

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	28
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-WFQFN Exposed Pad
Supplier Device Package	40-HWQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100egana-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

				(2/12)
Pin	Package	Data	Fields of	Ordering Part Number
count		flash	Application	
			Note	
25 pins	25-pin plastic	Mounted	А	R5F1008AALA#U0, R5F1008CALA#U0, R5F1008DALA#U0,
_ o po	WFLGA (3×3 mm,	meanea		R5F1008EALA#U0
				R5F1008AALA#W0, R5F1008CALA#W0, R5F1008DALA#W0,
	0.5 mm pitch)			R5F1008EALA#W0
			G	R5F1008AGLA#U0, R5F1008CGLA#U0, R5F1008DGLA#U0,
				R5F1008EGLA#U0
				R5F1008AGLA#W0, R5F1008CGLA#W0, R5F1008DGLA#W0,
				R5F1008EGLA#W0
		Not	А	R5F1018AALA#U0, R5F1018CALA#U0, R5F1018DALA#U0,
		mounted		R5F1018EALA#U0
				R5F1018AALA#W0, R5F1018CALA#W0, R5F1018DALA#W0,
				R5F1018EALA#W0
30 pins	30-pin plastic LSSOP	Mounted	А	R5F100AAASP#V0, R5F100ACASP#V0, R5F100ADASP#V0,
	(7.62 mm (300), 0.65			R5F100AEASP#V0, R5F100AFASP#V0, R5F100AGASP#V0
	mm pitch)			R5F100AAASP#X0, R5F100ACASP#X0, R5F100ADASP#X0
			D	R5F100AEASP#X0, R5F100AFASP#X0, R5F100AGASP#X0
			D	R5F100AADSP#V0, R5F100ACDSP#V0, R5F100ADDSP#V0, R5F100AEDSP#V0, R5F100AFDSP#V0, R5F100AGDSP#V0
				R5F100ADSP#X0, R5F100ACDSP#X0, R5F100ADDSP#X0, R5F100ADDSP#X0,
				R5F100AEDSP#X0, R5F100AFDSP#X0, R5F100AGDSP#X0,
			G	R5F100AAGSP#V0, R5F100ACGSP#V0,
			U	R5F100ADGSP#V0,R5F100AEGSP#V0,
				R5F100AFGSP#V0, R5F100AGGSP#V0
				R5F100AAGSP#X0, R5F100ACGSP#X0,
				R5F100ADGSP#X0,R5F100AEGSP#X0,
				R5F100AFGSP#X0, R5F100AGGSP#X0
		Not	А	R5F101AAASP#V0, R5F101ACASP#V0, R5F101ADASP#V0,
				R5F101AEASP#V0, R5F101AFASP#V0, R5F101AGASP#V0
		mounted		R5F101AAASP#X0, R5F101ACASP#X0, R5F101ADASP#X0,
				R5F101AEASP#X0, R5F101AFASP#X0, R5F101AGASP#X0
			D	R5F101AADSP#V0, R5F101ACDSP#V0, R5F101ADDSP#V0,
				R5F101AEDSP#V0, R5F101AFDSP#V0, R5F101AGDSP#V0
				R5F101AADSP#X0, R5F101ACDSP#X0, R5F101ADDSP#X0,
				R5F101AEDSP#X0, R5F101AFDSP#X0, R5F101AGDSP#X0
32 pins	32-pin plastic	Mounted	А	R5F100BAANA#U0, R5F100BCANA#U0, R5F100BDANA#U0,
•	HWQFN (5 \times 5 mm,			R5F100BEANA#U0, R5F100BFANA#U0, R5F100BGANA#U0
	0.5 mm pitch)			R5F100BAANA#W0, R5F100BCANA#W0, R5F100BDANA#W0,
	0.0 mm pitch)		_	R5F100BEANA#W0, R5F100BFANA#W0, R5F100BGANA#W0
			D	R5F100BADNA#U0, R5F100BCDNA#U0, R5F100BDDNA#U0,
				R5F100BEDNA#U0, R5F100BFDNA#U0, R5F100BGDNA#U0
				R5F100BADNA#W0, R5F100BCDNA#W0, R5F100BDDNA#W0,
			0	R5F100BEDNA#W0, R5F100BFDNA#W0, R5F100BGDNA#W0
			G	R5F100BAGNA#U0, R5F100BCGNA#U0, R5F100BDGNA#U0,
				R5F100BEGNA#U0, R5F100BFGNA#U0, R5F100BGGNA#U0 R5F100BAGNA#W0, R5F100BCGNA#W0, R5F100BDGNA#W0,
				R5F100BAGNA#W0, R5F100BCGNA#W0, R5F100BDGNA#W0, R5F100BEGNA#W0, R5F100BFGNA#W0, R5F100BGGNA#W0
		Net	A	R5F101BAANA#U0, R5F101BCANA#U0, R5F101BDANA#U0,
		Not		R5F101BAANA#00, R5F101BCANA#00, R5F101BDANA#00, R5F101BEANA#U0, R5F101BFANA#U0, R5F101BGANA#U0
		mounted		R5F101BAANA#W0, R5F101BCANA#W0, R5F101BDANA#W0,
				R5F101BEANA#W0, R5F101BFANA#W0, R5F101BGANA#W0
			D	R5F101BADNA#U0, R5F101BCDNA#U0, R5F101BDDNA#U0,
				R5F101BEDNA#U0, R5F101BFDNA#U0, R5F101BGDNA#U0
				R5F101BADNA#W0, R5F101BCDNA#W0, R5F101BDDNA#W0,
	1	1	1	R5F101BEDNA#W0, R5F101BFDNA#W0, R5F101BGDNA#W0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C)

This chapter describes the following electrical specifications.

Target products A: Consumer applications $T_A = -40$ to $+85^{\circ}C$

R5F100xxAxx, R5F101xxAxx

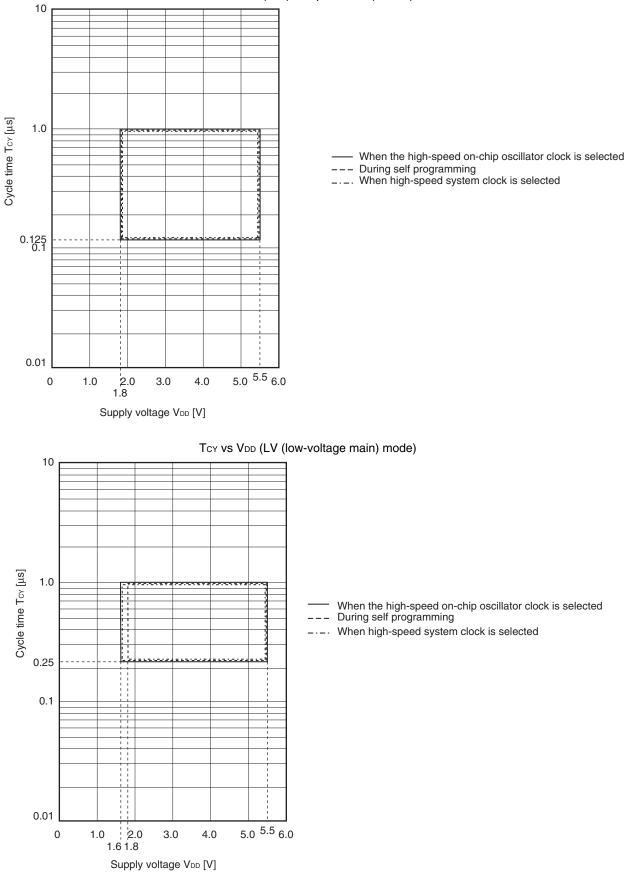
- D: Industrial applications $T_A = -40$ to $+85^{\circ}C$ R5F100xxDxx, R5F101xxDxx
- G: Industrial applications when $T_A = -40$ to $+105^{\circ}$ C products is used in the range of $T_A = -40$ to $+85^{\circ}$ C

R5F100xxGxx

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EV_{DD0}, EV_{DD1}, EV_{SS0}, or EV_{SS1} pin, replace EV_{DD0} and EV_{DD1} with V_{DD}, or replace EV_{SS0} and EV_{SS1} with V_{SS}.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product.

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (2/2)


Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		0.54	1.63	mA
Current	Note 2	mode	speed main) mode ^{Note 7}		$V_{DD} = 3.0 V$		0.54	1.63	mA
				fiH = 24 MHz ^{Note 4}	$V_{DD} = 5.0 V$		0.44	1.28	mA
					V _{DD} = 3.0 V		0.44	1.28	mA
				fin = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.40	1.00	mA
					V _{DD} = 3.0 V		0.40	1.00	mA
			LS (low-	fin = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		260	530	μA
		speed main) mode ^{Note 7}		V _{DD} = 2.0 V		260	530	μA	
		LV (low-	file = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μA	
		voltage main) mode		V _{DD} = 2.0 V		420	640	μA	
		HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA	
			speed main) mode ^{Note 7}	$V_{DD} = 5.0 V$	Resonator connection		0.45	1.17	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.45	1.17	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.19	0.60	mA
			$V_{DD} = 5.0 V$	Resonator connection		0.26	0.67	mA	
			$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		0.19	0.60	mA	
			$V_{DD} = 3.0 V$	Resonator connection		0.26	0.67	mA	
			LS (low- speed main) mode ^{Note 7} Subsystem	$f_{MX} = 8 MHz^{Note 3}$,	Square wave input		95	330	μA
				$V_{DD} = 3.0 V$	Resonator connection		145	380	μA
				$f_{MX} = 8 MHz^{Note 3}$,	Square wave input		95	330	μA
				$V_{DD} = 2.0 V$	Resonator connection		145	380	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA
			clock	$T_A = -40^{\circ}C$	Resonator connection		0.44	0.76	μA
			operation	$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		0.30	0.57	μA
				$T_A = +25^{\circ}C$	Resonator connection		0.49	0.76	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.37	1.17	μA
				$T_A = +50^{\circ}C$	Resonator connection		0.56	1.36	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.53	1.97	μA
				$T_A = +70^{\circ}C$	Resonator connection		0.72	2.16	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.82	3.37	μA
				T _A = +85°C	Resonator connection		1.01	3.56	μA
	DD3 ^{Note 6}	STOP	$T_A = -40^{\circ}C$				0.18	0.50	μA
		mode ^{Note 8}	T _A = +25°C				0.23	0.50	μA
			$T_A = +50^{\circ}C$				0.30	1.10	μA
		$T_A = +70^{\circ}C$				0.46	1.90	μA	
			T _A = +85°C				0.75	3.30	μA

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V @\,1~\text{MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

TCY vs VDD (LS (low-speed main) mode)

AC Timing Test Points Vін/Vон Vін/Vон Test points VIL/VOL VIL/VOL **External System Clock Timing** 1/f_{EX}/ 1/f_{EXS} texl/ texн/ **t**EXLS **t**EXHS EXCLK/EXCLKS **TI/TO Timing** t⊤ı∟ tтıн TI00 to TI07, TI10 to TI17 **1/f**то TO00 to TO07, TO10 to TO17 **Interrupt Request Input Timing** tINTL **t**INTH INTP0 to INTP11 **Key Interrupt Input Timing t**ĸĸ KR0 to KR7 **RESET** Input Timing tRSL RESET

Parameter	Symbol	Conditions		HS (high main)	•	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксүı	tксү1 ≥ 4/fclk	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	125		500		1000		ns
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	250		500		1000		ns
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	500		500		1000		ns
			$\begin{array}{l} 1.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	1000		1000		1000		ns
			$\begin{array}{l} 1.6 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	—		1000		1000		ns
SCKp high-/low-level width	tкнı, tкlı	$4.0 V \le EV_{DI}$	5.5 V	tксү1/2 – 12		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DI}}$	$500 \leq 5.5 \text{ V}$	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DI}}$	$500 \leq 5.5 \text{ V}$	tксү1/2 – 38		tксү1/2 – 50		tксү1/2 – 50		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DI}}$	$500 \leq 5.5 \text{ V}$	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DI}}$	$100 \leq 5.5 \text{ V}$	tксү1/2 – 100		tксү1/2 – 100		tксү1/2 – 100		ns
		$1.6 V \le EV_{DI}$	$500 \leq 5.5 \text{ V}$	—		tксү1/2 – 100		tксү1/2 – 100		ns
SIp setup time	tsik1	$4.0 V \le EV_{DI}$	$100 \leq 5.5 \text{ V}$	44		110		110		ns
(to SCKp↑) Note 1		$2.7 \text{ V} \leq \text{EV}_{\text{DI}}$	$00 \leq 5.5 \text{ V}$	44		110		110		ns
		$2.4 V \le EV_{DI}$	$0.0 \leq 5.5 \text{ V}$	75		110		110		ns
		$1.8 V \le EV_{DI}$	$0.0 \leq 5.5 \text{ V}$	110		110		110		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DI}}$	$0.0 \leq 5.5 \text{ V}$	220		220		220		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DI}}$	5.5 V			220		220		ns
SIp hold time	tksi1	$1.7 \text{ V} \leq \text{EV}_{\text{DI}}$	5.5 V	19		19		19		ns
(from SCKp \uparrow) Note 2		$1.6 \text{ V} \leq \text{EV}_{\text{DI}}$	5.5 V	—		19		19		ns
Delay time from SCKp↓ to SOp	tkso1	$\begin{array}{l} 1.7 \ V \leq EV_{DI} \\ C = 30 \ pF^{\text{Note}} \end{array}$			25		25		25	ns
output ^{Note 3}		$1.6 V \le EV_{DI}$ C = 30 pF ^{Note}			_		25		25	ns

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($T_4 = -40$ to $+85^{\circ}$ C, 1.6 V \leq EVppa = EVpp1 \leq Vpp \leq 5.5 V, Vss = EVssa = EVssa = 0 V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Parameter	Symbo I	Conditions		HS (higl main)		LS (low-sp Mo	eed main) de	LV (low-voltage main) Mode		Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	$2.7 V \le EV_{DD0} \le 5.5 V$ $1.8 V \le EV_{DD0} \le 5.5 V$		1/fмск+2 0		1/fмск+30		1/fмск+30		ns	
				1/fмск+3 0		1/fмск+30		1/fмск+30		ns	
		1.7 V ≤ E	$EV_{DD0} \leq 5.5 \text{ V}$	1/fмск+4 0		1/fмск+40		1/fмск+40		ns	
		1.6 V ≤	$EV_{DD0} \leq 5.5 V$			1/fмск+40		1/fмск+40		ns	
SIp hold time (from SCKp↑)	tksi2	1.8 V ≤ E	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$			1/fмск+31		1/fмск+31		ns	
Note 2		$1.7~V \leq EV_{DD0} \leq 5.5~V$		1/fмск+ 250		1/fмск+ 250		1/fмск+ 250		ns	
		1.6 V ≤ I	$EV_{DD0} \leq 5.5 V$	—		1/fмск+ 250		1/fмск+ 250		ns	
Delay time from SCKp↓ to	tkso2	tĸso2	C = 30 pF ^{Note 4}	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/f _{мск+} 44		2/f _{мск+} 110		2/f _{мск+} 110	ns
SOp output Note 3			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+ 75		2/fмск+ 110		2/fмск+ 110	ns	
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+ 110		2/fмск+ 110		2/fмск+ 110	ns	
		1.7 V	$\begin{array}{l} 1.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+ 220		2/fмск+ 220		2/fмск+ 220	ns	
			$\begin{array}{l} 1.6 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		_		2/fмск+ 220		2/fмск+ 220	ns	

(4)	During communication at same potential (CSI mode) (slave mode, SCKp external clock input) (2/2)
	$(T_A = -40 \text{ to } \pm 85^{\circ}\text{C} = 1.6 \text{ V} \leq \text{EV}_{DD0} = \text{EV}_{DD1} \leq \text{V}_{DD1} \leq 5.5 \text{ V}_{D0} \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0.0 \text{ V}_{D1}$

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Parameter	Symbol	Conditions	HS (higl main)		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat		1/fмск + 135 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
		$\label{eq:loss} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 135 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
			1/fмск + 190 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
		$\label{eq:linear} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 190 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
		$ \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split} $	1/f _{MCK} + 190 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	305	0	305	0	305	ns
			0	355	0	355	0	355	ns
		$\label{eq:linear} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	355	0	355	0	355	ns
		$\label{eq:VDD} \begin{split} & 1.8 \ V \leq EV_{\rm DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\rm b} \leq 2.0 \ V^{\text{Note 2}}, \\ & C_{\rm b} = 100 \ pF, \ R_{\rm b} = 5.5 \ k\Omega \end{split}$	0	405	0	405	0	405	ns

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2) (T_A = -40 to +85°C. 1.8 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V. Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. The value must also be equal to or less than f_MCK/4.

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \leq 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{DD}}, \text{ V}_{\text{DD}} = 0 \text{ V}, \text{ Reference voltage (+)} = 0 \text{ V}, Reference voltage (+)$
Reference voltage (-) = Vss)

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$		1.2	±7.0	LSB
			$\frac{1.6~V \leq V\text{DD} \leq 5.5~V}{_{\text{Note 3}}}$		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI0 to ANI14,	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
		ANI16 to ANI26	$1.8~V \le V \text{DD} \le 5.5~V$	17		39	μs
			$1.6~V \leq V \text{DD} \leq 5.5~V$	57		95	μs
Conversion time	tconv	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μs
		reference voltage, and	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μs
	t		$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V \text{DD} \leq 5.5~V$ Note 3			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±0.60	%FSR
			$\frac{1.6~V \leq V\text{DD} \leq 5.5~V}{_{\text{Note 3}}}$			±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$			±4.0	LSB
			$\frac{1.6~V \leq V \text{DD} \leq 5.5~V}{_{\text{Note 3}}}$			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
			$\frac{1.6~V \leq V\text{DD} \leq 5.5~V}{_{\text{Note 3}}}$			±2.5	LSB
Analog input voltage	VAIN	ANI0 to ANI14	•	0		Vdd	V
		ANI16 to ANI26		0		EVDD0	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high		VBGR Note 4		V	
		Temperature sensor output (2.4 V \leq V _{DD} \leq 5.5 V, HS (high	•	VTMPS25 Note 4			V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105°C)

Remark The electrical characteristics of the products G: Industrial applications (T_A = -40 to +105°C) are different from those of the products "A: Consumer applications, and D: Industrial applications". For details, refer to 3.1 to 3.10.

3.1 Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		–0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	–0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	–0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V_{DD} +0.3 $^{\text{Note 1}}$	V
Input voltage	VI1	P00 to P07, P10 to P17, P30 to P37, P40 to P47,	-0.3 to EV _{DD0} +0.3	V
		P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	and –0.3 to V_{DD} +0.3 ^{Note 2}	
	V _{I2}	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	Voi	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147		V
	V ₀₂	P20 to P27, P150 to P156	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANI16 to ANI26	-0.3 to EV_DD0 +0.3 and -0.3 to AV_{REF}(+) +0.3 $^{\text{Notes 2, 3}}$	V
	Vai2	ANI0 to ANI14	-0.3 to V_DD +0.3 and -0.3 to AV_{REF}(+) +0.3^{Notes 2, 3}	V

Absolute Maximum Ratings (T_A = 25°C) (1/2)

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - **3.** Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - **3.** Vss : Reference voltage

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іонт	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins	<u> </u>	5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +105	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (TA = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.3 DC Characteristics

3.3.1 Pin characteristics

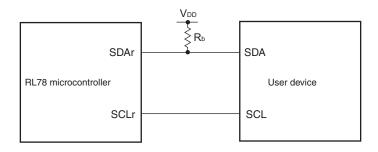
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (1/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{∾te 1}	Ioн1 Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P6 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147		$2.4~V \leq EV_{DD0} \leq 5.5~V$			-3.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			-30.0	mA
		P125 to P127, P130, P140 to P145	$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-10.0	mA
			$2.4~V \leq EV_{\text{DD0}} < 2.7~V$			-5.0	mA
		Total of P05, P06, P10 to P17, P30, P31, 4 P50 to P57, P64 to P67, P70 to P77, P80 2 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 (When duty $\leq 70\%$ ^{Note 3})				-30.0	mA
			$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-19.0	mA
1			$2.4~V \leq EV_{DD0} < 2.7~V$			-10.0	mA
		Total of all pins (When duty ≤ 70% ^{№te 3})	$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$			-60.0	mA
	Іон2	Per pin for P20 to P27, P150 to P156	2,4 V \leq V_{DD} \leq 5.5 V			-0.1 ^{Note 2}	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-1.5	mA

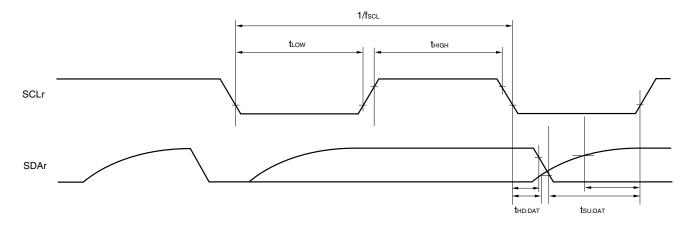
- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).
 - Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and $I_{OH} = -10.0 \text{ mA}$
 - Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.


- **Notes 1.** Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVSSD, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz 2.4 V \leq V_DD \leq 5.5 V@1 MHz to 16 MHz


- 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. file: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
 h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m

= 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

Parameter	Symbol		Conditions		HS (high-speed main) Mode		Unit
					MIN.	MAX.	
Transfer rate	Trans	Transmission	$4.0 \ V \leq EV_{\text{DD0}} \leq 5.5$			Note 1	bps
			V, $2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	Theoretical value of the maximum transfer rate		2.6 Note 2	Mbps
				$\begin{array}{l} C_{b}=50 \; pF, \; R_{b}=1.4 \; k\Omega, \; V_{b}=2.7 \\ V \end{array} \label{eq:cb}$			
			$2.7 V \leq EV_{DD0} < 4.0$			Note 3	bps
		V, $2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3$		1.2 Note 4	Mbps	
			V 2.4 V ≤ EV _{DD0} < 3.3			Note 5	bps
	V, $1.6 \text{ V} \leq V_b \leq 2.0 \text{ V}$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6$ V		0.43 Note 6	Mbps		

Notes 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV _DD0 \leq 5.5 V and 2.7 V \leq V _b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

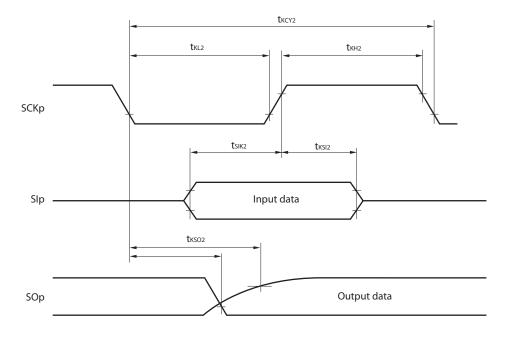
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- 3. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} < 4.0 V and 2.4 V \leq V_b \leq 2.7 V

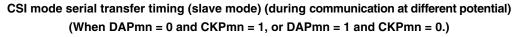
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

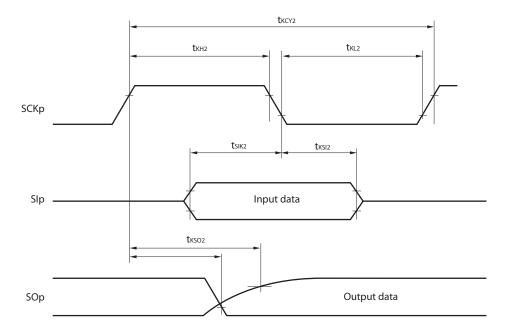
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

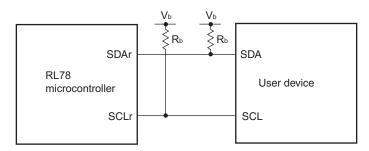


(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

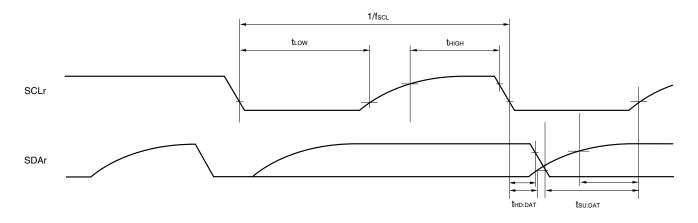

Parameter	Symbol	Conditions		HS (high-spee	Unit	
				MIN.	MAX.	
SCKp cycle time ^{Note 1}	tксү2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \\ V, \end{array}$	24 MHz < fмск	28/f мск		ns
			$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	24/f мск		ns
		$2.7 V \le V_b \le 4.0 V$	$8 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	20/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск \leq 4 MHz	12/f мск		ns
		$\begin{array}{l} 2.7 \ V \leq E V_{DD0} < 4.0 \\ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	24 MHz < fмск	40/f мск		ns
			$20 \text{ MHz} < f_{\text{MCK}} \le 24 \text{ MHz}$	32/f мск		ns
			$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	28/f мск		ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	24/fмск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск \leq 4 MHz	12/f мск		ns
		$2.4 V \le EV_{DD0} < 3.3 V$, 1.6 V $\le V_b \le 2.0 V$	24 MHz < fмск	96/f мск		ns
			$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	72/f мск		ns
			$16 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	64/f мск		ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	52/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	32/f мск		ns
			fмск \leq 4 MHz	20/fмск		ns
SCKp high-/low-level width	tкн2, tкL2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \\ \\ 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		tkcy2/2 - 24		ns
				tkcy2/2 - 36		ns
		$\begin{array}{l} 2.4 \; V \leq EV_{\text{DD0}} < 3. \\ 1.6 \; V \leq V_{\text{b}} \leq 2.0 \; V \end{array}$		tkcy2/2 - 100		ns
SIp setup time (to SCKp↑) ^{Note2}	tsik2	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD0}} \leq 5. \\ 2.7 \; V \leq V_{b} \leq 4.0 \; V \end{array}$		1/fмск + 40		ns
		$\label{eq:V_state} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		1/fмск + 40		ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{№te 3}	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{№te 4}	Kp↓ tĸsoz				2/fмск + 240	ns
		$\label{eq:V_b} \begin{array}{l} 2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$			2/fмск + 428	ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$			2/fмск + 1146	ns


(Notes, Caution and Remarks are listed on the next page.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)


Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)


2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12, 13)

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V}, \text{ Reference voltage (+)} = 10^{\circ}\text{C}, 10^{$	
VDD, Reference voltage (-) = Vss)	

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI0 to ANI14, ANI16 to ANI26	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
			$2.4~V \le V \text{DD} \le 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
Differential linearity error	DLE	10-bit resolution	$2.4~V \leq V \text{dd} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI14 ANI16 to ANI26		0		VDD	V
				0		EVDD0	V
		Internal reference voltage output (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		VBGR Note 3			V
		Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		VTMPS25 ^{Note 3}			V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- $\ensuremath{\textbf{2.}}$ This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

