

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

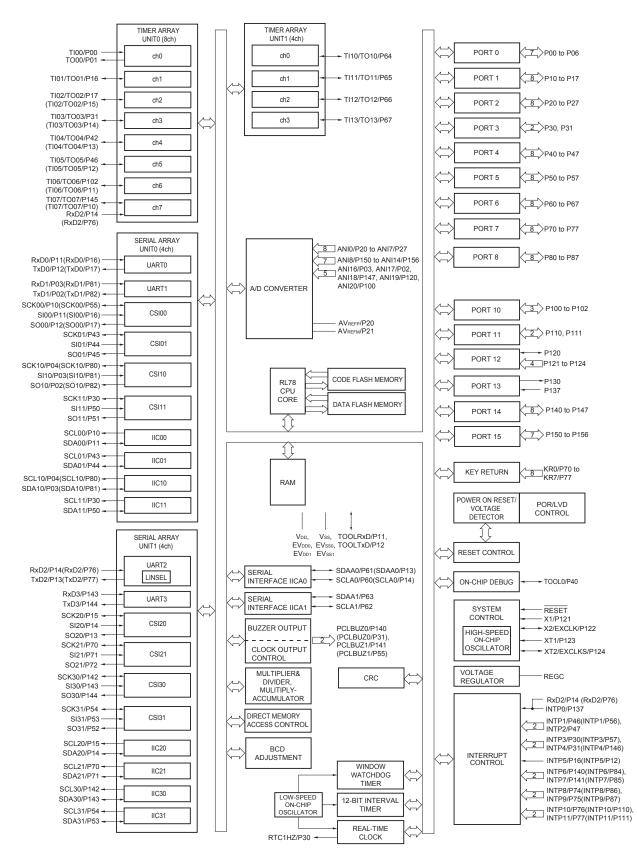
Details

Betans	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	28
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	40-WFQFN Exposed Pad
Supplier Device Package	40-HWQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100edgna-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers


Pin count	Package	Data flash	Fields of	(11/12) Ordering Part Number
	i dokage	Data nash	Application	
100 pins	100-pin plastic	Mounted	А	R5F100PFAFB#V0, R5F100PGAFB#V0, R5F100PHAFB#V0,
	LFQFP (14 $ imes$ 14			R5F100PJAFB#V0, R5F100PKAFB#V0, R5F100PLAFB#V0
	mm, 0.5 mm pitch)			R5F100PFAFB#X0, R5F100PGAFB#X0, R5F100PHAFB#X0,
				R5F100PJAFB#X0, R5F100PKAFB#X0, R5F100PLAFB#X0
			D	R5F100PFDFB#V0, R5F100PGDFB#V0, R5F100PHDFB#V0,
				R5F100PJDFB#V0, R5F100PKDFB#V0, R5F100PLDFB#V0
				R5F100PFDFB#X0, R5F100PGDFB#X0, R5F100PHDFB#X0,
				R5F100PJDFB#X0, R5F100PKDFB#X0, R5F100PLDFB#X0
			G	R5F100PFGFB#V0, R5F100PGGFB#V0, R5F100PHGFB#V0,
				R5F100PJGFB#V0
				R5F100PFGFB#X0, R5F100PGGFB#X0, R5F100PHGFB#X0,
				R5F100PJGFB#X0
		Not	А	R5F101PFAFB#V0, R5F101PGAFB#V0, R5F101PHAFB#V0,
		mounted		R5F101PJAFB#V0, R5F101PKAFB#V0, R5F101PLAFB#V0
				R5F101PFAFB#X0, R5F101PGAFB#X0, R5F101PHAFB#X0,
				R5F101PJAFB#X0, R5F101PKAFB#X0, R5F101PLAFB#X0
			D	R5F101PFDFB#V0, R5F101PGDFB#V0, R5F101PHDFB#V0,
				R5F101PJDFB#V0, R5F101PKDFB#V0, R5F101PLDFB#V0
				R5F101PFDFB#X0, R5F101PGDFB#X0, R5F101PHDFB#X0,
				R5F101PJDFB#X0, R5F101PKDFB#X0, R5F101PLDFB#X0
	100-pin plastic	Mounted	А	R5F100PFAFA#V0, R5F100PGAFA#V0, R5F100PHAFA#V0,
	LQFP (14 $ imes$ 20 mm,			R5F100PJAFA#V0, R5F100PKAFA#V0, R5F100PLAFA#V0
	0.65 mm pitch)			R5F100PFAFA#X0, R5F100PGAFA#X0, R5F100PHAFA#X0,
				R5F100PJAFA#X0, R5F100PKAFA#X0, R5F100PLAFA#X0
			D	R5F100PFDFA#V0, R5F100PGDFA#V0, R5F100PHDFA#V0,
				R5F100PJDFA#V0, R5F100PKDFA#V0, R5F100PLDFA#V0
				R5F100PFDFA#X0, R5F100PGDFA#X0, R5F100PHDFA#X0,
				R5F100PJDFA#X0, R5F100PKDFA#X0, R5F100PLDFA#X0
			G	R5F100PFGFA#V0, R5F100PGGFA#V0, R5F100PHGFA#V0, R5F100PJGFA#V0
				R5F100PFGFA#X0, R5F100PGGFA#X0, R5F100PHGFA#X0,
				R5F100PJGFA#X0
		Not	А	R5F101PFAFA#V0, R5F101PGAFA#V0, R5F101PHAFA#V0,
		mounted		R5F101PJAFA#V0, R5F101PKAFA#V0, R5F101PLAFA#V0
				R5F101PFAFA#X0, R5F101PGAFA#X0, R5F101PHAFA#X0,
				R5F101PJAFA#X0, R5F101PKAFA#X0, R5F101PLAFA#X0
			D	R5F101PFDFA#V0, R5F101PGDFA#V0, R5F101PHDFA#V0,
				R5F101PJDFA#V0, R5F101PKDFA#V0, R5F101PLDFA#V0
				R5F101PFDFA#X0, R5F101PGDFA#X0, R5F101PHDFA#X0,
				R5F101PJDFA#X0, R5F101PKDFA#X0, R5F101PLDFA#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.5.13 100-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

Items	Symbol	Conditio	Conditions					Unit
Input leakage current, high	Цінт	P00 to P07, P10 to P17, VI = EVDD0 P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147				1	μA	
	Ілна	P20 to P27, P137, P150 to P156, RESET	$V_{\text{I}} = V_{\text{DD}}$				1	μA
Іцнз		P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	luu1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVSSO				-1	μΑ
	Ilile	P20 to P27, P137, P150 to P156, RESET	VI = Vss				-1	μA
	Ililis	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVsso	, In input port	10	20	100	kΩ

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (5/5)

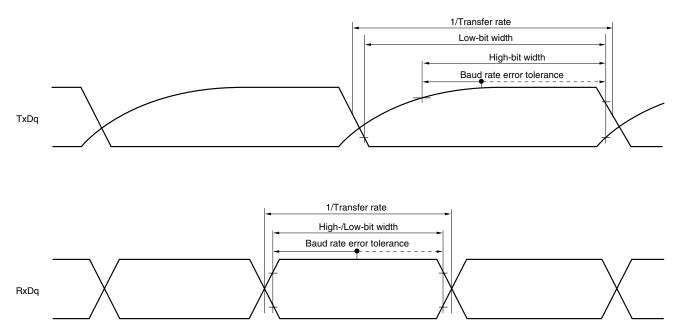
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

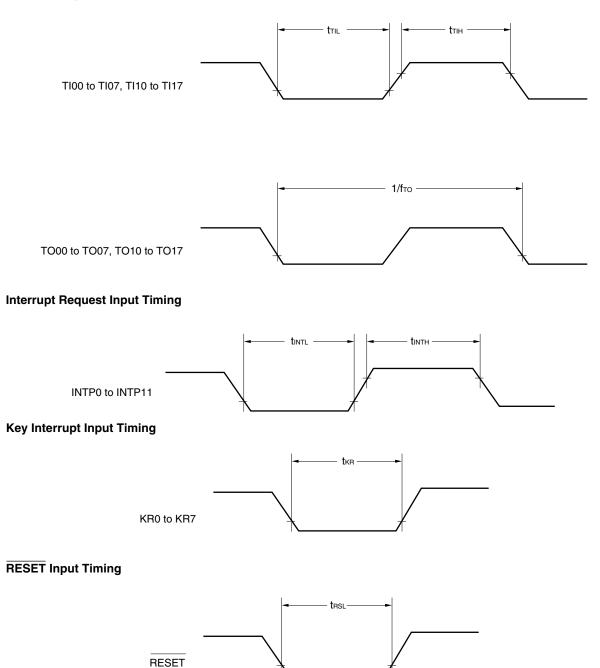
(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply			HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		0.54	1.63	mA
current Note 2 mode	Note 2	mode	speed main) mode ^{Note 7}		$V_{DD} = 3.0 V$		0.54	1.63	mA
			fiH = 24 MHz ^{Note 4}	$V_{DD} = 5.0 V$		0.44	1.28	mA	
				V _{DD} = 3.0 V		0.44	1.28	mA	
				fin = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.40	1.00	mA
				V _{DD} = 3.0 V		0.40	1.00	mA	
			LS (low-	fin = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		260	530	μA
			speed main) mode ^{Note 7}		V _{DD} = 2.0 V		260	530	μA
			LV (low-	fiH = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μA
		voltage main) mode		V _{DD} = 2.0 V		420	640	μA	
	HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA		
			speed main) mode ^{Note 7}	$V_{DD} = 5.0 V$	Resonator connection		0.45	1.17	mA
		f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA		
			$V_{DD} = 3.0 V$	Resonator connection		0.45	1.17	mA	
			$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.19	0.60	mA	
			$V_{DD} = 5.0 V$	Resonator connection		0.26	0.67	mA	
			$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		0.19	0.60	mA	
				$V_{DD} = 3.0 V$	Resonator connection		0.26	0.67	mA
		LS (low-	$f_{MX} = 8 MHz^{Note 3}$,	Square wave input		95	330	μA	
			speed main) mode ^{Note 7}	$V_{DD} = 3.0 V$	Resonator connection		145	380	μA
				$f_{MX} = 8 MHz^{Note 3}$,	Square wave input		95	330	μA
				$V_{DD} = 2.0 V$	Resonator connection		145	380	μA
			fsub = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA	
			clock	$T_A = -40^{\circ}C$	Resonator connection		0.44	0.76	μA
			operation	$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		0.30	0.57	μA
				$T_A = +25^{\circ}C$	Resonator connection		0.49	0.76	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.37	1.17	μA
				$T_A = +50^{\circ}C$	Resonator connection		0.56	1.36	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.53	1.97	μA
		$T_A = +70^{\circ}C$	Resonator connection		0.72	2.16	μA		
		fsub = 32.768 kHz ^{Note 5}	Square wave input		0.82	3.37	μA		
			T _A = +85°C	Resonator connection		1.01	3.56	μA	
	DD3 ^{Note 6}		$T_A = -40^{\circ}C$				0.18	0.50	μA
		mode ^{™ote 8}	mode ^{Note 8} $T_A = +25^{\circ}C$				0.23	0.50	μA
			$T_A = +50^{\circ}C$				0.30	1.10	μA
			$T_A = +70^{\circ}C$				0.46	1.90	μA
			T _A = +85°C				0.75	3.30	μA

(Notes and Remarks are listed on the next page.)


- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V @\,1~\text{MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: ~~ 1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$



- **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
- **3.** fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))
- **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

TI/TO Timing

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) ($T_A = -40$ to $+105^{\circ}C$, 2.4 V $\leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5$ V. Vss = $EV_{SS0} = EV_{SS1} = 0$ V)

Parameter	Symbol		Conditio		speed main) ode	Unit	
					MIN.	MAX.	
Transfer rate		Reception	$4.0 \ V \ \leq \ EV_{\text{DD0}} \ \leq \ 5.5$			fмск/12 ^{Note 1}	bps
			V, $2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	Theoretical value of the maximum transfer rate fcLK = 32 MHz, fMCK = fcLK		2.6	Mbps
			$2.7 \ V \leq EV_{\text{DD0}} < 4.0$	·		fмск/12 ^{Note 1}	bps
			V, $2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}$	Theoretical value of the maximum transfer rate fcLK = 32 MHz, fMCK = fcLK		2.6	Mbps
			$\begin{array}{l} 2.4 \hspace{.1cm} V \hspace{.1cm} \leq \hspace{.1cm} EV_{DD0} \hspace{.1cm} < \hspace{.1cm} 3.3 \\ V, \end{array}$			f _{MCK} /12 Notes 1,2	bps
			$1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate fcLk = 32 MHz, fMCk = fcLk		2.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

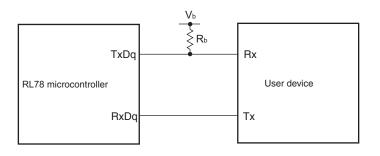
- 2. The following conditions are required for low voltage interface when E_{VDD0} < $V_{DD}.$ 2.4 V \leq EV_{DD0} < 2.7 V : MAX. 1.3 Mbps
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** $V_{b}[V]$: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp int	ernal clock
output) (1/3)	

Parameter	Symbol		Conditions	HS (high-spee	d main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time	tксүı	tkcyı ≥ 4/fclk	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \\ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	600		ns
			$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \\ V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1000		ns
			$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \\ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	2300		ns
SCKp high-level width	tкнı		$1.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, \text{R}_{\text{b}} = 1.4 \text{ k}\Omega$			ns
		2.7 V ≤ EV _{DD} C₀ = 30 pF, F	$_{0}$ < 4.0 V, 2.3 V \leq V _b \leq 2.7 V, R _b = 2.7 kΩ	tkcy1/2 - 340		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 30 \text{ pF}, \text{ F}$	$_{0}$ < 3.3 V, 1.6 V \leq V $_{b}$ \leq 2.0 V, R $_{b}$ = 5.5 k Ω	tксү1/2 – 916		ns
SCKp low-level width	tĸ∟1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 30 \text{ pF, F}$	$_{0}\leq5.5$ V, 2.7 V \leq V_{b} ≤4.0 V, R_{b} = 1.4 k Ω	tксү1/2 – 24		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 30 \text{ pF}, \text{ F}$	$_{0}$ < 4.0 V, 2.3 V \leq V _b \leq 2.7 V, R _b = 2.7 k Ω	tксү1/2 – 36		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 30 \text{ pF}, \text{ F}$	$_{0}$ < 3.3 V, 1.6 V \leq V $_{b}$ \leq 2.0 V, R_{b} = 5.5 k Ω	tkcy1/2 - 100		ns

(T₄ = -40 to +105°C	$24V < FV_{DD0} = FV_{0}$	ν V V 5 5 V V	$V_{SS} = EV_{SS0} = EV_{SS1} = 0 V$
•	IA - TO LO TIOD O	,		$33 = 2 \cdot 330 = 2 \cdot 331 = 0 \cdot 1$

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

Parameter	Symbol	Conditions	HS (high-spee	Unit	
				MAX.	
SIp setup time	tsik1	$4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$	88		ns
(to SCKp↓) ^{Note}		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$			
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	88		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$	220		ns
		C_b = 30 pF, R_b = 5.5 k Ω			
SIp hold time (from SCKp↓) ^{№te}	tksi1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$	38		ns
		$C_b = 30 \text{ pF}, \text{R}_b = 1.4 \text{k}\Omega$			
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	38		ns
		$C_b=30 \text{ pF}, \text{R}_b=2.7 \text{k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} < 3.3~V,~1.6~V \leq V_{\text{b}} \leq 2.0~V,$	38		ns
		$C_b=30 \text{ pF}, \text{R}_b=5.5 \text{k}\Omega$			
Delay time from SCKp↑ to	tkso1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$		50	ns
SOp output Note		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$		50	ns
		$C_b=30 \text{ pF}, \text{R}_b=2.7 \text{k}\Omega$			
		$2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$		50	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

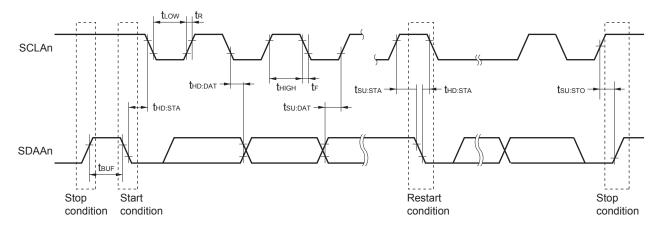
3.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS (h	HS (high-speed main) Mode			
				Standard Mode		Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fclk ≥ 3.5 MHz	-	-	0	400	kHz
		Standard mode: fclk ≥ 1 MHz	0	100	-	_	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	t∟ow		4.7		1.3		μs
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

<R>

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

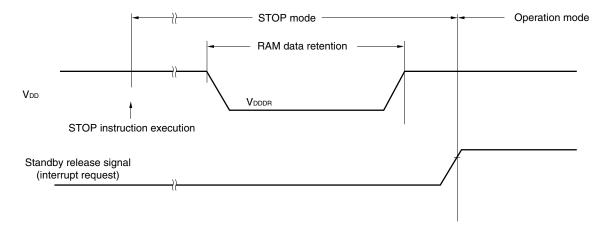
 $\begin{array}{ll} \mbox{Standard mode:} & C_b = 400 \mbox{ pF}, \mbox{ } R_b = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ pF}, \mbox{ } R_b = 1.1 \mbox{ } k\Omega \\ \end{array}$

IICA serial transfer timing

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

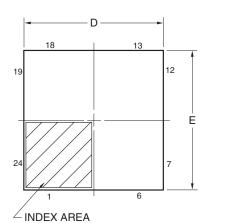

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

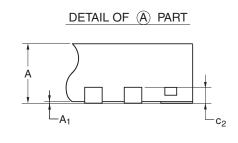
3.7 RAM Data Retention Characteristics

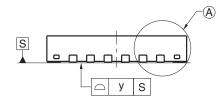
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

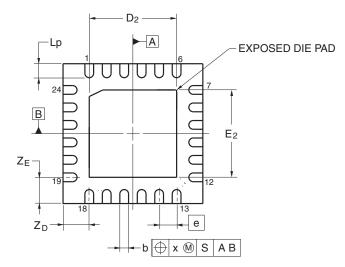
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

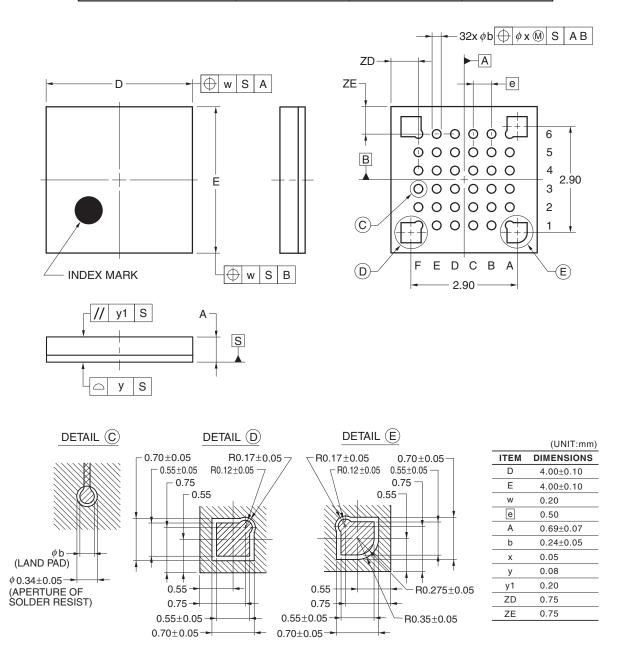

4.2 24-pin Products


R5F1007AANA, R5F1007CANA, R5F1007DANA, R5F1007EANA R5F1017AANA, R5F1017CANA, R5F1017DANA, R5F1017EANA R5F1007ADNA, R5F1007CDNA, R5F1007DDNA, R5F1007EDNA R5F1017ADNA, R5F1017CDNA, R5F1017DDNA, R5F1017EDNA R5F1007AGNA, R5F1007CGNA, R5F1007DGNA, R5F1007EGNA


JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HWQFN24-4x4-0.50	PWQN0024KE-A	P24K8-50-CAB-3	0.04


0

o


Referance	Dimension in Millimeters		
Symbol	Min	Nom	Max
D	3.95	4.00	4.05
E	3.95	4.00	4.05
А			0.80
A ₁	0.00		
b	0.18	0.25	0.30
е		0.50	
Lp	0.30	0.40	0.50
х			0.05
у			0.05
ZD		0.75	
Z _E		0.75	
C ₂	0.15	0.20	0.25
D ₂		2.50	
E ₂		2.50	

4.6 36-pin Products

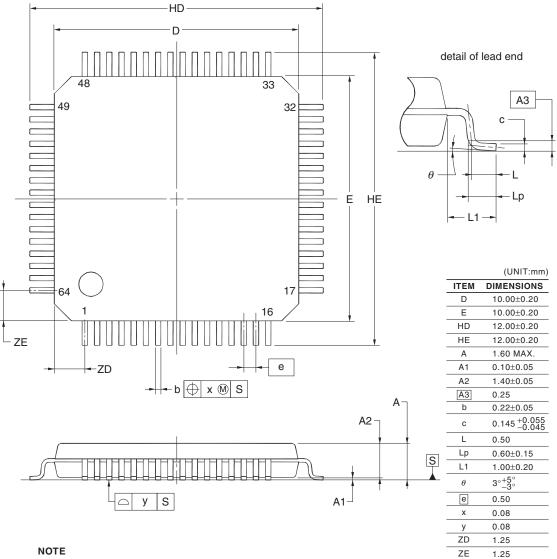
R5F100CAALA, R5F100CCALA, R5F100CDALA, R5F100CEALA, R5F100CFALA, R5F100CGALA R5F101CAALA, R5F101CCALA, R5F101CDALA, R5F101CEALA, R5F101CFALA, R5F101CGALA R5F100CAGLA, R5F100CCGLA, R5F100CDGLA, R5F100CEGLA, R5F100CFGLA, R5F100CGGLA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-WFLGA36-4x4-0.50	PWLG0036KA-A	P36FC-50-AA4-2	0.023

©2012 Renesas Electronics Corporation. All rights reserved.

R5F100LCAFB, R5F100LDAFB, R5F100LEAFB, R5F100LFAFB, R5F100LGAFB, R5F100LHAFB, R5F100LJAFB, R5F100LLAFB

R5F101LCAFB, R5F101LDAFB, R5F101LEAFB, R5F101LFAFB, R5F101LGAFB, R5F101LHAFB,


R5F101LJAFB, R5F101LKAFB, R5F101LLAFB

R5F100LCDFB, R5F100LDDFB, R5F100LEDFB, R5F100LFDFB, R5F100LGDFB, R5F100LHDFB, R5F100LJDFB, R5F100LLDFB

R5F101LCDFB, R5F101LDDFB, R5F101LEDFB, R5F101LFDFB, R5F101LGDFB, R5F101LHDFB, R5F101LJDFB, R5F101LKDFB, R5F101LLDFB

R5F100LCGFB, R5F100LDGFB, R5F100LEGFB, R5F100LFGFB, R5F100LGGFB, R5F100LHGFB, R5F100LJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP64-10x10-0.50	PLQP0064KF-A	P64GB-50-UEU-2	0.35

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

4.14 128-pin Products

R5F100SHAFB, R5F100SJAFB, R5F100SKAFB, R5F100SLAFB R5F101SHAFB, R5F101SJAFB, R5F101SKAFB, R5F101SLAFB R5F100SHDFB, R5F100SJDFB, R5F100SKDFB, R5F100SLDFB R5F101SHDFB, R5F101SJDFB, R5F101SKDFB, R5F101SLDFB

©2012 Renesas Electronics Corporation. All rights reserved.

х

y ZD

ZE

0.08

0.75

0.75

Revision History

RL78/G13 Data Sheet

		Description		
Rev.	Date	Page	Summary	
1.00	Feb 29, 2012	-	First Edition issued	
2.00	2.00 Oct 12, 2012	7	Figure 1-1. Part Number, Memory Size, and Package of RL78/G13: Pin count corrected.	
		25	1.4 Pin Identification: Description of pins INTP0 to INTP11 corrected.	
		40, 42, 44	1.6 Outline of Functions: Descriptions of Subsystem clock, Low-speed on-chip oscillator, and General-purpose register corrected.	
		41, 43, 45	1.6 Outline of Functions: Lists of Descriptions changed.	
		59, 63, 67	Descriptions of Note 8 in a table corrected.	
		68	(4) Common to RL78/G13 all products: Descriptions of Notes corrected.	
		69	2.4 AC Characteristics: Symbol of external system clock frequency corrected.	
		96 to 98	2.6.1 A/D converter characteristics: Notes of overall error corrected.	
		100	2.6.2 Temperature sensor characteristics: Parameter name corrected.	
		104	2.8 Flash Memory Programming Characteristics: Incorrect descriptions corrected.	
		116	3.10 52-pin products: Package drawings of 52-pin products corrected.	
		120	3.12 80-pin products: Package drawings of 80-pin products corrected.	
3.00	Aug 02, 2013	1	Modification of 1.1 Features	
		3	Modification of 1.2 List of Part Numbers	
		4 to 15	Modification of Table 1-1. List of Ordering Part Numbers, note, and caution	
		16 to 32	Modification of package type in 1.3.1 to 1.3.14	
		33	Modification of description in 1.4 Pin Identification	
		48, 50, 52	Modification of caution, table, and note in 1.6 Outline of Functions	
		55	Modification of description in table of Absolute Maximum Ratings ($T_A = 25^{\circ}C$)	
		57	Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics	
		57	Modification of table in 2.2.2 On-chip oscillator characteristics	
		58	Modification of note 3 of table (1/5) in 2.3.1 Pin characteristics	
		59	Modification of note 3 of table (2/5) in 2.3.1 Pin characteristics	
		63	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products	
		64	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products	
		65	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products	
		66	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64- pin products	
		68	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products	
		70	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products	
		72	Modification of notes 1 and 4 in (3) Flash ROM: 384 to 512 KB of 44- to 100- pin products	
		74	Modification of notes 1, 5, and 6 in (3) Flash ROM: 384 to 512 KB of 44- to 100-pin products	
		75	Modification of (4) Peripheral Functions (Common to all products)	
		77	Modification of table in 2.4 AC Characteristics	
		78, 79	Addition of Minimum Instruction Execution Time during Main System Clock Operation	
		80	Modification of figures of AC Timing Test Points and External System Clock Timing	

	Description		
Rev.	Date	Page	Summary
3.00	Aug 02, 2013	118	Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics
		118	Modification of table and note in 2.6.3 POR circuit characteristics
		119	Modification of table in 2.6.4 LVD circuit characteristics
		120	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode
		120	Renamed to 2.6.5 Power supply voltage rising slope characteristics
		122	Modification of table, figure, and remark in 2.10 Timing Specs for Switching Flash Memory Programming Modes
		123	Modification of caution 1 and description
		124	Modification of table and remark 3 in Absolute Maximum Ratings ($T_A = 25^{\circ}C$)
		126	Modification of table, note, caution, and remark in 3.2.1 X1, XT1 oscillator characteristics
		126	Modification of table in 3.2.2 On-chip oscillator characteristics
		127	Modification of note 3 in 3.3.1 Pin characteristics (1/5)
		128	Modification of note 3 in 3.3.1 Pin characteristics (2/5)
		133	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (1/2)
		135	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64- pin products (2/2)
		137	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products (1/2)
		139	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (2/2)
		140	Modification of (3) Peripheral Functions (Common to all products)
		142	Modification of table in 3.4 AC Characteristics
		143	Addition of Minimum Instruction Execution Time during Main System Clock Operation
		143	Modification of figure of AC Timing Test Points
		143	Modification of figure of External System Clock Timing
		145	Modification of figure of AC Timing Test Points
		145	Modification of description, note 1, and caution in (1) During communication at same potential (UART mode)
		146	Modification of description in (2) During communication at same potential (CSI mode)
		147	Modification of description in (3) During communication at same potential (CSI mode)
		149	Modification of table, note 1, and caution in (4) During communication at same potential (simplified I ² C mode)
		151	Modification of table, note 1, and caution in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)
		152 to 154	Modification of table, notes 2 to 6, caution, and remarks 1 to 4 in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)
		155	Modification of table in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)
		156	Modification of table and caution in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)
		157, 158	Modification of table, caution, and remarks 3 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)
		160, 161	Modification of table and caution in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode)