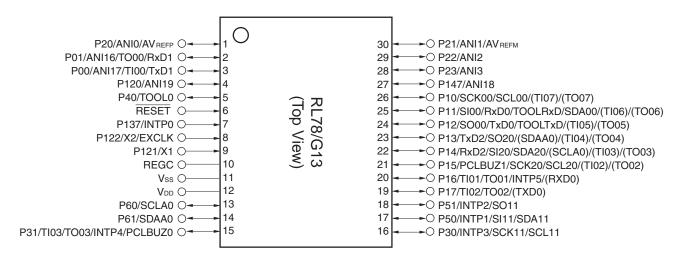


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

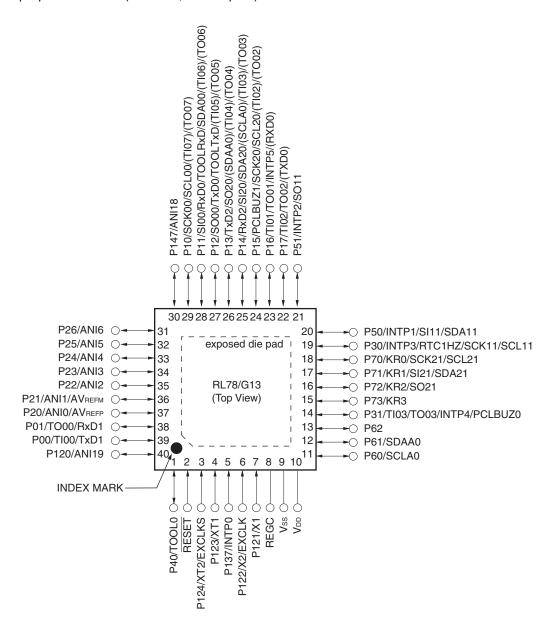

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	26
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-WFLGA
Supplier Device Package	36-WFLGA (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100ceala-w0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.4 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)


Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.7 40-pin products

• 40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to Vss.

[40-pin, 44-pin, 48-pin, 52-pin, 64-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(1/2)

	Item	40	pin	4.4	-pin	40	·pin	F0	nin		·pin
	item		<u> </u>	44	i			52-	-pin I		İ
		R5F100Ex	R5F101Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx
		100	101	100	101	100	101	100	101	100	101
		Ex	Ex	×	×	χ Ω	ωx	×	×	Ž	Ž
Code flash me	emory (KB)	16 to	o 192	16 t	o 512	16 t	512	32 to	o 512	32 to	o 512
Data flash me	emory (KB)	4 to 8	-	4 to 8	_	4 to 8	-	4 to 8	_	4 to 8	_
RAM (KB)		2 to 1	16 ^{Note1}	2 to :	32 ^{Note1}	2 to 3	32 ^{Note1}	2 to 3	32 ^{Note1}	2 to 3	32 ^{Note1}
Address spac	e	1 MB									
Main system clock	High-speed system clock	HS (High HS (High LS (Low-	n-speed ma n-speed ma speed ma	ain) mode ain) mode in) mode:	on, externa : 1 to 20 l : 1 to 16 l 1 to 8 M e: 1 to 4 M	MHz (V _{DD} : MHz (V _{DD} : IHz (V _{DD} =	= 2.7 to 5. = 2.4 to 5. 1.8 to 5.5	5 V), 5 V), V),	CLK)		
	High-speed on-chip oscillator	HS (High LS (Low-	speed ma	ain) mode in) mode:	: 1 to 32 M : 1 to 16 M : 1 to 8 M e: 1 to 4 M	MHz (Vdd = Hz (Vdd =	= 2.4 to 5.5 1.8 to 5.5	5 V), V),			
Subsystem cl	ock	XT1 (crys 32.768 k		ation, exte	ernal subsy	stem cloc	k input (E	XCLKS)			
Low-speed or	n-chip oscillator	15 kHz (TYP.)								
General-purp	ose registers	(8-bit reg	ister × 8)	× 4 banks							
Minimum insti	ruction execution time	0.03125	μs (High-s	speed on-	chip oscilla	tor: fin = 3	2 MHz op	eration)			
		0.05 <i>μ</i> s (High-spee	ed system	clock: fmx	= 20 MHz	operation)			
		30.5 μs (Subsyster	n clock: fs	ыв = 32.76	8 kHz ope	ration)				
Instruction se	t	AdderMultipl	ication (8	actor/logic bits × 8 bit	al operation ts) t manipula			and Book	ean opera	tion), etc.	
I/O port	Total	3	36	4	40	2	14	4	18	5	58
	CMOS I/O	(N-ch (28 O.D. I/O ithstand ge]: 10)	(N-ch [V _{DD} w	31 O.D. I/O rithstand ge]: 10)	(N-ch (34 O.D. I/O ithstand je]: 11)	(N-ch (38 O.D. I/O ithstand ge]: 13)	(N-ch (18 O.D. I/O ithstand ge]: 15)
	CMOS input		5		5		5		5		5
	CMOS output		=		=		1		1		1
	N-ch O.D. I/O (withstand voltage: 6 V)		3		4		4		4		4
Timer	16-bit timer					8 cha	nnels				
	Watchdog timer					1 cha	annel				
	Real-time clock (RTC)					1 cha	annel				
	12-bit interval timer (IT)				-		annel				
	Timer output	4 channels outputs: 3 8 channels outputs: 7	Note 2), s (PWM	5 channe 8 channe	els (PWM o els (PWM o	utputs: 4 ™ utputs: 7 ™	ote ²), ote ²) Note ³			8 channe outputs:	
	RTC output	1 channe • 1 Hz (s		ı clock: fsu	ıв = 32.768	3 kHz)					

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = E to G, J, L): Start address FF300H R5F100xE, R5F101xE (x = E to G, J, L): Start address FEF00H R5F100xJ, R5F101xJ (x = F, G, J, L): Start address F7F00H Start address F7F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

(2/2)

							(2/2)			
Ite	m	80-	pin	100	-pin	128	3-pin			
		R5F100Mx	R5F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx			
Clock output/buzz	er output		2	1	2		2			
		• 2.44 kHz, 4.8	8 kHz, 9.76 kHz,	1.25 MHz, 2.5 M	Hz, 5 MHz, 10 M	ИНz				
		· ·	clock: fmain = 20							
				.048 kHz, 4.096 k		16.384 kHz, 32.76	68 kHz			
0/40 1 "	A /D		CIOCK: ISUB = 32.70	68 kHz operation)		I				
8/10-bit resolution	A/D converter	17 channels		20 channels		26 channels				
Serial interface			, 128-pin product							
			•	2 channels/UAR						
		CSI: 2 channels/simplified I ² C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I ² C: 2 channels/UART (UART supporting LIN-bus): 1 channel								
			• CSI: 2 channels/simplified I ² C: 2 channels/UART: 1 channel							
	I ² C bus	2 channels	·	2 channels		2 channels				
Multiplier and divid	der/multiply-	• 16 bits × 16 bi	ts = 32 bits (Uns	igned or signed)						
accumulator		• 32 bits ÷ 32 bi	ts = 32 bits (Uns	igned)						
		• 16 bits × 16 bits	ts + 32 bits = 32	bits (Unsigned or	signed)					
DMA controller		4 channels								
Vectored	Internal		37	3	37		41			
interrupt sources	External		13	1	3		13			
Key interrupt			8	1	8		8			
Reset		Reset by RES								
			by watchdog tim							
			by power-on-res by voltage detec							
				tion execution Note						
			by RAM parity e							
			by illegal-memor							
Power-on-reset cir	rcuit	Power-on-res	et: 1.51 V (TY	P.)						
		Power-down-	reset: 1.50 V (TY	P.)						
Voltage detector		Rising edge :		.06 V (14 stages))					
		Falling edge:	1.63 V to 3	3.98 V (14 stages)	1					
On-chip debug fur	nction	Provided								
Power supply volta	age	$V_{DD} = 1.6 \text{ to } 5.5$	$V (T_A = -40 \text{ to } +8$	5°C)						
		$V_{DD} = 2.4 \text{ to } 5.5$	$V (T_A = -40 \text{ to } +1)$	05°C)						
Operating ambien	t temperature	$T_A = 40 \text{ to } +85^\circ$	C (A: Consumer	applications, D: Ir	ndustrial applicat	ions)				
		$T_A = 40 \text{ to } +105$	°C (G: Industrial	applications)						
		1								

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2.3 DC Characteristics

2.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$1.6~V \le EV_{DD0} \le 5.5~V$			-10.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			-55.0	mA
		P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	$2.7~V \leq EV_{DD0} < 4.0~V$			-10.0	mA
		$(When duty \le 70\%^{Note 3})$	$1.8~V \leq EV_{DD0} < 2.7~V$			-5.0	mA
		,	$1.6~V \leq EV_{DD0} < 1.8~V$			-2.5	mA
		Total of P05, P06, P10 to P17, P30, P31,				-80.0	mA
		P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to	$2.7~V \leq EV_{DD0} < 4.0~V$			-19.0	mA
		P117, P146, P147	$1.8~V \leq EV_{DD0} < 2.7~V$			-10.0	mA
		(When duty $\leq 70\%$ Note 3)	$1.6~V \leq EV_{DD0} < 1.8~V$			-5.0	mA
		Total of all pins (When duty ≤ 70% Note 3)	$1.6~V \leq EV_{DD0} \leq 5.5~V$			-135.0 Note 4	mA
	І он2	Per pin for P20 to P27, P150 to P156	$1.6~V \leq V_{DD} \leq 5.5~V$			-0.1 Note 2	mA
		Total of all pins (When duty ≤ 70% Note 3)	$1.6~V \leq V_{DD} \leq 5.5~V$			-1.5	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and loh = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. The applied current for the products for industrial application (R5F100xxDxx, R5F101xxDxx, R5F100xxGxx) is -100 mA.

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (high-	fin = 32 MHz Note 4	V _{DD} = 5.0 V		0.62	1.86	mA
Current Note 1	Note 2	mode	speed main) mode Note 7		V _{DD} = 3.0 V		0.62	1.86	mA
			mode	fih = 24 MHz Note 4	V _{DD} = 5.0 V		0.50	1.45	mA
					V _{DD} = 3.0 V		0.50	1.45	mA
				fih = 16 MHz Note 4	V _{DD} = 5.0 V		0.44	1.11	mA
					V _{DD} = 3.0 V		0.44	1.11	mA
			LS (low-	fin = 8 MHz Note 4	V _{DD} = 3.0 V		290	620	μA
			speed main) mode Note 7		V _{DD} = 2.0 V		290	620	μΑ
			LV (low-	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		440	680	μΑ
			voltage main) mode		V _{DD} = 2.0 V		440	680	μΑ
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.48	1.28	mA
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		0.31	1.08	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	1.28	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.21	0.63	mA
				V _{DD} = 5.0 V	Resonator connection		0.28	0.71	mA
				f _M x = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.63	mA
			V _{DD} = 3.0 V	Resonator connection		0.28	0.71	mA	
			LS (low-	f _M x = 8 MHz ^{Note 3} ,	Square wave input		110	360	μА
			speed main) mode Note 7	V _{DD} = 3.0 V	Resonator connection		160	420	μΑ
				fmx = 8 MHz ^{Note 3} ,	Square wave input		110	360	μΑ
				V _{DD} = 2.0 V	Resonator connection		160	420	μΑ
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μΑ
			clock operation	T _A = -40°C	Resonator connection		0.47	0.80	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μΑ
				T _A = +25°C	Resonator connection		0.53	0.80	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μΑ
				T _A = +50°C	Resonator connection		0.60	2.49	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.64	4.03	μΑ
				T _A = +70°C	Resonator connection		0.83	4.22	μА
				fsub = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μΑ
				T _A = +85°C	Resonator connection		1.28	8.23	μА
	IDD3 ^{Note 6}	STOP	T _A = -40°C				0.19	0.52	μΑ
		mode ^{Note 8}	T _A = +25°C				0.25	0.52	μΑ
			T _A = +50°C				0.32	2.21	μΑ
			T _A = +70°C				0.55	3.94	μΑ
			T _A = +85°C				1.00	7.95	μA

(Notes and Remarks are listed on the next page.)

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

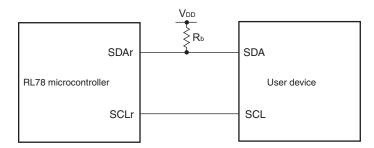
(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (1/2)

Parameter	Symbol			Conditions	,	_	MIN.	TYP.	MAX.	Unit									
Supply current Note 1	I _{DD1}	Operating	HS (high-	fih = 32 MHz Note 3	Basic	V _{DD} = 5.0 V		2.6		mA									
current		mode	speed main) mode Note 5		operation	$V_{DD} = 3.0 \text{ V}$		2.6		mA									
					Normal	$V_{DD} = 5.0 \text{ V}$		6.1	9.5	mA									
					operation	$V_{DD} = 3.0 \text{ V}$		6.1	9.5	mA									
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 \text{ V}$		4.8	7.4	mA									
					operation	$V_{DD} = 3.0 \text{ V}$		4.8	7.4	mA									
				$f_{IH} = 16 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 \text{ V}$		3.5	5.3	mA									
					operation	$V_{DD} = 3.0 \text{ V}$		3.5	5.3	mA									
			LS (low-	$f_{IH} = 8 \text{ MHz}^{Note 3}$	Nomal	$V_{DD} = 3.0 \text{ V}$		1.5	2.3	mA									
			speed main) mode Note 5		operation	V _{DD} = 2.0 V		1.5	2.3	mA									
			LV (low-	$f_{IH} = 4 \text{ MHz}^{Note 3}$	Normal	V _{DD} = 3.0 V		1.5	2.0	mA									
			voltage main) mode		operation	V _{DD} = 2.0 V		1.5	2.0	mA									
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.9	6.1	mA									
			speed main) mode Note 5	$V_{DD} = 5.0 \text{ V}$	operation	Resonator connection		4.1	6.3	mA									
						$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.9	6.1	mA							
			$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		4.1	6.3	mA										
			$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.5	3.7	mA										
			$V_{DD} = 5.0 \text{ V}$	operation	Resonator connection		2.5	3.7	mA										
				Nomal	Square wave input		2.5	3.7	mA										
				$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		2.5	3.7	mA									
			LS (low-	$f_{MX} = 8 MHz^{Note 2}$	Nomal	Square wave input		1.4	2.2	mA									
			speed main)	speed main)	speed main) mode Note 5	mode Note 5		operation	Resonator connection		1.4	2.2	mA						
				$f_{MX} = 8 MHz^{Note 2}$	Nomal	Square wave input		1.4	2.2	mA									
													$V_{DD} = 2.0 \text{ V}$	operation	Resonator connection		1.4	2.2	mA
			Subsystem	fsub = 32.768 kHz	Nomal	Square wave input		5.4	6.5	μΑ									
			clock operation	T _A = -40°C	operation	Resonator connection		5.5	6.6	μΑ									
				fsub = 32.768 kHz	Nomal	Square wave input		5.5	6.5	μΑ									
				T _A = +25°C	operation	Resonator connection		5.6	6.6	μΑ									
				fsub = 32.768 kHz	Nomal	Square wave input		5.6	9.4	μΑ									
			TA = +50°C	operation	Resonator connection		5.7	9.5	μΑ										
				fsuB = 32.768 kHz	Normal	Square wave input		5.9	12.0	μΑ									
		Note 4 TA = +70°C			operation	Resonator connection		6.0	12.1	μΑ									
				fsuв = 32.768 kHz	Normal	Square wave input		6.6	16.3	μΑ									
			Not	Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		6.7	16.4	μΑ									

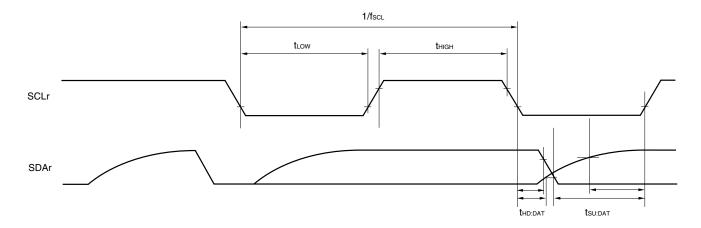
(Notes and Remarks are listed on the next page.)

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

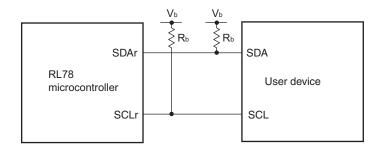

Parameter	Symbol	(Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t KCY1	tkcy1 ≥ 2/fclk	$4.0~V \leq EV_{DD0} \leq 5.5~V$	62.5		250		500		ns
			$2.7~V \leq EV_{DD0} \leq 5.5~V$	83.3		250		500		ns
SCKp high-/low-level width	tкн1, tкL1	4.0 V ≤ EV _{DI}	oo ≤ 5.5 V	tксү1/2 — 7		tксү1/2 – 50		tксү1/2 — 50		ns
		2.7 V ≤ EV _{DI}	00 ≤ 5.5 V	tксү1/2 – 10		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑)	tsıĸı	4.0 V ≤ EV _{DI}	00 ≤ 5.5 V	23		110		110		ns
Note 1		2.7 V ≤ EV _{DI}	00 ≤ 5.5 V	33		110		110		ns
SIp hold time (from SCKp [↑]) Note 2	tksı1	2.7 V ≤ EV _{DI}	00 ≤ 5.5 V	10		10		10		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 20 pF No	te 4		10		10		10	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

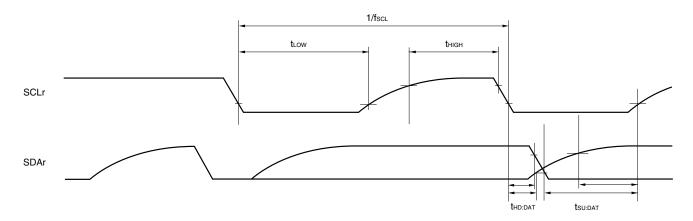

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- Remarks 1. This value is valid only when CSI00's peripheral I/O redirect function is not used.
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),g: PIM and POM numbers (g = 1)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00))

Simplified I²C mode mode connection diagram (during communication at same potential)



Simplified I²C mode serial transfer timing (during communication at same potential)



- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - 2. r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14), h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),
 - n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** $R_b[\Omega]$:Communication line (SDAr, SCLr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance, $V_b[V]$: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00, 01, 02, 10, 12, 13)

(2) I2C fast mode

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Сог	nditions	, ,	h-speed Mode	`	/-speed Mode	LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	400	0	400	0	400	kHz
		fc∟κ≥ 3.5 MHz	1.8 V ≤ EV _{DD0} ≤ 5.5 V	0	400	0	400	0	400	kHz
Setup time of restart	tsu:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
condition		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
Hold time when SCLA0 =	tLOW	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	1.3		1.3		1.3		μS
" <u>L</u> "		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	1.3		1.3		1.3		μS
Hold time when SCLA0 =	t HIGH	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
"H"		1.8 V ≤ EV _{DD0} ≤ 5.8	5 V	0.6		0.6		0.6		μS
Data setup time	tsu:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	100		100		100		μS
(reception)		1.8 V ≤ EV _{DD0} ≤ 5.8	5 V	100		100		100		μS
Data hold time	thd:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0	0.9	0	0.9	0	0.9	μS
(transmission)Note 2		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0	0.9	0	0.9	0	0.9	μS
Setup time of stop	tsu:sto	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.$	5 V	0.6		0.6		0.6		μS
condition		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.8$	5 V	0.6		0.6		0.6		μS
Bus-free time	t BUF	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	1.3		1.3		1.3		μS
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.8$	5 V	1.3		1.3		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

<R>

- Notes 1. Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.
 - Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD} .
 - Zero-scale error/Full-scale error: Add $\pm 0.05\%FSR$ to the MAX. value when AV_{REFP} = V_{DD}.
 - Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 - **4.** Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
 - 5. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (4/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -3.0 mA	EV _{DD0} – 0.7			V
		to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -2.0 \text{ mA}$	EV _{DD0} – 0.6			٧
		P117, P120, P125 to P127, P130, P140 to P147	$2.4 \ V \leq EV_{DD0} \leq 5.5 \ V,$ Iон1 = $-1.5 \ mA$	EV _{DD0} – 0.5			V
	VoH2 P20 to P27, P150 to P156		$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ Iон2 = $-100 \ \mu \text{ A}$	V _{DD} – 0.5			V
Output voltage, Vol1		P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 8.5~mA$			0.7	V
		DOO 4- DOZ D100 4- D100 D110 4-	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 3.0~mA$			0.6	V
		P140 to P147	$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$			0.4	V
			$2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 0.6~mA$			0.4	V
	V _{OL2}	P20 to P27, P150 to P156	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$ $\text{Iol2} = 400 \ \mu \text{ A}$			0.4	V
	Vоцз	P60 to P63	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 15.0~mA$			2.0	V
		$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 5.0~mA$			0.4	V	
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $\text{Iol3} = 3.0 \text{ mA}$			0.4	V
			$2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 2.0~mA$			0.4	V

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (5/5)$

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ілн1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVDDO				1	μΑ
	ILIH2	P20 to P27, P137, P150 to P156, RESET	$V_I = V_{DD}$				1	μΑ
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μΑ
				In resonator connection			10	μΑ
Input leakage current, low	1ш1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	V _I = EV _{SS0}				-1	μΑ
	ILIL2	P20 to P27, P137, P150 to P156, RESET	Vı = Vss				-1	μΑ
	ILIL3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vı = Vss	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
On-chip pll-up resistance	Ru	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	V _I = EVsso	, In input port	10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (Ta = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (1/2)

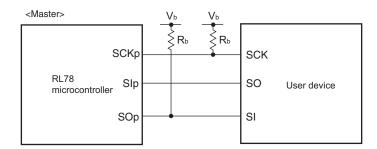
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current	I _{DD1}	Operating mode	HS (high- speed main)	fih = 32 MHz ^{Note 3}	Basic operatio	V _{DD} = 5.0 V		2.1		mA
Note 1		mode	mode Note 5		n	V _{DD} = 3.0 V		2.1		mA
					Normal	V _{DD} = 5.0 V		4.6	7.5	mA
					operatio n	V _{DD} = 3.0 V		4.6	7.5	mA
				fin = 24 MHz Note 3	Normal	V _{DD} = 5.0 V		3.7	5.8	mA
					operatio n	V _{DD} = 3.0 V		3.7	5.8	mA
				fih = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.7	4.2	mA
					operatio n	V _{DD} = 3.0 V		2.7	4.2	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.9	mA
			speed main) mode Note 5	$V_{DD} = 5.0 \text{ V}$	operatio n	Resonator connection		3.2	5.0	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.9	mA
				$V_{DD} = 3.0 \text{ V}$	operatio n	Resonator connection		3.2	5.0	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	2.9	mA
				$V_{DD} = 5.0 \text{ V}$	operatio n	Resonator connection		1.9	2.9	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.9	mA
				$V_{DD} = 3.0 \text{ V}$	operatio n	Resonator connection		1.9	2.9	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μΑ
			clock operation	Note 4 $T_A = -40^{\circ}C$	operatio n	Resonator connection		4.2	5.0	μΑ
				fsub = 32.768 kHz	Normal	Square wave input		4.1	4.9	μΑ
				T _A = +25°C	operatio n	Resonator connection		4.2	5.0	μΑ
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	5.5	μΑ
				Note 4 $T_A = +50^{\circ}C$	operatio n	Resonator connection		4.3	5.6	μΑ
				fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μΑ
				Note 4 $T_A = +70^{\circ}C$	operatio n	Resonator connection		4.4	6.4	μА
				fsuB = 32.768 kHz	Normal	Square wave input		4.6	7.7	μΑ
				Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		4.7	7.8	μА
				fsus = 32.768 kHz	Normal	Square wave input		6.9	19.7	μΑ
				Note 4 $T_A = +105^{\circ}C$	operation	Resonator connection		7.0	19.8	μΑ

(Notes and Remarks are listed on the next page.)

3.4 AC Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Items	Symbol		MIN.	TYP.	MAX.	Unit		
Instruction cycle (minimum	Tcy	Main	HS (high-speed	$1 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.03125		1	μS
instruction execution time)		system clock (fmain) operation	main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
		Subsystem of operation	clock (fsua)	$2.4~V \le V_{DD} \le 5.5~V$	28.5	30.5	31.3	μS
		In the self	HS (high-speed	$1 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.03125		1	μS
		programming mode	main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
External system clock frequency	fex	$2.7 \text{ V} \leq \text{V}_{DD} \leq$	≤ 5.5 V		1.0		20.0	MHz
		2.4 V ≤ V _{DD} <	< 2.7 V		1.0		16.0	MHz
	fexs				32		35	kHz
External system clock input high-	texh, texl	2.7 V ≤ V _{DD} ≤	≤ 5.5 V		24			ns
level width, low-level width		2.4 V ≤ V _{DD} <	< 2.7 V		30			ns
	texhs, texhs				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтін, tтіL				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	f то	HS (high-spe	eed 4.0 V	≤ EV _{DD0} ≤ 5.5 V			16	MHz
output frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			2.4 V	≤ EV _{DD0} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	fpcL	HS (high-spe	eed 4.0 V	≤ EV _{DD0} ≤ 5.5 V			16	MHz
frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			2.4 V	≤ EV _{DD0} < 2.7 V			4	MHz
Interrupt input high-level width,	tinth,	INTP0	2.4 V	$\leq V_{DD} \leq 5.5 \text{ V}$	1			μS
low-level width	tintl	INTP1 to INT	TP11 2.4 V	$\leq EV_{DD0} \leq 5.5 V$	1			μS
Key interrupt input low-level width	t KR	KR0 to KR7	2.4 V	$\leq EV_{DD0} \leq 5.5 \text{ V}$	250			ns
RESET low-level width	trsL		•		10			μS

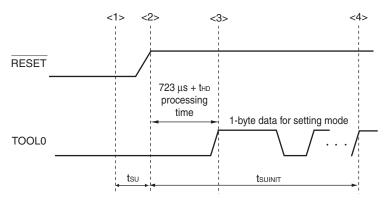

Note The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$ $2.4V \le EV_{DD0} < 2.7 \text{ V}$: MIN. 125 ns

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn).

m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))

CSI mode connection diagram (during communication at different potential)



- Remarks 1. $R_b[\Omega]$:Communication line (SCKp, SOp) pull-up resistance, $C_b[F]$: Communication line (SCKp, SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

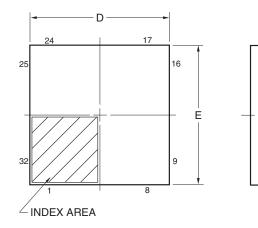
3.10 Timing of Entry to Flash Memory Programming Modes

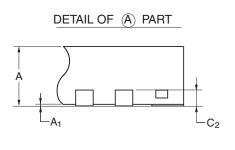
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

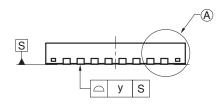
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)		POR and LVD reset must be released before the external reset is released.	1			ms

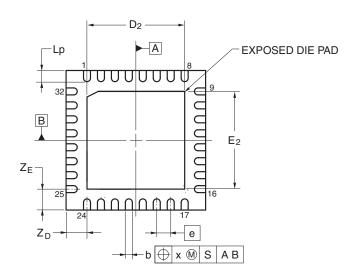
- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.


 t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level


thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)


4.5 32-pin Products


R5F100BAANA, R5F100BCANA, R5F100BDANA, R5F100BEANA, R5F100BFANA, R5F100BGANA R5F101BAANA, R5F101BCANA, R5F101BDANA, R5F101BEANA, R5F101BFANA, R5F101BGANA R5F100BADNA, R5F100BCDNA, R5F100BDDNA, R5F100BEDNA, R5F100BFDNA, R5F100BGDNA R5F101BADNA, R5F101BCDNA, R5F101BDDNA, R5F101BEDNA, R5F100BGGNA, R5F100BGNA, R5F100BGN

JEITA Package code	RENESAS code	Previous code	MASS (TYP.)[g]
P-HWQFN32-5x5-0.50	PWQN0032KB-A	P32K8-50-3B4-5	0.06

Referance Symbol	Dimension in Millimeters				
	Min	Nom	Max		
D	4.95	5.00	5.05		
E	4.95	5.00	5.05		
Α			0.80		
A ₁	0.00	_			
b	0.18	0.25	0.30		
е		0.50			
Lp	0.30	0.40	0.50		
х			0.05		
у			0.05		
Z _D	_	0.75	_		
Z _E		0.75			
C ₂	0.15	0.20	0.25		
D ₂		3.50	_		
E ₂		3.50			

©2013 Renesas Electronics Corporation. All rights reserved.

4.11 64-pin Products

R5F100LCAFA, R5F100LDAFA, R5F100LEAFA, R5F100LFAFA, R5F100LGAFA, R5F100LHAFA, R5F100LJAFA, R5F100LKAFA, R5F100LLAFA

R5F101LCAFA, R5F101LDAFA, R5F101LEAFA, R5F101LFAFA, R5F101LGAFA, R5F101LHAFA, R5F101LJAFA, R5F101LKAFA, R5F101LLAFA

R5F100LCDFA, R5F100LDDFA, R5F100LEDFA, R5F100LFDFA, R5F100LGDFA, R5F100LHDFA, R5F100LJDFA, R5F100LKDFA, R5F100LLDFA

R5F101LCDFA, R5F101LDDFA, R5F101LEDFA, R5F101LFDFA, R5F101LGDFA, R5F101LHDFA, R5F101LJDFA, R5F101LKDFA, R5F101LLDFA

Previous Code

MASS (TYP.) [g]

R5F100LCGFA, R5F100LDGFA, R5F100LEGFA, R5F100LFGFA, R5F100LGGFA, R5F100LHGFA, R5F100LJGFA

RENESAS Code

JEITA Package Code

