :	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μS
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V	_	_	0	3.45	0	3.45	μS
Setup time of stop	tsu:sto	2.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.0		4.0		4.0		μS
condition		1.8 V ≤ EV _{DD0} :	≤ 5.5 V	4.0		4.0		4.0		μS
		1.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.0		4.0		4.0		μS
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V	-	_	4.0		4.0		μS
Bus-free time	t BUF	2.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.7		4.7		4.7		μS
		1.8 V ≤ EV _{DD0} :	≤ 5.5 V	4.7		4.7		4.7		μS
		1.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.7		4.7		4.7		μS
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V	_	_	4.7		4.7		μS

(Notes, Caution and Remark are listed on the next page.)

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{DD}}, \text{Reference voltage (-)} = \text{V}_{\text{SS}})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI0 to ANI14, ANI16 to ANI26	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μS
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μS
Conversion time	tconv	10-bit resolution Target pin: Internal	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)		$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS	
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	E _F S	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±0.85	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
			$1.6~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$ Note 3			±2.5	LSB
Analog input voltage	Vain	ANI0 to ANI14		0		V _{DD}	٧
		ANI16 to ANI26		0		EV _{DD0}	٧
		Internal reference voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (hi		V _{BGR} Note 4		V	
		Temperature sensor output (2.4 V ≤ VDD ≤ 5.5 V, HS (hi	V _{TMPS25} Note 4			V	

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

3.3 DC Characteristics

3.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$2.4~V \le EV_{DD0} \le 5.5~V$			-3.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			-30.0	mA
		P125 to P127, P130, P140 to P145	$2.7~V \leq EV_{DD0} < 4.0~V$			-10.0	mA
			$2.4~V \le EV_{DD0} < 2.7~V$			-5.0	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 (When duty ≤ 70% Note 3)				-30.0	mA
			$2.7~V \leq EV_{DD0} < 4.0~V$			-19.0	mA
			$2.4 \text{ V} \le \text{EVddo} < 2.7 \text{ V}$			-10.0	mA
		Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4~V \leq EV_{DD0} \leq 5.5~V$			-60.0	mA
	І он2	Per pin for P20 to P27, P150 to P156	$2,4~V \leq V_{DD} \leq 5.5~V$			-0.1 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~V \leq V_{DD} \leq 5.5~V$			-1.5	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and $I_{OH} = -10.0$ mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (2/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, lou-1	lo _{L1}	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147				8.5 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		P37, P40 to P47, P102 to P106, P120,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA
			$2.7~V \leq EV_{DD0} < 4.0~V$			15.0	mA
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} < 2.7~\text{V}$			9.0	mA
		Total of P05, P06, P10 to P17, P30,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA
		P31, P50 to P57, P60 to P67,	$2.7~V \leq EV_{DD0} < 4.0~V$			35.0	mA
		P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 (When duty ≤ 70% Note 3)	$2,4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			20.0	mA
		Total of all pins (When duty ≤ 70% Note 3)				80.0	mA
	lo _{L2}	Per pin for P20 to P27, P150 to P156			_	0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% Note 3)	$2.4~V \leq V_{DD} \leq 5.5~V$			5.0	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1 and Vss pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(lol \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (5/5)$

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ілн1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVDDO				1	μΑ
	ILIH2	P20 to P27, P137, P150 to P156, RESET	$V_I = V_{DD}$				1	μΑ
Ілнз	Ішнз			In input port or external clock input			1	μΑ
				In resonator connection			10	μΑ
Input leakage current, low	1ш1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	V _I = EV _{SS0}				-1	μΑ
	ILIL2	P20 to P27, P137, P150 to P156, RESET	Vı = Vss				-1	μΑ
	ILIL3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vı = Vss	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
On-chip pll-up resistance	Ru	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	V _I = EVsso	, In input port	10	20	100	kΩ

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mod		Unit	
					MIN.	MAX.	
Transfer rate		Transmission	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$			Note 1	bps
			$V,$ $2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \ pF, \ R_b = 1.4 \ k\Omega, \ V_b = 2.7 \ V$		2.6 Note 2	Mbps
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0$			Note 3	bps
	$\begin{array}{c} V,\\ 2.3\ V \leq V_b \leq 2.7\ V \end{array}$		Theoretical value of the maximum transfer rate $C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega, \ V_b = 2.3 \ V$		1.2 Note 4	Mbps	
			2.4 V ≤ EV _{DD0} < 3.3			Note 5	bps
	$\begin{array}{c} V,\\ 1.6\ V \leq V_b \leq 2.0\ V \end{array}$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 V$		0.43 Note 6	Mbps		

Notes 1. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD0} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.2}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- 3. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DDO} < 4.0 V and 2.4 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.0}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (2/2) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Data setup time (reception)	,	$\begin{aligned} 4.0 & \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 & \ V \leq V_b \leq 4.0 \ V, \\ C_b = 50 & \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$	1/f _{MCK} + 340 Note 2		ns
		$ \begin{aligned} 2.7 & \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 & \ V \leq V_b \leq 2.7 \ V, \\ C_b & = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	1/f _{MCK} + 340 Note 2		ns
		$ \begin{aligned} 4.0 & \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 & \ V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{aligned} $	1/f _{MCK} + 760 Note 2		ns
		$ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	1/f _{MCK} + 760 Note 2		ns
		$ \begin{aligned} &2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{aligned} $	1/f _{MCK} + 570 Note 2		ns
Data hold time (transmission)	thd:dat	$\begin{aligned} 4.0 & \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 & \ V \leq V_b \leq 4.0 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$	0	770	ns
		$ \begin{aligned} 2.7 & \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 & \ V \leq V_b \leq 2.7 \ V, \\ C_b & = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	0	770	ns
		$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $	0	1420	ns
		$ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	0	1420	ns
		$ \begin{aligned} &2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{aligned} $	0	1215	ns

Notes 1. The value must also be equal to or less than fmck/4.

2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

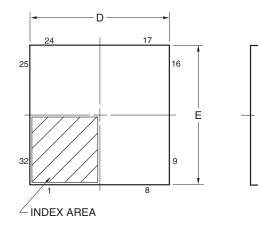
(Remarks are listed on the next page.)

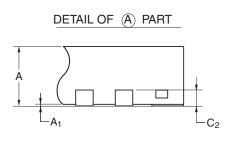
- **Notes 1.** Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

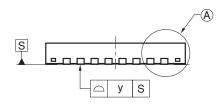
Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD} .

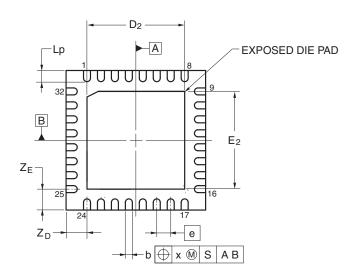
Zero-scale error/Full-scale error: Add $\pm 0.05\% FSR$ to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.


4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.




4.5 32-pin Products

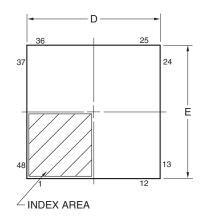

R5F100BAANA, R5F100BCANA, R5F100BDANA, R5F100BEANA, R5F100BFANA, R5F100BGANA R5F101BAANA, R5F101BCANA, R5F101BDANA, R5F101BEANA, R5F101BFANA, R5F101BGANA R5F100BADNA, R5F100BCDNA, R5F100BDDNA, R5F100BEDNA, R5F100BFDNA, R5F100BGDNA R5F101BADNA, R5F101BCDNA, R5F101BDDNA, R5F101BEDNA, R5F100BGGNA, R5F100BGNA, R5F100BGN

JEITA Package code	RENESAS code	Previous code	MASS (TYP.)[g]
P-HWQFN32-5x5-0.50	PWQN0032KB-A	P32K8-50-3B4-5	0.06

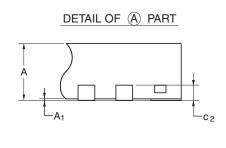
Referance	Dimension in Millimeters				
Symbol	Min	Nom	Max		
D	4.95	5.00	5.05		
E	4.95	5.00	5.05		
А			0.80		
A ₁	0.00	_			
b	0.18	0.25	0.30		
е		0.50			
Lp	0.30	0.40	0.50		
х			0.05		
у			0.05		
Z _D	_	0.75	_		
Z _E		0.75			
C ₂	0.15	0.20	0.25		
D ₂		3.50			
E ₂		3.50			

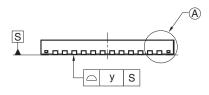
©2013 Renesas Electronics Corporation. All rights reserved.

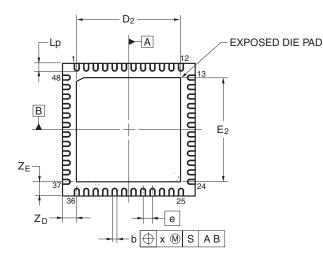
R5F100GAANA, R5F100GCANA, R5F100GDANA, R5F100GEANA, R5F100GFANA, R5F100GHANA, R5F100GHANA, R5F100GKANA, R5F100GKANA, R5F100GKANA, R5F100GKANA


R5F101GAANA, R5F101GCANA, R5F101GDANA, R5F101GEANA, R5F101GFANA, R5F101GHANA, R5F101GHANA, R5F101GHANA, R5F101GKANA, R5F101GKANA, R5F101GLANA

R5F100GADNA, R5F100GCDNA, R5F100GDDNA, R5F100GEDNA, R5F100GFDNA, R5F100GDNA, R5F100GHDNA, R5F100GJDNA, R5F100GKDNA, R5F100GLDNA


R5F101GADNA, R5F101GCDNA, R5F101GDDNA, R5F101GEDNA, R5F101GFDNA, R5F101GGDNA, R5F101GHDNA, R5F101GJDNA, R5F101GKDNA, R5F101GLDNA


R5F100GAGNA, R5F100GCGNA, R5F100GDGNA, R5F100GEGNA, R5F100GFGNA, R5F100GHGNA, R5F100GJGNA


JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HWQFN48-7x7-0.50	PWQN0048KB-A	48PJN-A P48K8-50-5B4-6	0.13

Referance	Dimension in Millimeters			
Symbol	Min	Nom	Max	
D	6.95	7.00	7.05	
Е	6.95	7.00	7.05	
Α			0.80	
A ₁	0.00		_	
b	0.18	0.25	0.30	
е		0.50	_	
Lp	0.30	0.40	0.50	
Х			0.05	
у			0.05	
Z _D		0.75	_	
Z _E		0.75		
C ₂	0.15	0.20	0.25	
D ₂		5.50	_	
E ₂		5.50	_	

©2013 Renesas Electronics Corporation. All rights reserved.

		Description		
Rev.	Date	Page	Summary	
3.00	Aug 02, 2013	118	Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics	
		118	Modification of table and note in 2.6.3 POR circuit characteristics	
		119	Modification of table in 2.6.4 LVD circuit characteristics	
		120	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode	
		120	Renamed to 2.6.5 Power supply voltage rising slope characteristics	
		122	Modification of table, figure, and remark in 2.10 Timing Specs for Switching Flash Memory Programming Modes	
		123	Modification of caution 1 and description	
		124	Modification of table and remark 3 in Absolute Maximum Ratings (T _A = 25°C)	
		126	Modification of table, note, caution, and remark in 3.2.1 X1, XT1 oscillator characteristics	
		126	Modification of table in 3.2.2 On-chip oscillator characteristics	
		127	Modification of note 3 in 3.3.1 Pin characteristics (1/5)	
		128	Modification of note 3 in 3.3.1 Pin characteristics (2/5)	
		133	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (1/2)	
		135	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (2/2)	
		137	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (1/2)	
		139	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (2/2)	
		140	Modification of (3) Peripheral Functions (Common to all products)	
		142	Modification of table in 3.4 AC Characteristics	
		143	Addition of Minimum Instruction Execution Time during Main System Clock Operation	
		143	Modification of figure of AC Timing Test Points	
		143	Modification of figure of External System Clock Timing	
		145	Modification of figure of AC Timing Test Points	
		145	Modification of description, note 1, and caution in (1) During communication at same potential (UART mode)	
		146	Modification of description in (2) During communication at same potential (CSI mode)	
		147	Modification of description in (3) During communication at same potential (CSI mode)	
		149	Modification of table, note 1, and caution in (4) During communication at same potential (simplified I ² C mode)	
		151	Modification of table, note 1, and caution in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)	
		152 to 154	Modification of table, notes 2 to 6, caution, and remarks 1 to 4 in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)	
		155	Modification of table in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)	
		156	Modification of table and caution in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)	
		157, 158	Modification of table, caution, and remarks 3 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)	
		160, 161	Modification of table and caution in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode)	

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.