

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 \times FI

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	28
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-WFQFN Exposed Pad
Supplier Device Package	40-HWQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100eaana-w0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

				(8/12)
Pin count	Package	Data flash	Fields of	Ordering Part Number
			Application Note	
64 pins	64-pin plastic LQFP	Mounted	А	R5F100LCAFA#V0, R5F100LDAFA#V0,
	(12 $ imes$ 12 mm, 0.65			R5F100LEAFA#V0, R5F100LFAFA#V0,
	mm pitch)			R5F100LGAFA#V0, R5F100LHAFA#V0,
				R5F100LJAFA#V0, R5F100LKAFA#V0, R5F100LLAFA#V0
				R5F100LCAFA#X0, R5F100LDAFA#X0,
				R5F100LEAFA#X0, R5F100LFAFA#X0,
			D	R5F100LGAFA#X0, R5F100LHAFA#X0,
				R5F100LJAFA#X0, R5F100LKAFA#X0, R5F100LLAFA#X0
				R5F100LCDFA#V0, R5F100LDDFA#V0,
				R5F100LEDFA#V0, R5F100LFDFA#V0,
				R5F100LGDFA#V0, R5F100LHDFA#V0,
				R5F100LJDFA#V0, R5F100LKDFA#V0, R5F100LLDFA#V0
			G	R5F100LCDFA#X0, R5F100LDDFA#X0,
				R5F100LEDFA#X0, R5F100LFDFA#X0,
				R5F100LGDFA#X0, R5F100LHDFA#X0,
				R5F100LJDFA#X0, R5F100LKDFA#X0, R5F100LLDFA#X0
				R5F100LCGFA#V0, R5F100LDGFA#V0,
				R5F100LEGFA#V0, R5F100LFGFA#V0
				R5F100LCGFA#X0, R5F100LDGFA#X0,
				R5F100LEGFA#X0, R5F100LFGFA#X0
				R5F100LGGFA#V0, R5F100LHGFA#V0,
				R5F100LJGFA#V0
				R5F100LGGFA#X0, R5F100LHGFA#X0,
				R5F100LJGFA#X0
		Not	А	R5F101LCAFA#V0, R5F101LDAFA#V0,
		mounted		R5F101LEAFA#V0, R5F101LFAFA#V0,
				R5F101LGAFA#V0, R5F101LHAFA#V0,
				R5F101LJAFA#V0, R5F101LKAFA#V0, R5F101LLAFA#V0
				R5F101LCAFA#X0, R5F101LDAFA#X0,
				R5F101LEAFA#X0, R5F101LFAFA#X0,
			D	R5F101LGAFA#X0, R5F101LHAFA#X0,
				R5F101LJAFA#X0, R5F101LKAFA#X0, R5F101LLAFA#X0
				R5F101LCDFA#V0, R5F101LDDFA#V0,
				R5F101LEDFA#V0, R5F101LFDFA#V0,
				R5F101LGDFA#V0, R5F101LHDFA#V0,
				R5F101LJDFA#V0, R5F101LKDFA#V0, R5F101LLDFA#V0
				R5F101LCDFA#X0, R5F101LDDFA#X0,
				R5F101LEDFA#X0, R5F101LFDFA#X0,
				R5F101LGDFA#X0, R5F101LHDFA#X0,
1				R5F101LJDFA#X0, R5F101LKDFA#X0, R5F101LLDFA#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

Table 1-1. List of Ordering Part Numbers

				(11/12)
Pin count	Package	Data flash	Fields of	Ordering Part Number
			Application	
			Note	
100 pins	100-pin plastic	Mounted	А	R5F100PFAFB#V0, R5F100PGAFB#V0, R5F100PHAFB#V0,
	LFQFP (14 $ imes$ 14			R5F100PJAFB#V0, R5F100PKAFB#V0, R5F100PLAFB#V0
	mm, 0.5 mm pitch)			R5F100PFAFB#X0, R5F100PGAFB#X0, R5F100PHAFB#X0,
				R5F100PJAFB#X0, R5F100PKAFB#X0, R5F100PLAFB#X0
			D	R5F100PFDFB#V0, R5F100PGDFB#V0, R5F100PHDFB#V0,
				R5F100PJDFB#V0, R5F100PKDFB#V0, R5F100PLDFB#V0
				R5F100PFDFB#X0, R5F100PGDFB#X0, R5F100PHDFB#X0,
				R5F100PJDFB#X0, R5F100PKDFB#X0, R5F100PLDFB#X0
			G	R5F100PFGFB#V0, R5F100PGGFB#V0, R5F100PHGFB#V0,
				R5F100PJGFB#V0
				R5F100PFGFB#X0, R5F100PGGFB#X0, R5F100PHGFB#X0,
				R5F100PJGFB#X0
		Not	А	R5F101PFAFB#V0, R5F101PGAFB#V0, R5F101PHAFB#V0,
		mounted		R5F101PJAFB#V0, R5F101PKAFB#V0, R5F101PLAFB#V0
				R5F101PFAFB#X0, R5F101PGAFB#X0, R5F101PHAFB#X0,
				R5F101PJAFB#X0, R5F101PKAFB#X0, R5F101PLAFB#X0
			D	R5F101PFDFB#V0, R5F101PGDFB#V0, R5F101PHDFB#V0,
				R5F101PJDFB#V0, R5F101PKDFB#V0, R5F101PLDFB#V0
				R5F101PFDFB#X0, R5F101PGDFB#X0, R5F101PHDFB#X0,
				R5F101PJDFB#X0, R5F101PKDFB#X0, R5F101PLDFB#X0
	100-pin plastic	Mounted	А	R5F100PFAFA#V0, R5F100PGAFA#V0, R5F100PHAFA#V0,
	LQFP (14 $ imes$ 20 mm,			R5F100PJAFA#V0, R5F100PKAFA#V0, R5F100PLAFA#V0
	0.65 mm pitch)			R5F100PFAFA#X0, R5F100PGAFA#X0, R5F100PHAFA#X0,
				R5F100PJAFA#X0, R5F100PKAFA#X0, R5F100PLAFA#X0
			D	R5F100PFDFA#V0, R5F100PGDFA#V0, R5F100PHDFA#V0,
				R5F100PJDFA#V0, R5F100PKDFA#V0, R5F100PLDFA#V0
				R5F100PFDFA#X0, R5F100PGDFA#X0, R5F100PHDFA#X0,
				R5F100PJDFA#X0, R5F100PKDFA#X0, R5F100PLDFA#X0
			G	R5F100PFGFA#V0, R5F100PGGFA#V0, R5F100PHGFA#V0,
				R5F100PJGFA#V0
				R5F100PFGFA#X0, R5F100PGGFA#X0, R5F100PHGFA#X0,
				R5F100PJGFA#X0
		Not	А	R5F101PFAFA#V0, R5F101PGAFA#V0, R5F101PHAFA#V0,
		mounted		R5F101PJAFA#V0, R5F101PKAFA#V0, R5F101PLAFA#V0
				R5F101PFAFA#X0, R5F101PGAFA#X0, R5F101PHAFA#X0,
				R5F101PJAFA#X0, R5F101PKAFA#X0, R5F101PLAFA#X0
			D	R5F101PFDFA#V0, R5F101PGDFA#V0, R5F101PHDFA#V0,
				R5F101PJDFA#V0, R5F101PKDFA#V0, R5F101PLDFA#V0
				R5F101PFDFA#X0, R5F101PGDFA#X0, R5F101PHDFA#X0,
				R5F101PJDFA#X0, R5F101PKDFA#X0, R5F101PLDFA#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3 Pin Configuration (Top View)

1.3.1 20-pin products

• 20-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark For pin identification, see 1.4 Pin Identification.

1.3.9 48-pin products

• 48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.2 24-pin products

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, Iow ^{№te 1}	lol1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147				20.0 Note 2	mA
		Per pin for P60 to P63				15.0 ^{Note 2}	mA
		Total of P00 to P04, P07, P32 to	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			70.0	mA
		P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145 (When duty $\leq 70\%^{\text{Note 3}}$)	$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			15.0	mA
			$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			9.0	mA
			$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			4.5	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 (When duty $\leq 70\%$ ^{Note 3})	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			80.0	mA
			$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			35.0	mA
			$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			20.0	mA
			$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			10.0	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				150.0	mA
	IOL2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{№0te 3})	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			5.0	mA

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD0} = EV_{DD1} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS0} = EV_{SS1} = 0 \text{ V})$ (2/5)

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1 and Vss pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and $I_{OL} = 10.0 \text{ mA}$

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	Vihi	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Normal input buffer	0.8EV _{DD0}		EVDDO	V
	VIH2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer $4.0 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	2.2		EVDD0	V
		P80, P81, P142, P143	TTL input buffer $3.3 \ V \leq EV_{\text{DD0}} < 4.0 \ V$	2.0		EVDD0	V
			TTL input buffer 1.6 V \leq EV _{DD0} $<$ 3.3 V	1.5		EVDD0	V
	VIH3	P20 to P27, P150 to P156	0.7V _{DD}		VDD	V	
	VIH4	P60 to P63	0.7EVDD0		6.0	v	
	VIH5	P121 to P124, P137, EXCLK, EXCLK	(S, RESET	0.8VDD		VDD	v
Input voltage, Iow	VIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Normal input buffer	0		0.2EVDD0	V
	VIL2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	0		0.8	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq EV_{\text{DD0}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $1.6 \text{ V} \leq EV_{\text{DD0}} < 3.3 \text{ V}$	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3VDD	V
	VIL4	P60 to P63		0		0.3EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	(S, RESET	0		0.2V _{DD}	V

- Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply In	DD2	HALT	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 4}$	VDD = 5.0 V		0.62	1.86	mA
Current	Note 2	mode	speed main)		V _{DD} = 3.0 V		0.62	1.86	mA
			mode	$f_{IH} = 24 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		0.50	1.45	mA
					$V_{DD} = 3.0 V$		0.50	1.45	mA
				$f_{IH} = 16 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		0.44	1.11	mA
				$V_{DD} = 3.0 V$		0.44	1.11	mA	
			LS (low-	$f_{IH} = 8 \text{ MHz}^{Note 4}$	$V_{DD} = 3.0 V$		290	620	μA
		speed main) mode ^{Note 7}		V _{DD} = 2.0 V		290	620	μA	
			LV (low-	$f_{IH} = 4 \text{ MHz}^{Note 4}$	V _{DD} = 3.0 V		440	680	μA
			voltage main) mode Note 7		V _{DD} = 2.0 V		440	680	μA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		0.31	1.08	mA
			speed main) mode ^{Note 7}	$V_{DD} = 5.0 V$	Resonator connection		0.48	1.28	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.48	1.28	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	0.63	mA
				$V_{DD} = 5.0 V$	Resonator connection		0.28	0.71	mA
			fмx = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.63	mA	
			$V_{DD} = 3.0 V$	Resonator connection		0.28	0.71	mA	
			LS (low- speed main) mode ^{Note 7}	fмx = 8 MHz ^{Note 3} ,	Square wave input		110	360	μA
				$V_{DD} = 3.0 V$	Resonator connection		160	420	μA
				$f_{MX} = 8 \text{ MHz}^{Note 3},$	Square wave input		110	360	μA
				$V_{DD} = 2.0 V$	Resonator connection		160	420	μA
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μA
			clock operation	$T_A = -40^{\circ}C$	Resonator connection		0.47	0.80	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μA
				T _A = +25°C	Resonator connection		0.53	0.80	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μA
				T _A = +50°C	Resonator connection		0.60	2.49	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.64	4.03	μA
				T _A = +70°C	Resonator connection		0.83	4.22	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μA
				T _A = +85°C	Resonator connection		1.28	8.23	μA
	DD3 Note 6	STOP	$T_A = -40^{\circ}C$				0.19	0.52	μA
		mode	$T_A = +25^{\circ}C$				0.25	0.52	μA
			T _A = +50°C				0.32	2.21	μA
			T _A = +70°C				0.55	3.94	μA
			T _A = +85°C				1.00	7.95	μA

(Notes and Remarks are listed on the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
 h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

3. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{|\text{Transfer rate}|}) \times \text{Number of transferred bits}} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- $\textbf{5.} \quad \textbf{Use it with } EV_{DD0} \geq V_{b}.$
- 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vbb tolerance (When 20- to 52-pin products)/EVbb tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

Unit

ns

60

130

tput,

(7) Communica correspondi	tion at di	ifferent poter) only) (1/2)	ntial (2.5 V, 3 V) (CSI	mode) (r	naster i	node, S	СКр і	nternal o	clock ou
Parameter	Parameter Symbol		0 = EVDD1 S VDD S 3.3 Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.
SCKp cycle time	t ксү1	$\label{eq:tkcy1} \begin{array}{l} t_{\text{KCY1}} \geq 2/f_{\text{CLK}} & 4.0 \ \text{V} \leq EV_{\text{DD0}} \leq 5.5 \ \text{V} \\ 2.7 \ \text{V} \leq V_{\text{b}} \leq 4.0 \ \text{V}, \end{array}$		200		1150		1150	
			$\label{eq:cb} \begin{split} C_b &= 20 \text{ pF}, R_b = 1.4 \\ k\Omega \end{split}$						
			$\label{eq:states} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \end{array}$	300		1150		1150	
			C_b = 20 pF, R_b = 2.7 $k\Omega$						
SCKp high-level width	tкнı	$\begin{array}{l} \mbox{4.0 V} \le \mbox{EV}_{\mbox{D00}} \le 5.5 \ \mbox{V}, \\ \mbox{2.7 V} \le \mbox{V}_{\mbox{b}} \le 4.0 \ \mbox{V}, \end{array}$		tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50	
		$C_{b} = 20 \text{ pF}, \text{ f}$	$C_{b}=20 \text{ pF}, \text{R}_{b}=1.4 \text{k}\Omega$						
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} \\ 2.3 \ V \leq V_b \leq \end{array}$	o < 4.0 V, 2.7 V,	tксү1/2 – 120		tксү1/2 – 120		tксү1/2 – 120	
		C₀ = 20 pF, I	R _b = 2.7 kΩ						
SCKp low-level width	tĸ∟1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $2.7 \text{ V} \leq \text{V}_{\text{b}} \leq$	₀ ≤ 5.5 V, 4.0 V,	tксү1/2 – 7		tксү1/2 – 50		tксү1/2 – 50	
		$C_{b} = 20 \text{ pF}, \text{ F}$	R₀ = 1.4 kΩ						
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \\ 2.3 \ V \leq V_{\text{b}} \leq \end{array}$	$2.7 V \le EV_{DD0} < 4.0 V, \\ 2.3 V \le V_b \le 2.7 V,$			tксү1/2 – 50		tксү1/2 – 50	
		$C_b = 20 \text{ pF}, \text{ f}$	R _b = 2.7 kΩ						
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \\ 2.7 \ V \leq V_{\text{b}} \leq \end{array}$	₀ ≤ 5.5 V, 4.0 V,	58		479		479	
		$C_{b} = 20 \text{ pF}, \text{ F}$	R _b = 1.4 kΩ						
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \\ 2.3 \ V \leq V_{\text{b}} \leq \end{array}$	₀ < 4.0 V, 2.7 V,	121		479		479	
		C _b = 20 pF, I	R _b = 2.7 kΩ						
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$4.0 V \le EV_{DD}$ 2.7 V < Vh <	o ≤ 5.5 V, 4.0 V.	10		10		10	

 $2.3~V \leq V_b \leq 2.7~V,$

 $C_b = 20 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$ $2.7 V \le EV_{DD0} < 4.0 V$,

 $2.3~V \leq V_b \leq 2.7~V,$ $C_b = 20 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$ $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$

 $2.7~V \leq V_{b} \leq 4.0~V,$

 $C_{\text{b}}=20 \text{ pF}, \text{ R}_{\text{b}}=1.4 \text{ k}\Omega$ $2.7 V \le EV_{DD0} < 4.0 V$,

 $C_b = 20 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$

(Notes, Caution, and Remarks are listed on the next page.)

Delay time from

 $\mathsf{SCKp}{\downarrow} \text{ to } \mathsf{SOp}$

output Note 1

tks01

10

60

130

10

60

130

10

2.5.2 Serial interface IICA

(1) I^2C standard mode

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (hig main)	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
					MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Standard	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	100	0	100	0	100	kHz
		mode:	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	100	0	100	0	100	kHz
			$1.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	100	0	100	0	100	kHz
			$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$	-		0	100	0	100	kHz
Setup time of restart	tsu:sta	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
condition		$1.8 V \le EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.6 V \le EV_{DD0} \le$	≤ 5.5 V	-	_	4.7		4.7		μs
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.7 \text{ V} \leq EV_{DD0}$	$1.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$			4.0		4.0		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		_	_	4.0		4.0		μs
Hold time when SCLA0 =	tLOW	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
"L"		$1.8 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		_	4.7		4.7		μs
Hold time when SCLA0 =	tніgн	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
"H"		$1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V$		4.0		4.0		4.0		μs
		$1.7 V \le EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	-	_	4.0		4.0		μs
Data setup time	tsu:dat	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	250		250		250		ns
(reception)		$1.8 V \le EV_{DD0}$	≤ 5.5 V	250		250		250		ns
		$1.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$		250		250		250		ns
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$				250		250		ns
Data hold time	thd:dat	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
(transmission) ^{Note 2}		$1.8 V \le EV_{DD0}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
		$1.7 V \le EV_{DD0}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	_	_	0	3.45	0	3.45	μs
Setup time of stop	tsu:sto	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	4.0		4.0		4.0		μs
condition		$1.8 V \le EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
	$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		4.0		4.0		4.0		μs	
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	-	_	4.0		4.0		μs
Bus-free time	t BUF	$2.7 V \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.8 V \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.7 V \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	-	_	4.7		4.7		μs

(Notes, Caution and Remark are listed on the next page.)

(3) I²C fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD0} = EV_{DD1} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS0} = EV_{SS1} = 0 \text{ V})$

Parameter	Symbol	Con	Conditions H		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
					MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode plus: fc∟κ≥ 10 MHz	Fast mode plus: $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ fcLK $\ge 10 \text{ MHz}$		1000	—		—		kHz
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5$	γ	0.26				—		μs
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5$	5 V	0.26			-			μS
Hold time when SCLA0 = "L"	t∟ow	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			—		—		μS
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$	$2.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$					_		μS
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$	5 V	50		_	-	_	-	μs
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 \text{ V} \leq EV_{DD0} \leq 5.5$	۶V	0	0.45		-	_	-	μS
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \leq EV_{DD0} \leq 5.5$	$1.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$				-		-	μs
Bus-free time	t BUF	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5$; V	0.5			-	_	_	μs

<R>

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: $C_b = 120 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

Remark n = 0, 1

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - $\label{eq:scalar} \begin{array}{l} \textbf{3. When } AV_{\text{REFP}} < V_{\text{DD}} \text{, the MAX. values are as follows.} \\ \text{Overall error: } Add \pm 1.0 \ \text{LSB} \ \text{to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \text{Zero-scale error/Full-scale error: } Add \pm 0.05\%\text{FSR} \ \text{to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \text{Integral linearity error/ Differential linearity error: } Add \pm 0.5 \ \text{LSB} \ \text{to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \end{array}$
 - 4. Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).
 - 5. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or Vss, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 32 MHz

2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V@1 MHz to 16 MHz

- 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. file: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

- **Notes 1.** Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz

2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz

- **Remarks 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) ($T_A = -40$ to $+105^{\circ}C$, 2.4 V $\leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5$ V. Vss = $EV_{SS0} = EV_{SS1} = 0$ V)

Parameter	Symbol		Conditio	HS (high-speed main) Mode		Unit	
					MIN.	MAX.	
Transfer rate		Reception	$4.0 \ V \ \leq \ EV_{\text{DD0}} \ \leq \ 5.5$			fмск/12 ^{Note 1}	bps
			V, $2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	Theoretical value of the maximum transfer rate fcLk = 32 MHz, fMCk = fcLk		2.6	Mbps
			$2.7 \ V \leq EV_{\text{DD0}} < 4.0$	$7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0$		fмск/12 ^{Note 1}	bps
			V, $2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate fcLK = 32 MHz, fMCK = fcLK		2.6	Mbps
			$2.4 V \leq EV_{DD0} < 3.3 V,$			f _{MCK} /12 Notes 1,2	bps
			$1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate fcLk = 32 MHz, fMCk = fcLk		2.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. The following conditions are required for low voltage interface when E_{VDD0} < $V_{DD}.$ 2.4 V \leq EV_{DD0} < 2.7 V : MAX. 1.3 Mbps
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** $V_{b}[V]$: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVDO	Power supply rise time	3.90	4.06	4.22	V
voltage			Power supply fall time	3.83	3.98	4.13	V
		VLVD1	Power supply rise time	3.60	3.75	3.90	V
			Power supply fall time	3.53	3.67	3.81	V
		VLVD2	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		VLVD5	Power supply rise time	2.70	2.81	2.92	۷
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	۷
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width		t∟w		300			μs
Detection delay time						300	μs

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDD0	VPOC2,	VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.64	2.75	2.86	V
mode	VLVDD1	LVDD1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V	
				Falling interrupt voltage	2.85	2.96	3.07	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

R5F100MFAFB, R5F100MGAFB, R5F100MHAFB, R5F100MJAFB, R5F100MKAFB, R5F100MLAFB R5F101MFAFB, R5F101MGAFB, R5F101MHAFB, R5F101MJAFB, R5F101MKAFB, R5F101MLAFB R5F100MFDFB, R5F100MGDFB, R5F100MHDFB, R5F100MJDFB, R5F100MKDFB, R5F100MLDFB R5F101MFDFB, R5F101MGDFB, R5F101MHDFB, R5F101MJDFB, R5F101MKDFB, R5F101MLDFB R5F100MFGFB, R5F100MGGFB, R5F100MHGFB, R5F100MJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP80-12x12-0.50	PLQP0080KE-A	P80GK-50-8EU-2	0.53

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

			Description		
Rev.	Date	Page	Summary		
3.00	Aug 02, 2013	81	Modification of figure of AC Timing Test Points		
		81	Modification of description and note 3 in (1) During communication at same potential (UART mode)		
		83	Modification of description in (2) During communication at same potential (CSI mode)		
		84	Modification of description in (3) During communication at same potential (CSI mode)		
		85	Modification of description in (4) During communication at same potential (CSI mode) (1/2)		
		86	Modification of description in (4) During communication at same potential (CSI mode) (2/2)		
		88	Modification of table in (5) During communication at same potential (simplified I ² C mode) (1/2)		
		89	Modification of table and caution in (5) During communication at same potential (simplified I ² C mode) (2/2)		
		91	Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)		
		92, 93	Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)		
		94	Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)		
		95	Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2)		
		96	Modification of table and caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (2/2)		
		97	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)		
		98	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)		
		99	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)		
		100	Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)		
		102	Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)		
		103	Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)		
		106	Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2)		
		107	Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (2/2)		
		109	Addition of (1) I ² C standard mode		
		111	Addition of (2) I ² C fast mode		
		112	Addition of (3) I ² C fast mode plus		
		112	Modification of IICA serial transfer timing		
		113	Addition of table in 2.6.1 A/D converter characteristics		
		113	Modification of description in 2.6.1 (1)		
		114	Modification of notes 3 to 5 in 2.6.1 (1)		
		115	Modification of description and notes 2, 4, and 5 in 2.6.1 (2)		
		116	Modification of description and notes 3 and 4 in 2.6.1 (3)		
		117	Modification of description and notes 3 and 4 in 2.6.1 (4)		