Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | RL78 | | Core Size | 16-Bit | | Speed | 32MHz | | Connectivity | CSI, I ² C, LINbus, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 31 | | Program Memory Size | 16KB (16K x 8) | | Program Memory Type | FLASH | | EEPROM Size | 4K x 8 | | RAM Size | 2K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V | | Data Converters | A/D 10x8/10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 44-LQFP | | Supplier Device Package | 44-LQFP (10x10) | | Purchase URL | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100fadfp-v0 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # 1.3.10 52-pin products • 52-pin plastic LQFP (10 × 10 mm, 0.65 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. # 1.3.14 128-pin products • 128-pin plastic LFQFP (14 × 20 mm, 0.5 mm pitch) Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin. - 2. Make VDD pin the potential that is higher than EVDDD, EVDDD pins (EVDDD = EVDDD). - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD}, EV_{DD0} and EV_{DD1} pins and connect the Vss, EVss₀ and EVss₁ pins to separate ground lines. - 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. # 1.4 Pin Identification | ANI0 to ANI14, | | REGC: | Regulator capacitance | |------------------|----------------------------|-------------------------|--| | ANI16 to ANI26: | Analog input | RESET: | Reset | | AVREFM: | A/D converter reference | RTC1HZ: | Real-time clock correction clock | | | potential (- side) input | | (1 Hz) output | | AVREFP: | A/D converter reference | RxD0 to RxD3: | Receive data | | | potential (+ side) input | SCK00, SCK01, SCK10, | | | EVDD0, EVDD1: | Power supply for port | SCK11, SCK20, SCK21, | | | EVsso, EVss1: | Ground for port | SCLA0, SCLA1: | Serial clock input/output | | EXCLK: | External clock input (Main | SCLA0, SCLA1, SCL00, | | | | system clock) | SCL01, SCL10, SCL11, | | | EXCLKS: | External clock input | SCL20,SCL21, SCL30, | | | | (Subsystem clock) | SCL31: | Serial clock output | | INTP0 to INTP11: | Interrupt request from | SDAA0, SDAA1, SDA00 | , | | | peripheral | SDA01,SDA10, SDA11, | | | KR0 to KR7: | Key return | SDA20,SDA21, SDA30, | | | P00 to P07: | Port 0 | SDA31: | Serial data input/output | | P10 to P17: | Port 1 | SI00, SI01, SI10, SI11, | | | P20 to P27: | Port 2 | SI20, SI21, SI30, SI31: | Serial data input | | P30 to P37: | Port 3 | SO00, SO01, SO10, | | | P40 to P47: | Port 4 | SO11, SO20, SO21, | | | P50 to P57: | Port 5 | SO30, SO31: | Serial data output | | P60 to P67: | Port 6 | TI00 to TI07, | | | P70 to P77: | Port 7 | TI10 to TI17: | Timer input | | P80 to P87: | Port 8 | TO00 to TO07, | | | P90 to P97: | Port 9 | TO10 to TO17: | Timer output | | P100 to P106: | Port 10 | TOOL0: | Data input/output for tool | | P110 to P117: | Port 11 | TOOLRxD, TOOLTxD: | Data input/output for external device | | P120 to P127: | Port 12 | TxD0 to TxD3: | Transmit data | | P130, P137: | Port 13 | V _{DD} : | Power supply | | P140 to P147: | Port 14 | Vss: | Ground | | P150 to P156: | Port 15 | X1, X2: | Crystal oscillator (main system clock) | | PCLBUZ0, PCLBUZ1 | : Programmable clock | XT1, XT2: | Crystal oscillator (subsystem clock) | | | output/buzzer output | | | **3.** The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see **6.9.3 Operation as multiple PWM output function** in the RL78/G13 User's Manual). 4. When setting to PIOR = 1 | 70 | n | ١ | |----|---|---| | 1/ | ' | п | | _ | _ | , | | Iter | m | 20- | nin | 24- | nin | 25- | nin | 30- | pin | 32 | -pin | 36 | pin | |--------------------------------------|----------------------|--|--|--
---|--|---------------------------|-----------|-----------|-----------|-----------|----------|----------| | itoi | | | | | | | | | | | İ | | i | | | | R5F1006x | R5F1016x | R5F1007x | R5F1017x | R5F1008x | R5F1018x | R5F100Ax | R5F101Ax | R5F100Bx | R5F101Bx | R5F100Cx | R5F101Cx | | Clock output/buzze | er output | - | = | | 1 | | 1 | | 2 | | 2 | | 2 | | | | 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) | | | | | | | | | | | | | 8/10-bit resolution | A/D converter | 6 chanr | nels | 6 chanr | nels | 6 chanr | nels | 8 chanı | nels | 8 chan | nels | 8 chan | nels | | Serial interface | | [20-pin, | 24-pin, | 25-pin p | roducts] | | | | | | | | | | | | • CSI: | 1 chann | el/simplif | ied I ² C: | 1 channe | el/UART | : 1 chanr | nel | | | | | | | | • CSI: | 1 chann | el/simplif | ied I ² C: | 1 channe | el/UART | : 1 chanr | nel | | | | | | | | [30-pin, | 32-pin | products] |] | | | | | | | | | | | | • CSI: | 1 chann | el/simplif
el/simplif | ied I ² C: | 1 channe | el/UART | : 1 chanr | nel | | | | | | | | | | el/simplif | fied I ² C: | 1 channe | el/UART | (UART s | supportir | ng LIN-b | us): 1 ch | nannel | | | | | [36-pin | | | | | | | | | | | | | | | 1 | | el/simplif
el/simplif | | | | | | | | | | | 1 | | | | els/simpli | | | | | | rting LIN | -bus): 1 | channel | | | ſ | I ² C bus | - | = | 1 chanr | | 1 chanr | | 1 chanı | | 1 chan | | 1 chan | nel | | Multiplier and divide accumulator | er/multiply- | 16 bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) | | | | | | | | | | | | | DMA controller | | 2 chanr | nels | | | | | | | | | | | | Vectored interrupt | Internal | 2 | 3 | 2 | 24 | 2 | <u>!</u> 4 | 2 | 27 | 2 | 27 | 2 | 27 | | sources | External | ; | 3 | ļ | 5 | | 5 | | 6 | | 6 | | 6 | | Key interrupt | External | | | | | | | | | | | | | | Reset | | | | | | | | | | | | | | | | | InterrInterrInterrInterrInterr | nal reset
nal reset
nal reset
nal reset
nal reset | SET pin by watch by power by volta by illega by RAM by illega | er-on-res
ge detec
al instruc
parity e | et
ctor
tion exec
rror | | e | | | | | | | Power-on-reset circ | puit | InterrInterrInterrInterrInterrInterrInterrPower | nal reset
nal reset
nal reset
nal reset
nal reset
er-on-res | by watch
by power
by volta
by illega
by RAM
by illega | er-on-res
ge detect
al instruct
parity e
al-memodes
51 V (T | et stor
stor
tion exec
rror
ry access | | 0 | | | | | | | Power-on-reset circ | cuit | InterrInterrInterrInterrInterrInterrInterrPower | nal reset
nal reset
nal reset
nal reset
nal reset
nal reset
er-on-reser
er-down- | by watch
by power
by volta
by illega
by RAM
by illega
set: 1
reset: 1 | er-on-res
ge detectal instruction parity et al-memorial.51 V (Tours) (| et stor
stor
tion exec
rror
ry access | s
14 stage | es) | | | | | | | | | Interr Interr Interr Interr Interr Interr Interr Powe | nal reset
nal reset
nal reset
nal reset
nal reset
nal reset
er-on-reser-down-
g edge:
g edge | by watch
by power
by volta
by illega
by RAM
by illega
set: 1
reset: 1 | er-on-res
ge detectal instruction parity et al-memorial.51 V (Tours) (| et
ctor
tion exec
rror
ry access
YP.)
YP.) | s
14 stage | es) | | | | | | | Voltage detector | ction | Interresistant Interr | nal reset er-on-reser-down- g edge: g edge d | by watch
by power
by volta
by illega
by RAM
by illega
set: 1
reset: 1 | er-on-res
ge detect
al instruct
parity e
al-memon
.51 V (T
.50 V (T
.67 V to | set stor rich execution ex | s
14 stage | es) | | | | | | | Voltage detector On-chip debug fund | ction | Interr Interr Interr Interr Interr Interr Powe Powe Rising Fallin Provide | nal reset er-on-reser down- g edge: g edge d | by watch
by power
by volta
by illega
by RAM
by illega
set: 1
rreset: 1 | er-on-res
ge detect
al instruct
parity e
al-memon
.51 V (T
.50 V (T
.67 V to
.63 V to | set stor return execution exec | s
14 stage | es) | | | | | | | Voltage detector On-chip debug fund | ction | Interr Interr Interr Interr Interr Interr Interr Powe Powe Rising Fallin Provide V_{DD} = 1 V_{DD} = 2. | nal reset er-on-reser er-down- g edge g edge d .6 to 5.5 | by watch by power by volta by illegate by RAM by illegate illeg | er-on-res
ge detect
al instruct
parity e
al-memor
.51 V (T
.50 V (T
.63 V to
.63 V to | set stor rich execution ex | s
14 stage
14 stage | es) | applica | tions) | | | | Note The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual). (2/2) | lla | | 80-pin 100-pin | | | (2/2) | | | | | | | | | |----------------------|----------------------
---|---------------------------------|------------------------------|--------------------|--------------------|--|--|--|--|--|--|--| | Ite | em | | | | 100-pin | | 8-pin | | | | | | | | | | R5F100Mx | R5F101Mx | R5F100Px | R5F101Px | R5F100Sx | R5F101Sx | | | | | | | | Clock output/buzz | er output | | 2 2 2 | | | | | | | | | | | | | | • 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz | | | | | | | | | | | | | | | (Main system clock: fmain = 20 MHz operation) | | | | | | | | | | | | | | | • 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation) | | | | | | | | | | | | | 8/10-bit resolution | A/D converter | 17 channels | 710011. 100B — 0E.7 | 20 channels | <u>'</u> | 26 channels | | | | | | | | | Serial interface | TAB CONVOICE | | , 128-pin produc | | | 20 onamoio | | | | | | | | | ocha interiace | | | | : 2 channels/UAR | T: 1 channal | | | | | | | | | | | | | • | : 2 channels/UAR | | | | | | | | | | | | | | • | : 2 channels/UAR | | ting LIN-bus): 1 o | channel | | | | | | | | | | CSI: 2 channel | els/simplified I ² C | 2 channels/UAR | T: 1 channel | | | | | | | | | | | I ² C bus | 2 channels | | 2 channels | | 2 channels | | | | | | | | | Multiplier and divid | der/multiply- | • 16 bits × 16 bi | ts = 32 bits (Uns | igned or signed) | | | | | | | | | | | accumulator | | • 32 bits ÷ 32 bits = 32 bits (Unsigned) | | | | | | | | | | | | | | | • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) | | | | | | | | | | | | | DMA controller | | 4 channels | 4 channels | | | | | | | | | | | | Vectored | Internal | 3 | 37 | 3 | 37 | | 41 | | | | | | | | interrupt sources | External | 1 | 13 | 1 | 3 | | 13 | | | | | | | | Key interrupt | | | 8 | ; | 8 | | 8 | | | | | | | | Reset | | Reset by RES | SET pin | | | | | | | | | | | | | | | by watchdog tim | | | | | | | | | | | | | | | by power-on-res | | | | | | | | | | | | | | | by voltage detec | ctor
ction execution Note | | | | | | | | | | | | | | by RAM parity e | | | | | | | | | | | | | | Internal reset by Hawi party error Internal reset by illegal-memory access | | | | | | | | | | | | | Power-on-reset ci | rcuit | Power-on-res | et: 1.51 V (TY | ′P.) | | | | | | | | | | | | | Power-down-reset: 1.50 V (TYP.) | | | | | | | | | | | | | Voltage detector | | Rising edge : | 1.67 V to 4 | 1.06 V (14 stages) |) | | | | | | | | | | | | Falling edge : | 1.63 V to 3 | 3.98 V (14 stages) | | | | | | | | | | | On-chip debug fur | nction | Provided | | | | | | | | | | | | | Power supply volt | age | $V_{DD} = 1.6 \text{ to } 5.5$ | $V (T_A = -40 \text{ to } +8$ | 35°C) | | | | | | | | | | | | | $V_{DD} = 2.4 \text{ to } 5.5$ | $V (T_A = -40 \text{ to } +1)$ | 05°C) | | | | | | | | | | | Operating ambien | t temperature | $T_A = 40 \text{ to } +85^\circ$ | C (A: Consumer | applications, D: Ir | ndustrial applicat | ions) | | | | | | | | | | | $T_A = 40 \text{ to } +105$ | °C (G: Industrial | applications) | | | $T_A = 40 \text{ to } +105^{\circ}\text{C}$ (G: Industrial applications) | | | | | | | Note The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator. $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (4/5)$ | Items | Symbol | Conditions | | MIN. | TYP. | MAX. | Unit | |-------------------------|--|---|---|-------------------------|------|------|------| | Output voltage,
high | V _{OH1} | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -10.0 mA | EV _{DD0} – | | | V | | | | to P67, P70 to P77, P80 to P87,
P90 to P97, P100 to P106, P110 to | $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -3.0 \text{ mA}$ | EV _{DD0} – 0.7 | | | V | | | P117, P120, P125 to P127, P130, P140 to P147 | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ loh1 = -2.0 mA | EV _{DD0} – 0.6 | | | V | | | | | | $1.8 \ V \le EV_{DD0} \le 5.5 \ V,$ Iон1 = $-1.5 \ mA$ | EV _{DD0} – 0.5 | | | V | | | | | $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ Iон1 = -1.0 mA | EV _{DD0} – 0.5 | | | V | | | V _{OH2} | P20 to P27, P150 to P156 | 1.6 V \leq V _{DD} \leq 5.5 V, I _{OH2} = $-100~\mu$ A | V _{DD} – 0.5 | | | V | | Output voltage, VoL1 | V _{OL1} | P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 20~mA$ | | | 1.3 | V | | | | | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 8.5~mA$ | | | 0.7 | V | | | | | $2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$ $I_{\text{OL1}} = 3.0~\text{mA}$ | | | 0.6 | V | | | | | $2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$ $I_{\text{OL1}} = 1.5~\text{mA}$ | | | 0.4 | V | | | | | $1.8~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 0.6~mA$ | | | 0.4 | V | | | | | $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ $\text{IoL1} = 0.3 \text{ mA}$ | | | 0.4 | V | | | V _{OL2} | P20 to P27, P150 to P156 | 1.6 V \leq V _{DD} \leq 5.5 V, I _{OL2} = 400 μ A | | | 0.4 | V | | | Vol3 | P60 to P63 | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $\text{Iol3} = 15.0 \text{ mA}$ | | | 2.0 | V | | | | | $4.0~V \le EV_{DD0} \le 5.5~V,$ $I_{OL3} = 5.0~mA$ | | | 0.4 | V | | | | | $2.7~\textrm{V} \leq \textrm{EV}_\textrm{DD0} \leq 5.5~\textrm{V},$ $\textrm{Iol3} = 3.0~\textrm{mA}$ | | | 0.4 | V | | | | | $1.8~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 2.0~mA$ | | | 0.4 | V | | | | | $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ $10 \text{L3} = 1.0 \text{ mA}$ | | | 0.4 | V | Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode. **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. - Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. When high-speed on-chip oscillator and subsystem clock are stopped. - 3. When high-speed system clock and subsystem clock are stopped. - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer. - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V \leq VDD \leq 5.5 V@1 MHz to 32 MHz $2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 4 MHz - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fin: High-speed on-chip oscillator clock frequency - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C - Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. When high-speed on-chip oscillator and subsystem clock are stopped. - 3. When high-speed system clock and subsystem clock are stopped. - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 4 MHz - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fih: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C # (3)
During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | C | Conditions | HS (high
main) | • | LS (low
main) | • | LV (low-
main) | -voltage
Mode | Unit | |------------------------------|-------------------|---|------------------------------------|-------------------|------|------------------|------|-------------------|------------------|------| | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SCKp cycle time | tkcy1 | tксү1 ≥ 4/fс∟к | $2.7~V \leq EV_{DD0} \leq 5.5$ V | 125 | | 500 | | 1000 | | ns | | | | | $2.4~V \leq EV_{DD0} \leq 5.5$ V | 250 | | 500 | | 1000 | | ns | | | | | $1.8~V \leq EV_{DD0} \leq 5.5$ V | 500 | | 500 | | 1000 | | ns | | | | | $1.7~V \leq EV_{DD0} \leq 5.5$ V | 1000 | | 1000 | | 1000 | | ns | | | | | $1.6~V \le EV_{DD0} \le 5.5$ V | _ | | 1000 | | 1000 | | ns | | SCKp high-/low-level width | tкн1,
tкL1 | $4.0~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$ | | tксу1/2 —
12 | | tксу1/2 —
50 | | tксү1/2 —
50 | | ns | | | | $2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$ | | tксу1/2 —
18 | | tксу1/2 — 50 | | tксү1/2 —
50 | | ns | | | | $2.4~V \leq EV_{DD0} \leq 5.5~V$ | | tксү1/2 –
38 | | tксү1/2 –
50 | | tксү1/2 –
50 | | ns | | | | 1.8 V ≤ EVD | ₀₀ ≤ 5.5 V | tксү1/2 —
50 | | tксу1/2 —
50 | | tксү1/2 —
50 | | ns | | | | 1.7 V ≤ EVD | ₀₀ ≤ 5.5 V | tксу1/2 —
100 | | tксу1/2 —
100 | | tксу1/2 —
100 | | ns | | | | 1.6 V ≤ EV _D | ₀₀ ≤ 5.5 V | _ | | tксу1/2 —
100 | | tксу1/2 —
100 | | ns | | SIp setup time | tsıĸı | 4.0 V ≤ EV _{DI} | 00 ≤ 5.5 V | 44 | | 110 | | 110 | | ns | | (to SCKp↑) | | 2.7 V ≤ EV _{DI} | 00 ≤ 5.5 V | 44 | | 110 | | 110 | | ns | | | | 2.4 V ≤ EV _{DI} | 00 ≤ 5.5 V | 75 | | 110 | | 110 | | ns | | | | 1.8 V ≤ EV _{DI} | oo ≤ 5.5 V | 110 | | 110 | | 110 | | ns | | | | 1.7 V ≤ EV _{DI} | oo ≤ 5.5 V | 220 | | 220 | | 220 | | ns | | | | 1.6 V ≤ EV _{DI} | 00 ≤ 5.5 V | _ | | 220 | | 220 | | ns | | SIp hold time | t _{KSI1} | 1.7 V ≤ EV _{DI} | 00 ≤ 5.5 V | 19 | | 19 | | 19 | | ns | | (from SCKp↑) Note 2 | | 1.6 V ≤ EV _{DI} | 00 ≤ 5.5 V | _ | | 19 | | 19 | | ns | | Delay time from SCKp↓ to SOp | tkso1 | $1.7 \text{ V} \le \text{EV}_{DI}$ $C = 30 \text{ pF}^{\text{Note}}$ | | | 25 | | 25 | | 25 | ns | | output Note 3 | | $1.6 \text{ V} \leq \text{EV}_{DI}$ $C = 30 \text{ pF}^{\text{Note}}$ | | | _ | | 25 | | 25 | ns | **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 4. C is the load capacitance of the SCKp and SOp output lines. Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). # UART mode bit width (during communication at different potential) (reference) - $\begin{tabular}{ll} \begin{tabular}{ll} \bf R_b[\Omega]: Communication line (TxDq) pull-up resistance, \\ C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage \\ \end{tabular}$ - 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14) - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)) - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1. #### (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2) (Ta = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) | Parameter | Symbol | Conditions | HS (high
main) | • | , | /-speed
Mode | LV (low
main) | -voltage
Mode | Unit | |----------------------------------|---------|---|---------------------|------|---------------------------|-----------------|---------------------------|------------------|------| | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | Data setup time
(reception) | tsu:dat | $ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $ | 1/fмск + 135 Note 3 | | 1/fmck
+ 190
Note 3 | | 1/fmck
+ 190
Note 3 | | kHz | | | | $ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $ | 1/fмск + 135 Note 3 | | 1/fmck
+ 190
Note 3 | | 1/fmck
+ 190
Note 3 | | kHz | | | | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $ | 1/fмск + 190 Note 3 | | 1/fmck
+ 190
Note 3 | | 1/fmck
+ 190
Note 3 | | kHz | | | | $ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $ | 1/fmck + 190 Note 3 | | 1/fmck
+ 190
Note 3 | | 1/fmck
+ 190
Note 3 | | kHz | | | | $ \begin{aligned} &1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ &1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ &C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{aligned} $ | 1/fмск + 190 Note 3 | | 1/fmck
+ 190
Note 3 | | 1/fmck
+ 190
Note 3 | | kHz | | Data hold time
(transmission) | thd:dat | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $ | 0 | 305 | 0 | 305 | 0 | 305 | ns | | | | $ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $ | 0 | 305 | 0 | 305 | 0 | 305 | ns | | | | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $ | 0 | 355 | 0 | 355 | 0 | 355 | ns | | | | $ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $ | 0 | 355 | 0 | 355 | 0 | 355 | ns | | | | $ \begin{split} &1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split} $ | 0 | 405 | 0 | 405 | 0 | 405 | ns | **Notes 1.** The value must also be equal to or less than $f_{MCK}/4$. - 2. Use it with $EV_{DD0} \ge V_b$. - 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H". Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the next page.) #### (3) Peripheral Functions (Common to all products) # $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | | Conditions | MIN. | TYP. | MAX. | Unit | |--|-----------------------|----------------------------|---|------|------|-------|------| | Low-speed on-
chip oscillator
operating
current | FIL
Note 1 | | | | 0.20 | | μΑ | | RTC operating current | IRTC
Notes 1, 2, 3 | | | | 0.02 | | μΑ | | 12-bit interval timer operating current | IIT
Notes 1, 2, 4 | | | | 0.02 | | μА | | Watchdog timer operating current | WDT
Notes 1, 2, 5 | fı∟ = 15 kHz | | | 0.22 | | μΑ | | A/D converter operating | ADC
Notes 1, 6 | When conversion at maximum | Normal mode, AVREFP = VDD = 5.0 V | | 1.3 | 1.7 | mA | | current | | speed | Low voltage mode, AVREFP = VDD = 3.0 V | | 0.5 | 0.7 | mA | | A/D converter
reference
voltage current | IADREF
Note 1 | | | | 75.0 | | μΑ | | Temperature sensor operating current | ITMPS
Note 1 | | | | 75.0 | | μA | | LVD operating current | ILVD
Notes 1, 7 | | | | 0.08 | | μА | | Self
programming
operating
current | FSP
Notes 1, 9 | | | | 2.50 | 12.20 | mA | | BGO operating current | BGO
Notes 1, 8 | | | | 2.50 | 12.20 | mA | | SNOOZE | Isnoz | ADC operation | The mode is performed Note 10 | | 0.50 | 1.10 | mA | | operating current | Note 1 | | The A/D conversion operations are performed, Loe voltage mode, AVREFP = VDD = 3.0 V | | 1.20 | 2.04 | mA | | | | CSI/UART operation | on | | 0.70 | 1.54 | mA | #### Notes 1. Current flowing to the VDD. - 2. When high speed on-chip oscillator and high-speed system clock are stopped. - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed
onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock. - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. - **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates. 5. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.4 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V Maximum transfer rate = $$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$ [bps] Baud rate error (theoretical value) = $$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{1.5}{V_b})}\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$ - * This value is the theoretical value of the relative difference between the transmission and reception sides. - **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer. Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. **UART** mode connection diagram (during communication at different potential) - Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VIL, see the DC characteristics with TTL input buffer selected. #### CSI mode connection diagram (during communication at different potential) - **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 00, 01, 02, - 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13)) - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. #### 3.6.3 POR circuit characteristics $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$ | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |---------------------|------------------|----------------------------|------|------|------|------| | Detection voltage | VPOR | POR Power supply rise time | | 1.51 | 1.57 | V | | | V _{PDR} | Power supply fall time | 1.44 | 1.50 | 1.56 | V | | Minimum pulse width | T _{PW} | | 300 | | | μS | **Note** Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC). R5F100GAANA, R5F100GCANA, R5F100GDANA, R5F100GEANA, R5F100GFANA, R5F100GHANA, R5F100GHANA, R5F100GHANA, R5F100GKANA, R5F100GKANA, R5F100GKANA R5F101GAANA, R5F101GCANA, R5F101GDANA, R5F101GEANA, R5F101GFANA, R5F101GHANA, R5F101GHANA, R5F101GHANA, R5F101GKANA, R5F101GKANA, R5F101GLANA R5F100GADNA, R5F100GCDNA, R5F100GDDNA, R5F100GEDNA, R5F100GFDNA, R5F100GDNA, R5F100GHDNA, R5F100GJDNA, R5F100GKDNA, R5F100GLDNA R5F101GADNA, R5F101GCDNA, R5F101GDDNA, R5F101GEDNA, R5F101GFDNA, R5F101GGDNA, R5F101GHDNA, R5F101GJDNA, R5F101GKDNA, R5F101GLDNA R5F100GAGNA, R5F100GCGNA, R5F100GDGNA, R5F100GEGNA, R5F100GFGNA, R5F100GHGNA, R5F100GJGNA | JEITA Package code | RENESAS code | Previous code | MASS(TYP.)[g] | |--------------------|--------------|---------------------------|---------------| | P-HWQFN48-7x7-0.50 | PWQN0048KB-A | 48PJN-A
P48K8-50-5B4-6 | 0.13 | | Referance | Dimens | sion in Mil | limeters | |----------------|--------|-------------|----------| | Symbol | Min | Nom | Max | | D | 6.95 | 7.00 | 7.05 | | Е | 6.95 | 7.00 | 7.05 | | А | | | 0.80 | | A ₁ | 0.00 | | | | b | 0.18 | 0.25 | 0.30 | | е | | 0.50 | | | Lp | 0.30 | 0.40 | 0.50 | | Х | | | 0.05 | | у | | | 0.05 | | Z _D | | 0.75 | | | Z _E | | 0.75 | | | C ₂ | 0.15 | 0.20 | 0.25 | | D ₂ | | 5.50 | _ | | E ₂ | _ | 5.50 | _ | ©2013 Renesas Electronics Corporation. All rights reserved. # 4.11 64-pin Products R5F100LCAFA, R5F100LDAFA, R5F100LEAFA, R5F100LFAFA, R5F100LGAFA, R5F100LHAFA, R5F100LJAFA, R5F100LKAFA, R5F100LLAFA R5F101LCAFA, R5F101LDAFA, R5F101LEAFA, R5F101LFAFA, R5F101LGAFA, R5F101LHAFA, R5F101LJAFA, R5F101LKAFA, R5F101LLAFA R5F100LCDFA, R5F100LDDFA, R5F100LEDFA, R5F100LFDFA, R5F100LGDFA, R5F100LHDFA, R5F100LJDFA, R5F100LKDFA, R5F100LLDFA R5F101LCDFA, R5F101LDDFA, R5F101LEDFA, R5F101LFDFA, R5F101LGDFA, R5F101LHDFA, R5F101LJDFA, R5F101LKDFA, R5F101LLDFA Previous Code MASS (TYP.) [g] R5F100LCGFA, R5F100LDGFA, R5F100LEGFA, R5F100LFGFA, R5F100LGGFA, R5F100LHGFA, R5F100LJGFA RENESAS Code JEITA Package Code ©2012 Renesas Electronics Corporation. All rights reserved. # 4.12 80-pin Products R5F100MFAFA, R5F100MGAFA, R5F100MHAFA, R5F100MJAFA, R5F100MKAFA, R5F100MLAFA R5F101MFAFA, R5F101MGAFA, R5F101MHAFA, R5F101MJAFA, R5F101MKAFA, R5F101MLAFA R5F100MFDFA, R5F100MGDFA, R5F100MHDFA, R5F100MJDFA, R5F100MKDFA, R5F101MLDFA R5F101MFDFA, R5F101MGDFA, R5F101MHDFA, R5F101MJDFA, R5F101MKDFA, R5F101MLDFA R5F100MFGFA, R5F100MGGFA, R5F100MHGFA, R5F100MJGFA | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |---------------------|--------------|----------------|-----------------| | P-LQFP80-14x14-0.65 | PLQP0080JB-E | P80GC-65-UBT-2 | 0.69 | S detail of lead end | Referance
Symbol | Dimension in Millimeters | | | | |---------------------|--------------------------|-------|-------|--| | | Min | Nom | Max | | | D | 13.80 | 14.00 | 14.20 | | | Е | 13.80 | 14.00 | 14.20 | | | HD | 17.00 | 17.20 | 17.40 | | | HE | 17.00 | 17.20 | 17.40 | | | Α | | | 1.70 | | | A1 | 0.05 | 0.125 | 0.20 | | | A2 | 1.35 | 1.40 | 1.45 | | | A3 | | 0.25 | | | | bp | 0.26 | 0.32 | 0.38 | | | С | 0.10 | 0.145 | 0.20 | | | L | | 0.80 | | | | Lp | 0.736 | 0.886 | 1.036 | | | L1 | 1.40 | 1.60 | 1.80 | | | θ | 0° | 3° | 8° | | | е | | 0.65 | | | | х | | | 0.13 | | | У | | | 0.10 | | | ZD | | 0.825 | | | | ZE | | 0.825 | | | © 2012 Renesas ElectronicsCorporation. All rights reserved. # 4.14 128-pin Products R5F100SHAFB, R5F100SJAFB, R5F100SKAFB, R5F100SLAFB R5F101SHAFB, R5F101SJAFB, R5F101SKAFB, R5F101SLAFB R5F100SHDFB, R5F100SJDFB, R5F100SKDFB, R5F100SLDFB R5F101SHDFB, R5F101SJDFB, R5F101SKDFB, R5F101SLDFB | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |-----------------------|--------------|-----------------|-----------------| | P-LFQFP128-14x20-0.50 | PLQP0128KD-A | P128GF-50-GBP-1 | 0.92 | \bigcirc 2012 Renesas Electronics Corporation. All rights reserved. #### NOTES FOR CMOS DEVICES - (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN). - (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device. - (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a
MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices. - (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions. - (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device. - (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.