

Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Obsolete                                                                        |
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 32MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, LINbus, UART/USART                                       |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                         |
| Number of I/O              | 28                                                                              |
| Program Memory Size        | 64KB (64K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | 4K x 8                                                                          |
| RAM Size                   | 4K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V                                                                     |
| Data Converters            | A/D 9x8/10b                                                                     |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 40-WFQFN Exposed Pad                                                            |
| Supplier Device Package    | 40-HWQFN (6x6)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100eegna-u0 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

(3/12)

| Pin<br>count | Package                                             | Data flash     | Fields of<br>Application | Ordering Part Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------|-----------------------------------------------------|----------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                     |                | Note                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 36 pins      | 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)       | Mounted        | A<br>G                   | R5F100CAALA#U0, R5F100CCALA#U0, R5F100CDALA#U0, R5F100CEALA#U0, R5F100CFALA#U0, R5F100CGALA#U0 R5F100CAALA#W0, R5F100CAALA#W0, R5F100CAALA#W0, R5F100CEALA#W0, R5F100CGALA#W0 R5F100CAGLA#W0 R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#U0 R5F100CAGLA#U0 R5F100CAGLA#W0 R5F100CAGLA#W0 R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |                                                     | Not<br>mounted | A                        | R5F101CAALA#U0, R5F101CCALA#U0, R5F101CDALA#U0, R5F101CEALA#U0, R5F101CFALA#U0, R5F101CGALA#U0 R5F101CAALA#W0, R5F101CAALA#W0, R5F101CDALA#W0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 40 pins      | 40-pin plastic HWQFN<br>(6 × 6 mm, 0.5 mm<br>pitch) | Mounted        | A                        | R5F101CEALA#W0, R5F101CFALA#W0, R5F101CGALA#W0 R5F100EAANA#U0, R5F100ECANA#U0, R5F100EDANA#U0, R5F100EEANA#U0, R5F100EFANA#U0, R5F100EGANA#U0, R5F100EHANA#U0 R5F100EAANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100EEANA#W0, R5F100EFANA#W0, R5F100EGANA#W0, R5F100EHANA#W0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                                     |                | D                        | R5F100EADNA#U0, R5F100ECDNA#U0, R5F100EDDNA#U0, R5F100EEDNA#U0, R5F100EEDNA#U0, R5F100EGDNA#U0, R5F100EHDNA#U0 R5F100EADNA#W0, R5F100ECDNA#W0, R5F100EDDNA#W0, R5F100EEDNA#W0, R5F100EFDNA#W0, R5F100EGDNA#W0, R5F100EHDNA#W0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                     |                | G                        | R5F100EAGNA#U0, R5F100ECGNA#U0, R5F100EDGNA#U0, R5F100EEGNA#U0, R5F100EEGNA#U0, R5F100EGGNA#U0, R5F100EHGNA#U0 R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100EDGNA#W0, R5F100EEGNA#W0, R5F100EFGNA#W0, R5F100EHGNA#W0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                     | Not<br>mounted | A<br>D                   | R5F101EAANA#U0, R5F101ECANA#U0, R5F101EDANA#U0, R5F101EEANA#U0, R5F101EFANA#U0, R5F101EGANA#U0, R5F101EHANA#U0 R5F101EAANA#W0, R5F101ECANA#W0, R5F101EDANA#W0, R5F101EEANA#W0, R5F101EFANA#W0, R5F101EGANA#W0, R5F101EHANA#W0 R5F101EHANA#W0 R5F101EADNA#U0, R5F101ECDNA#U0, R5F101EDDNA#U0, R5F101EDNA#U0, R5F101EDNA#U0, R5F101EDNA#W0, R5F101 |
|              |                                                     |                |                          | R5F101EDDNA#W0, R5F101EEDNA#W0, R5F101EFDNA#W<br>R5F101EGDNA#W0, R5F101EHDNA#W0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

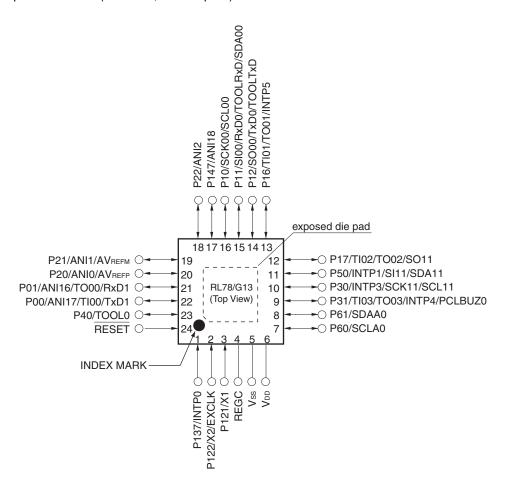
Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.



Table 1-1. List of Ordering Part Numbers

(8/12)

| Pin count | Package             | Data flash | Fields of        | Ordering Part Number                           |
|-----------|---------------------|------------|------------------|------------------------------------------------|
|           |                     |            | Application Note |                                                |
| 64 pins   | 64-pin plastic LQFP | Mounted    | Α                | R5F100LCAFA#V0, R5F100LDAFA#V0,                |
|           | (12 × 12 mm, 0.65   |            |                  | R5F100LEAFA#V0, R5F100LFAFA#V0,                |
|           | mm pitch)           |            |                  | R5F100LGAFA#V0, R5F100LHAFA#V0,                |
|           |                     |            |                  | R5F100LJAFA#V0, R5F100LKAFA#V0, R5F100LLAFA#V0 |
|           |                     |            |                  | R5F100LCAFA#X0, R5F100LDAFA#X0,                |
|           |                     |            |                  | R5F100LEAFA#X0, R5F100LFAFA#X0,                |
|           |                     |            | D                | R5F100LGAFA#X0, R5F100LHAFA#X0,                |
|           |                     |            |                  | R5F100LJAFA#X0, R5F100LKAFA#X0, R5F100LLAFA#X0 |
|           |                     |            |                  | R5F100LCDFA#V0, R5F100LDDFA#V0,                |
|           |                     |            |                  | R5F100LEDFA#V0, R5F100LFDFA#V0,                |
|           |                     |            |                  | R5F100LGDFA#V0, R5F100LHDFA#V0,                |
|           |                     |            |                  | R5F100LJDFA#V0, R5F100LKDFA#V0, R5F100LLDFA#V0 |
|           |                     |            | G                | R5F100LCDFA#X0, R5F100LDDFA#X0,                |
|           |                     |            |                  | R5F100LEDFA#X0, R5F100LFDFA#X0,                |
|           |                     |            |                  | R5F100LGDFA#X0, R5F100LHDFA#X0,                |
|           |                     |            |                  | R5F100LJDFA#X0, R5F100LKDFA#X0, R5F100LLDFA#X0 |
|           |                     |            |                  | R5F100LCGFA#V0, R5F100LDGFA#V0,                |
|           |                     |            |                  | R5F100LEGFA#V0, R5F100LFGFA#V0                 |
|           |                     |            |                  | R5F100LCGFA#X0, R5F100LDGFA#X0,                |
|           |                     |            |                  | R5F100LEGFA#X0, R5F100LFGFA#X0                 |
|           |                     |            |                  | R5F100LGGFA#V0, R5F100LHGFA#V0,                |
|           |                     |            |                  | R5F100LJGFA#V0                                 |
|           |                     |            |                  | R5F100LGGFA#X0, R5F100LHGFA#X0,                |
|           |                     |            |                  | R5F100LJGFA#X0                                 |
|           |                     | Not        | Α                | R5F101LCAFA#V0, R5F101LDAFA#V0,                |
|           |                     | mounted    |                  | R5F101LEAFA#V0, R5F101LFAFA#V0,                |
|           |                     |            |                  | R5F101LGAFA#V0, R5F101LHAFA#V0,                |
|           |                     |            |                  | R5F101LJAFA#V0, R5F101LKAFA#V0, R5F101LLAFA#V0 |
|           |                     |            |                  | R5F101LCAFA#X0, R5F101LDAFA#X0,                |
|           |                     |            |                  | R5F101LEAFA#X0, R5F101LFAFA#X0,                |
|           |                     |            | D                | R5F101LGAFA#X0, R5F101LHAFA#X0,                |
|           |                     |            |                  | R5F101LJAFA#X0, R5F101LKAFA#X0, R5F101LLAFA#X0 |
|           |                     |            |                  | R5F101LCDFA#V0, R5F101LDDFA#V0,                |
|           |                     |            |                  | R5F101LEDFA#V0, R5F101LFDFA#V0,                |
|           |                     |            |                  | R5F101LGDFA#V0, R5F101LHDFA#V0,                |
|           |                     |            |                  | R5F101LJDFA#V0, R5F101LKDFA#V0, R5F101LLDFA#V0 |
|           |                     |            |                  | R5F101LCDFA#X0, R5F101LDDFA#X0,                |
|           |                     |            |                  | R5F101LEDFA#X0, R5F101LFDFA#X0,                |
|           |                     |            |                  | R5F101LGDFA#X0, R5F101LHDFA#X0,                |
|           |                     |            |                  | R5F101LJDFA#X0, R5F101LKDFA#X0, R5F101LLDFA#X0 |


Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

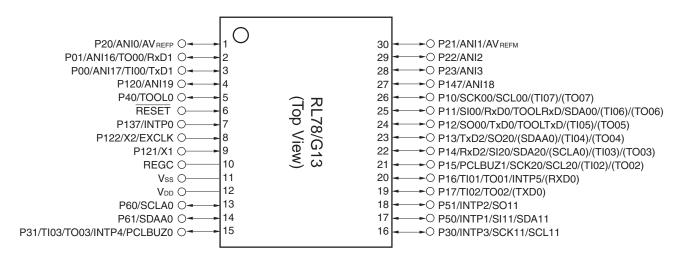
Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.



### 1.3.2 24-pin products

• 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)




Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F).

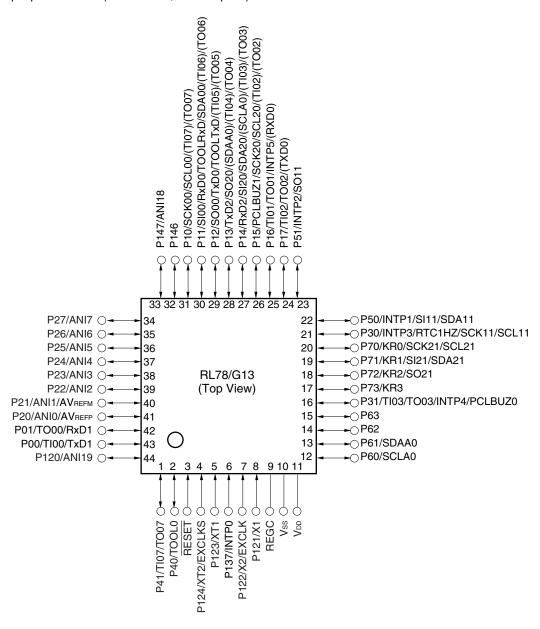
Remarks 1. For pin identification, see 1.4 Pin Identification.

2. It is recommended to connect an exposed die pad to  $V_{\mbox{\scriptsize ss}}.$ 

## 1.3.4 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)




Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

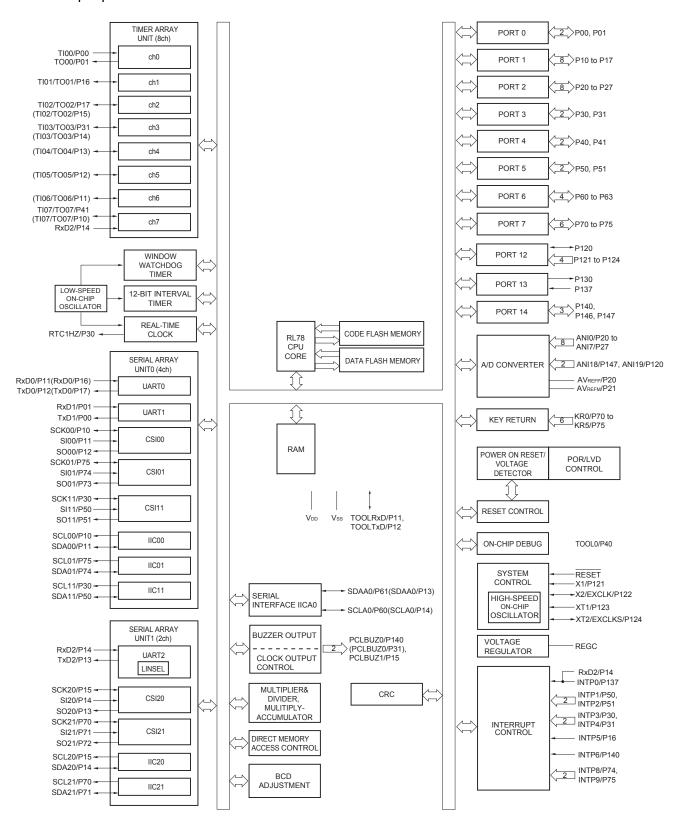
Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

### 1.3.8 44-pin products

• 44-pin plastic LQFP (10 × 10 mm, 0.8 mm pitch)



Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

## 1.5.3 25-pin products



## 1.5.9 48-pin products



Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

### 2.1 Absolute Maximum Ratings

## Absolute Maximum Ratings ( $T_A = 25$ °C) (1/2)

| Parameter              | Symbols                               | Conditions                                                                                                                                                                     | Ratings                                                                                       | Unit |
|------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------|
| Supply voltage         | V <sub>DD</sub>                       |                                                                                                                                                                                | -0.5 to +6.5                                                                                  | V    |
|                        | EV <sub>DD0</sub> , EV <sub>DD1</sub> | EV <sub>DD0</sub> = EV <sub>DD1</sub>                                                                                                                                          | -0.5 to +6.5                                                                                  | V    |
|                        | EVsso, EVss1                          | EVsso = EVss1                                                                                                                                                                  | -0.5 to +0.3                                                                                  | V    |
| REGC pin input voltage | VIREGC                                | REGC                                                                                                                                                                           | -0.3 to +2.8<br>and -0.3 to V <sub>DD</sub> +0.3 <sup>Note 1</sup>                            | V    |
| Input voltage          | Vıı                                   | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147       |                                                                                               | V    |
|                        | V <sub>I2</sub>                       | P60 to P63 (N-ch open-drain)                                                                                                                                                   | -0.3 to +6.5                                                                                  | V    |
|                        | Vı3                                   | P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET                                                                                                             | -0.3 to V <sub>DD</sub> +0.3 <sup>Note 2</sup>                                                | V    |
| Output voltage         | Vo <sub>1</sub>                       | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 |                                                                                               | ٧    |
|                        | V <sub>O2</sub>                       | P20 to P27, P150 to P156                                                                                                                                                       | -0.3 to V <sub>DD</sub> +0.3 Note 2                                                           | V    |
| Analog input voltage   | VAI1                                  | ANI16 to ANI26                                                                                                                                                                 | -0.3 to EV <sub>DD0</sub> +0.3<br>and -0.3 to AV <sub>REF</sub> (+) +0.3 <sup>Notes 2,3</sup> | V    |
|                        | V <sub>Al2</sub>                      | ANI0 to ANI14                                                                                                                                                                  | -0.3 to V <sub>DD</sub> +0.3 and -0.3 to AV <sub>REF</sub> (+) +0.3 Notes 2, 3                | V    |

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
  - 2. Must be 6.5 V or lower.
  - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
  - **2.**  $AV_{REF}(+)$ : + side reference voltage of the A/D converter.
  - 3. Vss: Reference voltage

**Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

## (4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2)

(TA = -40 to +85°C, 1.6 V  $\leq$  EVDD0 = EVDD1  $\leq$  VDD  $\leq$  5.5 V, Vss = EVss0 = EVss1 = 0 V)

| Parameter                      | Symbol        | Condit                                                       | ions                              | , ,                   | h-speed<br>Mode | ,                     | /-speed<br>Mode | ,                     | -voltage<br>Mode | Unit |
|--------------------------------|---------------|--------------------------------------------------------------|-----------------------------------|-----------------------|-----------------|-----------------------|-----------------|-----------------------|------------------|------|
|                                |               |                                                              |                                   | MIN.                  | MAX.            | MIN.                  | MAX.            | MIN.                  | MAX.             |      |
| SCKp cycle time                | tkcy2         | $4.0~V \le EV_{DD0} \le 5.5$                                 | 20 MHz < fмск                     | 8/fмск                |                 | _                     |                 | _                     |                  | ns   |
| Note 5                         |               | V                                                            | fмск ≤ 20 MHz                     | 6/ƒмск                |                 | 6/fмск                |                 | 6/fмск                |                  | ns   |
|                                |               | $2.7~V \leq EV_{DD0} \leq 5.5$                               | 16 MHz < fмск                     | 8/fмск                |                 | _                     |                 | _                     |                  | ns   |
|                                |               | V                                                            | fмск ≤ 16 MHz                     | 6/ƒмск                |                 | 6/fмск                |                 | 6/fмск                |                  | ns   |
|                                |               | $2.4~V \le EV_{DD0} \le 5.5~V$                               | 2.4 V ≤ EV <sub>DD0</sub> ≤ 5.5 V |                       |                 | 6/fмск<br>and<br>500  |                 | 6/fмск<br>and<br>500  |                  | ns   |
|                                |               | $1.8~V \leq EV_{DD0} \leq 5.5~V$                             |                                   | 6/fмск<br>and 750     |                 | 6/fмск<br>and<br>750  |                 | 6/fмск<br>and<br>750  |                  | ns   |
|                                |               | $1.7~V \leq EV_{DD0} \leq 5.5~V$                             |                                   | 6/fмск<br>and<br>1500 |                 | 6/fмск<br>and<br>1500 |                 | 6/fмск<br>and<br>1500 |                  | ns   |
|                                |               | 1.6 V ≤ EV <sub>DD0</sub> ≤ 5.5                              | V                                 | _                     |                 | 6/fмск<br>and<br>1500 |                 | 6/fмск<br>and<br>1500 |                  | ns   |
| SCKp high-/low-<br>level width | tkH2,<br>tkL2 | 4.0 V ≤ EV <sub>DD0</sub> ≤ 5.5 V                            |                                   | tксү2/2 –<br>7        |                 | tксү2/2<br>- 7        |                 | tkcy2/2<br>-7         |                  | ns   |
|                                |               | $2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$ |                                   | tксу2/2 —<br>8        |                 | tксу2/2<br>- 8        |                 | tkcy2/2<br>-8         |                  | ns   |
|                                |               | 1.8 V ≤ EV <sub>DD0</sub> ≤ 5.5 V                            |                                   | tксү2/2 –<br>18       |                 | tксу2/2<br>- 18       |                 | tксу2/2<br>- 18       |                  | ns   |
|                                |               | 1.7 V ≤ EV <sub>DD0</sub> ≤ 5.5 V                            |                                   | tксү2/2 —<br>66       |                 | tксү2/2<br>- 66       |                 | tkcy2/2<br>- 66       |                  | ns   |
|                                |               | $1.6~V \le EV_{DD0} \le 5.5~V$                               |                                   | _                     |                 | tксү2/2<br>- 66       |                 | tkcy2/2<br>- 66       |                  | ns   |

(Notes, Caution, and Remarks are listed on the next page.)

220

220

## (4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ Parameter Symbo Conditions HS (high-speed LS (low-speed main) LV (low-voltage main) Unit main) Mode ı Mode Mode MIN. MIN. MAX. MIN. MAX. MAX. Slp setup time tsik2  $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$  $1/f_{MCK}+2$ 1/fmck+30 1/fmck+30 ns (to SCKp↑) Note 1 n  $1.8~V \leq EV_{DD0} \leq 5.5~V$ 1/fмск+3 1/fмск+30 1/fмcк+30 ns 0  $1.7~V \leq EV_{DD0} \leq 5.5~V$ 1/fмск+4  $1/f_{MCK}+40$  $1/f_{MCK}+40$ ns 0 1/fмск+40 1/fмск+40  $1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$ ns Slp hold time tks12  $1.8~V \leq EV_{DD0} \leq 5.5~V$ 1/fмск+3 1/fмcк+31 1/fмcк+31 ns (from SCKp↑) 1  $1.7~V \leq EV_{DD0} \leq 5.5~V$ 1/fмcк+ 1/fмск+ 1/fмcк+ ns 250 250 250  $1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$ 1/fmck+ 1/fмcк+ ns 250 250 2/f<sub>MCK+</sub> 2/f<sub>MCK+</sub> Delay time tks02 C = 30 $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fmck+ ns pF Note 4 from SCKp↓ to 44 110 110 SOp output Note  $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fmck+ 2/fмcк+ 2/fmck+ ns 110 75 110 2/fмск+  $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fмск+ 2/fмск+ ns 110 110 110  $1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fmck+ 2/fmck+ 2/fмск+ ns 220 220 220  $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fмск+ 2/fмск+ ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to  $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 4. C is the load capacitance of the SOp output lines.
  - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)
  - 2. fmck: Serial array unit operation clock frequency

    (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

    n: Channel number (mn = 00 to 03, 10 to 13))

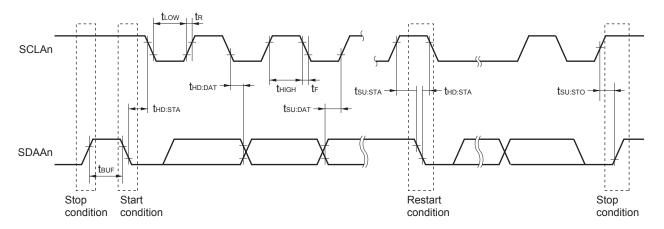
<R>

#### (3) I2C fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ 

| Parameter                                          | Symbol  | Cor                               | Conditions                        |      | h-speed<br>Mode | LS (low-speed main) Mode |      |      | -voltage<br>Mode | Unit |
|----------------------------------------------------|---------|-----------------------------------|-----------------------------------|------|-----------------|--------------------------|------|------|------------------|------|
|                                                    |         |                                   |                                   | MIN. | MAX.            | MIN.                     | MAX. | MIN. | MAX.             |      |
| SCLA0 clock frequency                              | fscL    | Fast mode plus:<br>fcLk≥ 10 MHz   | $2.7~V \le EV_{DD0} \le 5.5~V$    | 0    | 1000            | _                        | -    | _    | -                | kHz  |
| Setup time of restart condition                    | tsu:sta | 2.7 V ≤ EV <sub>DD0</sub> ≤ 5.5   | 7 V ≤ EV <sub>DD0</sub> ≤ 5.5 V   |      |                 | _                        |      | _    | _                | μS   |
| Hold time <sup>Note 1</sup>                        | thd:STA | 2.7 V ≤ EV <sub>DD0</sub> ≤ 5.5 V |                                   | 0.26 |                 | _                        |      | _    |                  | μS   |
| Hold time when SCLA0 = "L"                         | tLOW    | 2.7 V ≤ EV <sub>DD0</sub> ≤ 5.5   | 2.7 V ≤ EV <sub>DD0</sub> ≤ 5.5 V |      |                 | _                        |      | _    |                  | μS   |
| Hold time when SCLA0 = "H"                         | tніgн   | 2.7 V ≤ EV <sub>DD0</sub> ≤ 5.5   | 2.7 V ≤ EV <sub>DD0</sub> ≤ 5.5 V |      |                 | _                        |      | _    |                  | μS   |
| Data setup time (reception)                        | tsu:dat | 2.7 V ≤ EV <sub>DD0</sub> ≤ 5.5   | 5 V                               | 50   |                 | _                        | -    | _    | _                | μS   |
| Data hold time<br>(transmission) <sup>Note 2</sup> | thd:dat | 2.7 V ≤ EV <sub>DD0</sub> ≤ 5.5   | 5 V                               | 0    | 0.45            | _                        | -    | _    | _                | μS   |
| Setup time of stop condition                       | tsu:sto | 2.7 V ≤ EV <sub>DD0</sub> ≤ 5.5   | 5 V                               | 0.26 |                 |                          | _    | _    | _                | μs   |
| Bus-free time                                      | tbuf    | 2.7 V ≤ EV <sub>DD0</sub> ≤ 5.5   | 5 V                               | 0.5  |                 | _                        | _    | _    | _                | μS   |

**Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination.

**Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus:  $C_b = 120 \text{ pF}, R_b = 1.1 \text{ k}\Omega$ 

#### **IICA** serial transfer timing



**Remark** n = 0, 1

# (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (Ta = -40 to $+105^{\circ}$ C, 2.4 V $\leq$ EV<sub>DD0</sub> = EV<sub>DD1</sub> $\leq$ V<sub>DD</sub> $\leq$ 5.5 V, Vss = EV<sub>SS0</sub> = EV<sub>SS1</sub> = 0 V) (2/2)

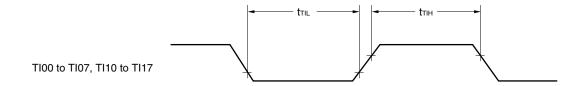
| Parameter         | Symbol                                                |                        |                                     | Conditions                                 |                         | MIN. | TYP. | MAX.  | Unit |
|-------------------|-------------------------------------------------------|------------------------|-------------------------------------|--------------------------------------------|-------------------------|------|------|-------|------|
| Supply            | I <sub>DD2</sub>                                      | HALT                   | HS (high-                           | fih = 32 MHz Note 4                        | V <sub>DD</sub> = 5.0 V |      | 0.62 | 3.40  | mA   |
| Current<br>Note 1 | Note 2                                                | mode                   | speed main)<br>mode Note 7          |                                            | V <sub>DD</sub> = 3.0 V |      | 0.62 | 3.40  | mA   |
|                   |                                                       |                        | mode                                | fin = 24 MHz Note 4                        | V <sub>DD</sub> = 5.0 V |      | 0.50 | 2.70  | mA   |
|                   |                                                       |                        |                                     |                                            | V <sub>DD</sub> = 3.0 V |      | 0.50 | 2.70  | mA   |
|                   |                                                       |                        |                                     | fin = 16 MHz Note 4                        | V <sub>DD</sub> = 5.0 V |      | 0.44 | 1.90  | mA   |
|                   |                                                       |                        |                                     |                                            | V <sub>DD</sub> = 3.0 V |      | 0.44 | 1.90  | mA   |
|                   |                                                       |                        | HS (high-                           | $f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ | Square wave input       |      | 0.31 | 2.10  | mA   |
|                   |                                                       |                        | speed main)<br>mode Note 7          | V <sub>DD</sub> = 5.0 V                    | Resonator connection    |      | 0.48 | 2.20  | mA   |
|                   |                                                       |                        |                                     | $f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ | Square wave input       |      | 0.31 | 2.10  | mA   |
|                   |                                                       |                        |                                     | V <sub>DD</sub> = 3.0 V                    | Resonator connection    |      | 0.48 | 2.20  | mA   |
|                   |                                                       |                        |                                     | $f_{MX} = 10 \text{ MHz}^{Note 3},$        | Square wave input       |      | 0.21 | 1.10  | mA   |
|                   |                                                       |                        |                                     | V <sub>DD</sub> = 5.0 V                    | Resonator connection    |      | 0.28 | 1.20  | mA   |
|                   |                                                       |                        |                                     | $f_{MX} = 10 \text{ MHz}^{Note 3},$        | Square wave input       |      | 0.21 | 1.10  | mA   |
|                   |                                                       |                        |                                     | V <sub>DD</sub> = 3.0 V                    | Resonator connection    |      | 0.28 | 1.20  | mA   |
|                   |                                                       | Subsystem              | fsub = 32.768 kHz <sup>Note 5</sup> | Square wave input                          |                         | 0.28 | 0.61 | μΑ    |      |
|                   |                                                       |                        | operation f                         | T <sub>A</sub> = -40°C                     | Resonator connection    |      | 0.47 | 0.80  | μΑ   |
|                   |                                                       |                        |                                     | fsub = 32.768 kHz <sup>Note 5</sup>        | Square wave input       |      | 0.34 | 0.61  | μΑ   |
|                   |                                                       |                        |                                     | T <sub>A</sub> = +25°C                     | Resonator connection    |      | 0.53 | 0.80  | μΑ   |
|                   |                                                       |                        |                                     | fsub = 32.768 kHz <sup>Note 5</sup>        | Square wave input       |      | 0.41 | 2.30  | μΑ   |
|                   |                                                       |                        |                                     | T <sub>A</sub> = +50°C                     | Resonator connection    |      | 0.60 | 2.49  | μΑ   |
|                   |                                                       |                        |                                     | fsub = 32.768 kHz <sup>Note 5</sup>        | Square wave input       |      | 0.64 | 4.03  | μΑ   |
|                   |                                                       |                        |                                     | T <sub>A</sub> = +70°C                     | Resonator connection    |      | 0.83 | 4.22  | μΑ   |
|                   |                                                       |                        |                                     | fsub = 32.768 kHz <sup>Note 5</sup>        | Square wave input       |      | 1.09 | 8.04  | μΑ   |
|                   |                                                       |                        |                                     | T <sub>A</sub> = +85°C                     | Resonator connection    |      | 1.28 | 8.23  | μΑ   |
|                   |                                                       |                        |                                     | fsub = 32.768 kHz <sup>Note 5</sup>        | Square wave input       |      | 5.50 | 41.00 | μΑ   |
|                   |                                                       |                        |                                     | T <sub>A</sub> = +105°C                    | Resonator connection    |      | 5.50 | 41.00 | μΑ   |
|                   | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ | $T_A = -40^{\circ}C$   |                                     |                                            |                         | 0.19 | 0.52 | μΑ    |      |
|                   |                                                       | mode <sup>Note 8</sup> | T <sub>A</sub> = +25°C              |                                            |                         |      | 0.25 | 0.52  | μΑ   |
|                   |                                                       |                        | T <sub>A</sub> = +50°C              |                                            |                         |      | 0.32 | 2.21  | μΑ   |
|                   |                                                       |                        | T <sub>A</sub> = +70°C              |                                            |                         |      | 0.55 | 3.94  | μΑ   |
|                   |                                                       |                        | T <sub>A</sub> = +85°C              |                                            |                         |      | 1.00 | 7.95  | μΑ   |
|                   |                                                       |                        | T <sub>A</sub> = +105°C             |                                            |                         |      | 5.00 | 40.00 | μΑ   |

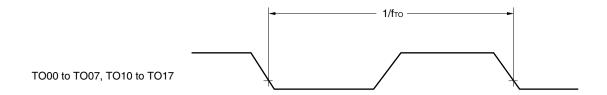
(Notes and Remarks are listed on the next page.)

### 3.4 AC Characteristics

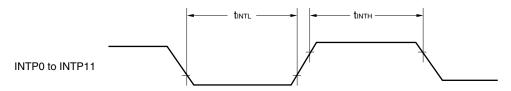
### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

| Items                                                              | Symbol          |                                                                 | Conditions                                                                           | 6                                                      | MIN.      | TYP. | MAX. | Unit               |
|--------------------------------------------------------------------|-----------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------|-----------|------|------|--------------------|
| Instruction cycle (minimum                                         | Tcy             | Main                                                            | HS (high-speed                                                                       | $1 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$  | 0.03125   |      | 1    | μS                 |
| instruction execution time)                                        |                 | system<br>clock (fmain)<br>operation                            | main) mode                                                                           | $2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$      | 0.0625    |      | 1    | μS                 |
|                                                                    |                 | Subsystem of operation                                          | Subsystem clock (fsub) $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ operation |                                                        | 28.5      | 30.5 | 31.3 | μS                 |
|                                                                    |                 | In the self                                                     | HS (high-speed                                                                       | $1  2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ | 0.03125   |      | 1    | μS                 |
|                                                                    |                 | programming mode                                                | main) mode                                                                           | $2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$      | 0.0625    |      | 1    | μS                 |
| External system clock frequency                                    | fex             | $2.7 \text{ V} \leq \text{V}_{DD} \leq$                         | ≤ 5.5 V                                                                              |                                                        | 1.0       |      | 20.0 | MHz                |
|                                                                    |                 | 2.4 V ≤ V <sub>DD</sub> <                                       | < 2.7 V                                                                              |                                                        | 1.0       |      | 16.0 | MHz                |
|                                                                    | fexs            |                                                                 |                                                                                      |                                                        | 32        |      | 35   | kHz                |
| External system clock input high-                                  | texh, texl      | texl $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ |                                                                                      | 24                                                     |           |      | ns   |                    |
| evel width, low-level width                                        |                 | 2.4 V ≤ V <sub>DD</sub> <                                       | < 2.7 V                                                                              |                                                        | 30        |      |      | ns                 |
|                                                                    | texhs,<br>texhs |                                                                 |                                                                                      |                                                        | 13.7      |      |      | μS                 |
| TI00 to TI07, TI10 to TI17 input high-level width, low-level width | tтін,<br>tтіL   |                                                                 |                                                                                      |                                                        | 1/fмск+10 |      |      | ns <sup>Note</sup> |
| TO00 to TO07, TO10 to TO17                                         | <b>f</b> то     | HS (high-spe                                                    | eed 4.0 V                                                                            | ≤ EV <sub>DD0</sub> ≤ 5.5 V                            |           |      | 16   | MHz                |
| output frequency                                                   |                 | main) mode                                                      | 2.7 V                                                                                | ≤ EV <sub>DD0</sub> < 4.0 V                            |           |      | 8    | MHz                |
|                                                                    |                 |                                                                 | 2.4 V                                                                                | 2.4 V ≤ EV <sub>DD0</sub> < 2.7 V                      |           |      | 4    | MHz                |
| PCLBUZ0, PCLBUZ1 output                                            | fpcL            | HS (high-spe                                                    | eed 4.0 V                                                                            | ≤ EV <sub>DD0</sub> ≤ 5.5 V                            |           |      | 16   | MHz                |
| frequency                                                          |                 | main) mode                                                      | 2.7 V                                                                                | ≤ EV <sub>DD0</sub> < 4.0 V                            |           |      | 8    | MHz                |
|                                                                    |                 |                                                                 | 2.4 V                                                                                | ≤ EV <sub>DD0</sub> < 2.7 V                            |           |      | 4    | MHz                |
| Interrupt input high-level width,                                  | tinth,          | INTP0                                                           | 2.4 V                                                                                | $\leq V_{DD} \leq 5.5 \text{ V}$                       | 1         |      |      | μS                 |
| low-level width                                                    | tintl           | INTP1 to INT                                                    | TP11 2.4 V                                                                           | $\leq EV_{DD0} \leq 5.5 V$                             | 1         |      |      | μS                 |
| Key interrupt input low-level width                                | <b>t</b> kr     | KR0 to KR7                                                      | 2.4 V                                                                                | $\leq EV_{DD0} \leq 5.5 \text{ V}$                     | 250       |      |      | ns                 |
| RESET low-level width                                              | trsL            |                                                                 | •                                                                                    |                                                        | 10        |      |      | μS                 |

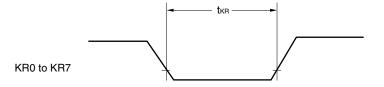

**Note** The following conditions are required for low voltage interface when  $E_{VDD0} < V_{DD}$  $2.4V \le EV_{DD0} < 2.7 \text{ V}$ : MIN. 125 ns


Remark fmck: Timer array unit operation clock frequency

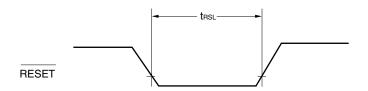
(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn).


m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))

## **TI/TO Timing**







## **Interrupt Request Input Timing**



## **Key Interrupt Input Timing**



## **RESET** Input Timing



#### (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ 

| Parameter     | Symbol  |                                  | Condit                                                                                                 | ions                                                                                                            | HS (high-spee | ed main) Mode  | Unit |
|---------------|---------|----------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|----------------|------|
|               |         |                                  |                                                                                                        |                                                                                                                 | MIN.          | MAX.           |      |
| Transfer rate |         | Transmission                     | $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$                                                   |                                                                                                                 |               | Note 1         | bps  |
|               | 2.7 V : | $V,$ $2.7~V \leq V_b \leq 4.0~V$ | Theoretical value of the maximum transfer rate $C_b = 50 \ pF, \ R_b = 1.4 \ k\Omega, \ V_b = 2.7 \ V$ |                                                                                                                 | 2.6 Note 2    | Mbps           |      |
|               |         |                                  | 2.7 V ≤ EV <sub>DD0</sub> < 4.0                                                                        |                                                                                                                 |               | Note 3         | bps  |
|               |         | $V,$ $2.3~V \leq V_b \leq 2.7~V$ | Theoretical value of the maximum transfer rate $C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega, \ V_b = 2.3 \ V$ |                                                                                                                 | 1.2 Note 4    | Mbps           |      |
|               |         |                                  | 2.4 V ≤ EV <sub>DD0</sub> < 3.3                                                                        |                                                                                                                 |               | Note 5         | bps  |
|               |         |                                  | $V,$ $1.6~V \leq V_b \leq 2.0~V$                                                                       | Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF},  R_b = 5.5 \text{ k}\Omega,  V_b = 1.6  V$ |               | 0.43<br>Note 6 | Mbps |

**Notes 1.** The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V  $\leq$  EV<sub>DD0</sub>  $\leq$  5.5 V and 2.7 V  $\leq$  V<sub>b</sub>  $\leq$  4.0 V

Maximum transfer rate = 
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.2}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- \* This value is the theoretical value of the relative difference between the transmission and reception sides.
- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- 3. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V  $\leq$  EV<sub>DDO</sub> < 4.0 V and 2.4 V  $\leq$  V<sub>b</sub>  $\leq$  2.7 V

Maximum transfer rate = 
$$\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.0}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- \* This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.



# (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ 

| Parameter                                  | Symbol        |                                                                                                  | Conditions                                                                                 |               | ed main) Mode | Unit |
|--------------------------------------------|---------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------|---------------|------|
|                                            |               |                                                                                                  |                                                                                            | MIN.          | MAX.          |      |
| SCKp cycle time Note 1                     | tkcy2         | $4.0~V \le EV_{DD0} \le 5.5$                                                                     | 24 MHz < fмск                                                                              | 28/fмск       |               | ns   |
|                                            |               | V,                                                                                               | 20 MHz < fмcк ≤ 24 MHz                                                                     | 24/fмск       |               | ns   |
|                                            |               | $2.7 \ V \leq V_b \leq 4.0 \ V$                                                                  | 8 MHz < fмcк ≤ 20 MHz                                                                      | 20/fмск       |               | ns   |
|                                            |               |                                                                                                  | 4 MHz < fmck ≤ 8 MHz                                                                       | 16/fмск       |               | ns   |
|                                            |               |                                                                                                  | fмcк ≤ 4 MHz                                                                               | 12/fмск       |               | ns   |
|                                            |               | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0$                                                 | 24 MHz < fmck                                                                              | 40/fмск       |               | ns   |
|                                            |               | V,                                                                                               | 20 MHz < fмcк ≤ 24 MHz                                                                     | 32/fмск       |               | ns   |
|                                            |               | $2.3~V \leq V_b \leq 2.7~V$                                                                      | 16 MHz < fмск ≤ 20 MHz                                                                     | 28/fмск       |               | ns   |
|                                            |               |                                                                                                  | 8 MHz < fмск ≤ 16 MHz                                                                      | 24/fмск       |               | ns   |
|                                            |               |                                                                                                  | 4 MHz < fмcк ≤ 8 MHz                                                                       | 16/fмск       |               | ns   |
|                                            |               |                                                                                                  | fмск ≤ 4 MHz                                                                               | 12/fмск       |               | ns   |
|                                            |               | 2.4 V ≤ EV <sub>DD0</sub> < 3.3                                                                  | 24 MHz < fмск                                                                              | 96/fмск       |               | ns   |
|                                            |               | V,                                                                                               | 20 MHz < fмск ≤ 24 MHz                                                                     | 72/fмск       |               | ns   |
|                                            |               | $1.6 \ V \leq V_b \leq 2.0 \ V$                                                                  | 16 MHz < fмcк ≤ 20 MHz                                                                     | 64/ƒмск       |               | ns   |
|                                            |               |                                                                                                  | 8 MHz < fмск ≤ 16 MHz                                                                      | 52/fмск       |               | ns   |
|                                            |               |                                                                                                  | 4 MHz < fmck ≤ 8 MHz                                                                       | 32/fмск       |               | ns   |
|                                            |               |                                                                                                  | fмcк ≤ 4 MHz                                                                               | 20/fмск       |               | ns   |
| SCKp high-/low-level width                 | tkH2,         | $4.0~V \leq EV_{DD0} \leq 5.$ $2.7~V \leq V_b \leq 4.0~V$                                        |                                                                                            | tксу2/2 - 24  |               | ns   |
|                                            |               | $2.7 \ V \le EV_{DD0} < 4.$ $2.3 \ V \le V_b \le 2.7 \ V$                                        |                                                                                            | tkcy2/2 - 36  |               | ns   |
|                                            |               | $2.4 \ V \le EV_{DD0} < 3.$ $1.6 \ V \le V_b \le 2.0 \ V$                                        |                                                                                            | tkcy2/2 - 100 |               | ns   |
| SIp setup time<br>(to SCKp↑) Note2         | tsık2         | $ 4.0 \ V \leq EV_{DD0} \leq 5. $ $ 2.7 \ V \leq V_b \leq 4.0 \ V $                              | •                                                                                          | 1/fмск + 40   |               | ns   |
|                                            |               | $2.7 \ V \le EV_{DD0} < 4.$ $2.3 \ V \le V_b \le 2.7 \ V$                                        |                                                                                            | 1/fмск + 40   |               | ns   |
|                                            |               | $2.4 \ V \le EV_{DD0} < 3.$ $1.6 \ V \le V_b \le 2.0 \ V$                                        |                                                                                            | 1/fмск + 60   |               | ns   |
| SIp hold time<br>(from SCKp↑) Note 3       | tksi2         |                                                                                                  |                                                                                            | 1/fmck + 62   |               | ns   |
| Delay time from SCKp↓ to SOp output Note 4 | <b>t</b> KSO2 | $4.0~V \leq EV_{DD0} \leq 5.$ $C_b = 30~pF,~R_b = 1$                                             | $0.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ $0.4 \text{ k}Ω$ |               | 2/fмск + 240  | ns   |
|                                            |               | $2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.$ $C_b = 30 \text{ pF}, R_b = 2$                   | 0 V, 2.3 V $\leq$ V <sub>b</sub> $\leq$ 2.7 V, 2.7 kΩ                                      |               | 2/fмск + 428  | ns   |
|                                            |               | $2.4 \text{ V} \le \text{EV}_{\text{DDO}} < 3.$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5$ | 3 V, 1.6 V ≤ V <sub>b</sub> ≤ 2.0 V<br>5.5 kΩ                                              |               | 2/fмск + 1146 | ns   |

(Notes, Caution and Remarks are listed on the next page.)

### 3.6.4 LVD circuit characteristics

## LVD Detection Voltage of Reset Mode and Interrupt Mode

(Ta = -40 to +105°C, VPDR  $\leq$  VDD  $\leq$  5.5 V, Vss = 0 V)

|             | Parameter            | Symbol            | Conditions             | MIN. | TYP. | MAX. | Unit |
|-------------|----------------------|-------------------|------------------------|------|------|------|------|
| Detection   | Supply voltage level | V <sub>LVD0</sub> | Power supply rise time | 3.90 | 4.06 | 4.22 | V    |
| voltage     |                      |                   | Power supply fall time | 3.83 | 3.98 | 4.13 | V    |
|             |                      | V <sub>LVD1</sub> | Power supply rise time | 3.60 | 3.75 | 3.90 | V    |
|             |                      |                   | Power supply fall time | 3.53 | 3.67 | 3.81 | V    |
|             |                      | V <sub>LVD2</sub> | Power supply rise time | 3.01 | 3.13 | 3.25 | V    |
|             |                      |                   | Power supply fall time | 2.94 | 3.06 | 3.18 | V    |
|             |                      | <b>V</b> LVD3     | Power supply rise time | 2.90 | 3.02 | 3.14 | V    |
|             |                      |                   | Power supply fall time | 2.85 | 2.96 | 3.07 | V    |
|             |                      | V <sub>LVD4</sub> | Power supply rise time | 2.81 | 2.92 | 3.03 | V    |
|             |                      |                   | Power supply fall time | 2.75 | 2.86 | 2.97 | V    |
|             |                      | V <sub>LVD5</sub> | Power supply rise time | 2.70 | 2.81 | 2.92 | V    |
|             |                      |                   | Power supply fall time | 2.64 | 2.75 | 2.86 | V    |
|             |                      | V <sub>LVD6</sub> | Power supply rise time | 2.61 | 2.71 | 2.81 | V    |
|             |                      |                   | Power supply fall time | 2.55 | 2.65 | 2.75 | V    |
|             |                      | V <sub>LVD7</sub> | Power supply rise time | 2.51 | 2.61 | 2.71 | V    |
|             |                      |                   | Power supply fall time | 2.45 | 2.55 | 2.65 | V    |
| Minimum p   | ulse width           | tLW               |                        | 300  |      |      | μS   |
| Detection d | elay time            |                   |                        |      |      | 300  | μS   |

## **LVD Detection Voltage of Interrupt & Reset Mode**

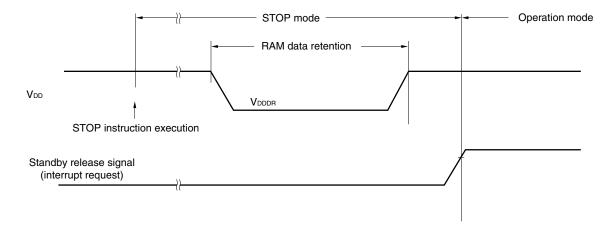
(Ta = -40 to +105°C, VPDR  $\leq$  VDD  $\leq$  5.5 V, Vss = 0 V)

| Parameter           | Symbol              | Co                         | nditions                       | MIN. | TYP. | MAX. | Unit |
|---------------------|---------------------|----------------------------|--------------------------------|------|------|------|------|
| Interrupt and reset | V <sub>LVDD0</sub>  | VPOC2, VPOC1, VPOC0 = 0, 1 | 1, falling reset voltage       | 2.64 | 2.75 | 2.86 | V    |
| mode                | VLVDD1              | LVIS1, LVIS0 = 1,          | O Rising release reset voltage | 2.81 | 2.92 | 3.03 | V    |
|                     |                     |                            | Falling interrupt voltage      | 2.75 | 2.86 | 2.97 | V    |
|                     | VLVDD2              | LVIS1, LVIS0 = 0,          | 1 Rising release reset voltage | 2.90 | 3.02 | 3.14 | V    |
|                     |                     |                            | Falling interrupt voltage      | 2.85 | 2.96 | 3.07 | V    |
|                     | V <sub>L</sub> VDD3 | LVIS1, LVIS0 = 0,          | O Rising release reset voltage | 3.90 | 4.06 | 4.22 | V    |
|                     |                     |                            | Falling interrupt voltage      | 3.83 | 3.98 | 4.13 | V    |

## 3.6.5 Power supply voltage rising slope characteristics

#### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

| Parameter                         | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
|-----------------------------------|--------|------------|------|------|------|------|
| Power supply voltage rising slope | SVDD   |            |      |      | 54   | V/ms |


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until  $V_{DD}$  reaches the operating voltage range shown in 3.4 AC Characteristics.

#### 3.7 RAM Data Retention Characteristics

#### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

| Parameter                     | Symbol            | Conditions | MIN.                 | TYP. | MAX. | Unit |
|-------------------------------|-------------------|------------|----------------------|------|------|------|
| Data retention supply voltage | V <sub>DDDR</sub> |            | 1.44 <sup>Note</sup> |      | 5.5  | ٧    |

**Note** This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.



|      |                   | Description   |                                                                                                                                                    |  |
|------|-------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Rev. | Date              | Page          | Summary                                                                                                                                            |  |
| 3.00 | 3.00 Aug 02, 2013 |               | Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics                                                       |  |
|      |                   | 118           | Modification of table and note in 2.6.3 POR circuit characteristics                                                                                |  |
|      |                   | 119           | Modification of table in 2.6.4 LVD circuit characteristics                                                                                         |  |
|      |                   | 120           | Modification of table of LVD Detection Voltage of Interrupt & Reset Mode                                                                           |  |
|      |                   | 120           | Renamed to 2.6.5 Power supply voltage rising slope characteristics                                                                                 |  |
|      |                   |               | Modification of table, figure, and remark in 2.10 Timing Specs for Switching Flash Memory Programming Modes                                        |  |
|      |                   | 123           | Modification of caution 1 and description                                                                                                          |  |
|      |                   | 124           | Modification of table and remark 3 in Absolute Maximum Ratings (T <sub>A</sub> = 25°C)                                                             |  |
|      |                   | 126           | Modification of table, note, caution, and remark in 3.2.1 X1, XT1 oscillator characteristics                                                       |  |
|      |                   | 126           | Modification of table in 3.2.2 On-chip oscillator characteristics                                                                                  |  |
|      |                   | 127           | Modification of note 3 in 3.3.1 Pin characteristics (1/5)                                                                                          |  |
|      |                   | 128           | Modification of note 3 in 3.3.1 Pin characteristics (2/5)                                                                                          |  |
|      |                   | 133           | Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (1/2)                                                        |  |
|      |                   | 135           | Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (2/2)                                                    |  |
|      |                   | 137           | Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (1/2)                                                      |  |
|      |                   | 139           | Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (2/2)                                                  |  |
|      |                   | 140           | Modification of (3) Peripheral Functions (Common to all products)                                                                                  |  |
|      |                   | 142           | Modification of table in 3.4 AC Characteristics                                                                                                    |  |
|      |                   | 143           | Addition of Minimum Instruction Execution Time during Main System Clock Operation                                                                  |  |
|      |                   | 143           | Modification of figure of AC Timing Test Points                                                                                                    |  |
|      |                   | 143           | Modification of figure of External System Clock Timing                                                                                             |  |
|      |                   | 145           | Modification of figure of AC Timing Test Points                                                                                                    |  |
|      |                   | 145           | Modification of description, note 1, and caution in (1) During communication at same potential (UART mode)                                         |  |
|      |                   | 146           | Modification of description in (2) During communication at same potential (CSI mode)                                                               |  |
|      |                   | 147           | Modification of description in (3) During communication at same potential (CSI mode)                                                               |  |
|      |                   | 149           | Modification of table, note 1, and caution in (4) During communication at same potential (simplified I <sup>2</sup> C mode)                        |  |
|      |                   | 151           | Modification of table, note 1, and caution in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)                       |  |
|      |                   | 152 to<br>154 | Modification of table, notes 2 to 6, caution, and remarks 1 to 4 in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) |  |
|      |                   | 155           | Modification of table in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)                                             |  |
|      |                   | 156           | Modification of table and caution in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)                                 |  |
|      |                   | 157, 158      | Modification of table, caution, and remarks 3 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)               |  |
|      |                   | 160, 161      | Modification of table and caution in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode)                                       |  |

#### NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.