

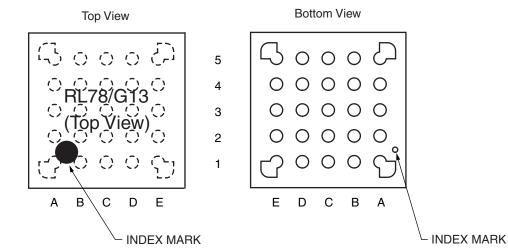
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100fagfp-v0

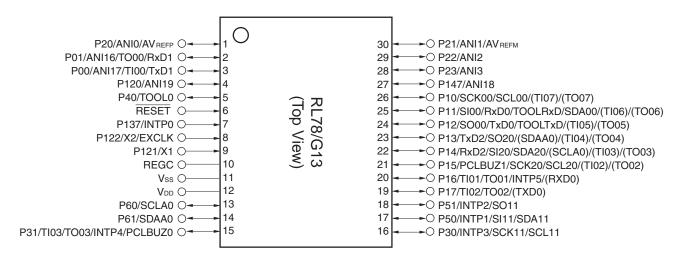

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.3 25-pin products

<R>

• 25-pin plastic WFLGA (3 × 3 mm, 0.50 mm pitch)

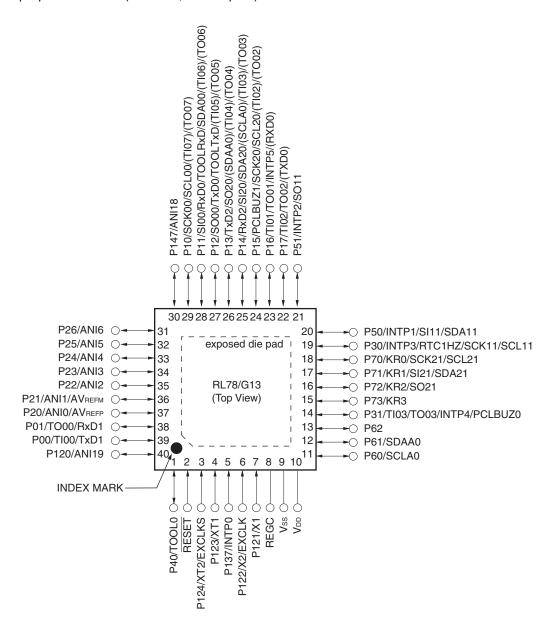

	Α	В	С	D	E	
5	P40/TOOL0	RESET	P01/ANI16/ TO00/RxD1	P22/ANI2	P147/ANI18	5
4	P122/X2/ EXCLK	P137/INTP0	P00/ANI17/ TI00/TxD1	P21/ANI1/ AV _{REFM}	P10/SCK00/ SCL00	4
3	P121/X1	V _{DD}	P20/ANI0/ AV _{REFP}	P12/SO00/ TxD0/ TOOLTxD	P11/SI00/ RxD0/ TOOLRxD/ SDA00	3
2	REGC	Vss	P30/INTP3/ SCK11/SCL11	P17/TI02/ TO02/SO11	P50/INTP1/ SI11/SDA11	2
1	P60/SCLA0	P61/SDAA0	P31/TI03/ TO03/INTP4/ PCLBUZ0	P16/TI01/ TO01/INTP5	P130	1
	A	В	С	D	E	

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark For pin identification, see **1.4 Pin Identification**.

1.3.4 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

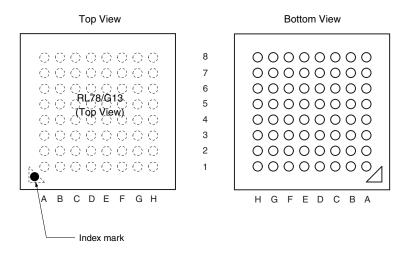

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.7 40-pin products

• 40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch)



Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

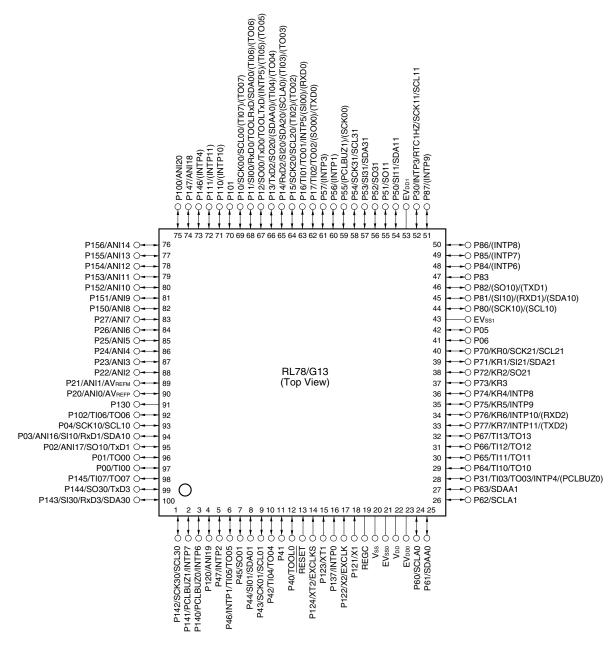
Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to Vss.

• 64-pin plastic VFBGA (4 × 4 mm, 0.4 mm pitch)

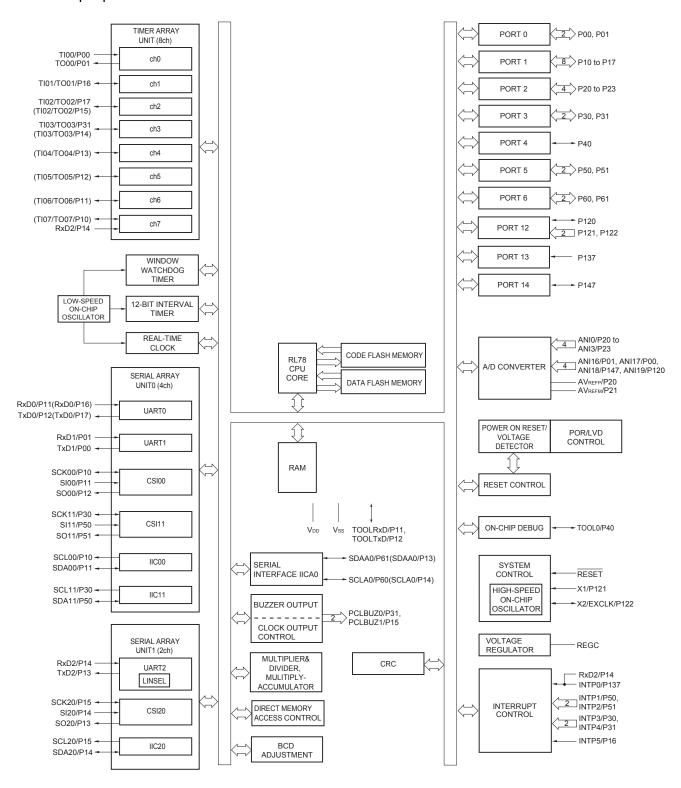
Pin No.	Name	Pin No.	Name	Pin No.	Name	Pin No.	Name
A1	P05/TI05/TO05	C1	P51/INTP2/SO11	E1	P13/TxD2/SO20/ (SDAA0)/(TI04)/(TO04)	G1	P146
A2	P30/INTP3/RTC1HZ /SCK11/SCL11	C2	P71/KR1/SI21/SDA21	E2	P14/RxD2/SI20/SDA20 /(SCLA0)/(TI03)/(TO03)	-	P25/ANI5
A3	P70/KR0/SCK21 /SCL21	СЗ	P74/KR4/INTP8/SI01 /SDA01	E3	P15/SCK20/SCL20/ (TI02)/(TO02)	G3	P24/ANI4
A4	P75/KR5/INTP9 /SCK01/SCL01	C4	P52/(INTP10)	E4	P16/TI01/TO01/INTP5 /(SI00)/(RxD0)	G4	P22/ANI2
A5	P77/KR7/INTP11/ (TxD2)	C5	P53/(INTP11)	E5	P03/ANI16/SI10/RxD1 /SDA10	G5	P130
A6	P61/SDAA0	C6	P63	E6	P41/TI07/TO07	G6	P02/ANI17/SO10/TxD1
A7	P60/SCLA0	C7	Vss	E7	RESET	G7	P00/TI00
A8	EV _{DD0}	C8	P121/X1	E8	P137/INTP0	G8	P124/XT2/EXCLKS
B1	P50/INTP1/SI11 /SDA11	D1	P55/(PCLBUZ1)/ (SCK00)	F1	P10/SCK00/SCL00/ (TI07)/(TO07)	H1	P147/ANI18
B2	P72/KR2/SO21	D2	P06/TI06/TO06	F2	P11/SI00/RxD0 /TOOLRxD/SDA00/ (TI06)/(TO06)	H2	P27/ANI7
B3	P73/KR3/SO01	D3	P17/TI02/TO02/ (SO00)/(TxD0)	F3	P12/SO00/TxD0 /TOOLTxD/(INTP5)/ (TI05)/(TO05)	H3	P26/ANI6
B4	P76/KR6/INTP10/ (RxD2)	D4	P54	F4	P21/ANI1/AVREFM	H4	P23/ANI3
B5	P31/TI03/TO03 /INTP4/(PCLBUZ0)	D5	P42/TI04/TO04	F5	P04/SCK10/SCL10	H5	P20/ANI0/AVREFP
B6	P62	D6	P40/TOOL0	F6	P43	H6	P141/PCLBUZ1/INTP7
B7	V _{DD}	D7	REGC	F7	P01/TO00	H7	P140/PCLBUZ0/INTP6
B8	EVsso	D8	P122/X2/EXCLK	F8	P123/XT1	H8	P120/ANI19

Cautions 1. Make EVsso pin the same potential as Vss pin.


- 2. Make V_{DD} pin the potential that is higher than EV_{DD0} pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the Vss and EV_{SS0} pins to separate ground lines.
- **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.


1.3.13 100-pin products

• 100-pin plastic LQFP (14 × 14 mm, 0.5 mm pitch)

- Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin.
 - 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1).
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD}, EV_{DDO} and EV_{DD1} pins and connect the Vss, EV_{SS0} and EV_{SS1} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.

1.5.4 30-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.6 Outline of Functions

[20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(1/2)

												(1/2)
	Item	20-	pin	24-	pin	25	-pin	30-	pin	32-	pin	36-	pin
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	R5F101Cx
Code flash me	emory (KB)	16 to	o 64	16 t	o 64	16 t	o 64	16 to	128	16 to	16 to 128 16 to 12		128
Data flash me	mory (KB)	4	_	4	-	4	=	4 to 8	=	4 to 8	-	4 to 8	=
RAM (KB)		2 to	4 ^{Note1}	2 to	4 ^{Note1}	2 to	4 ^{Note1}	2 to 1	2 ^{Note1}	2 to ⁻	12 ^{Note1}	2 to 1	2 ^{Note1}
Address space	е	1 MB											
Main system clock	High-speed system clock	HS (Hig HS (Hig LS (Lov	jh-speed jh-speed v-speed	I main) m I main) m main) m	node: 1 t node: 1 t ode: 1 tc	o 20 MH o 16 MH o 8 MHz	z (V _{DD} = z (V _{DD} =	tem cloc 2.7 to 5. 2.4 to 5. 8 to 5.5 1.6 to 5.5	5 V), 5 V), V),	(EXCLK)			
High-speed on-chip oscillator HS (High-speed main) mode: 1 to 32 MHz (V _{DD} = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (V _{DD} = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (V _{DD} = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (V _{DD} = 1.6 to 5.5 V)													
Subsystem clo	ock						-	-					
Low-speed on	n-chip oscillator	15 kHz	15 kHz (TYP.)										
General-purpo	ose registers	(8-bit register \times 8) \times 4 banks											
Minimum instr	ruction execution time	0.03125 μs (High-speed on-chip oscillator: f _{IH} = 32 MHz operation)											
		0.05 μs (High-speed system clock: f _{MX} = 20 MHz operation)											
Instruction set	t	Adde Multip	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 										
I/O port	Total	1	6	2	0	2	21	2	6	2	8	3	2
	CMOS I/O	1 (N-ch C [Vpp wit voltag	D.D. I/O thstand	(N-ch C	5 D.D. I/O thstand ge]: 6)	(N-ch (5 D.D. I/O thstand ge]: 6)	2 (N-ch C [V _{DD} wit voltag	D.D. I/O thstand	2 (N-ch ([V _{DD} wi voltag	thstand	(N-ch C [V _{DD} with voltage	thstand
	CMOS input	3	3	;	3	;	3	3	3	;	3	3	3
	CMOS output	-	-	-	-		1	_	-	-	-	-	-
	N-ch O.D. I/O (withstand voltage: 6 V)	=	_	2	2	:	2	2	2	(3	3	3
Timer	16-bit timer	8 channels											
	Watchdog timer						1 cha	annel					
	Real-time clock (RTC)						1 chan	nel Note 2					
	12-bit interval timer (IT)						1 cha	annel					
Timer output 3 channels (PWM outputs: 3 Note 3) 4 channels (PWM outputs: 3 Note 3) 4 channels (PWM outputs: 3 Note 3), 8 channels (PWM outputs: 7 Note 3) Note 4													
	RTC output						=	=					
· · · · · · · · · · · · · · · · · · ·													

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = 6 to 8, A to C): Start address FF300H R5F100xE, R5F101xE (x = 6 to 8, A to C): Start address FEF00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

2. Only the constant-period interrupt function when the low-speed on-chip oscillator clock (fill) is selected

2. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

3. When setting to PIOR = 1

(2/2)

										(2)	(2)
Ite	m	40-	pin	44	pin	48-	pin	52	-pin	64	-pin
		R5F100Ex	R5F101Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx
Clock output/buzz	er output	2	2		2		2		2		2
·	·	(Main s	system clo	ock: fmain = 1.024 kHz	Hz, 1.25 M 20 MHz o 2, 2.048 kH 2.768 kHz	peration) Iz, 4.096 k	:Hz, 8.192			2.768 kHz	
8/10-bit resolution	A/D converter	9 channe	ls	10 chanr	nels	10 chanr	nels	12 chanr	nels	12 chanr	nels
Serial interface	I ² C bus	• CSI: 1 • CSI: 2 [48-pin, 5 • CSI: 2 • CSI: 1 • CSI: 2 [64-pin pr • CSI: 2 • CSI: 2 • CSI: 2 • CSI: 2	channel/s channels/ channels/ 2-pin proc channels/ channels/ coducts] channels/ channels/	implified I ² implified I ² (simplified ducts] (simplified I ² (simplified I ² (simplified I ² (simplified (simplified I ² (simplified I	1 ² C: 2 char C: 1 chanr 1 ² C: 2 char 1 ² C: 2 char 1 ² C: 2 char 1 ² C: 2 char	nel/UART: nnels/UAR nnels/UART: nnels/UAR nnels/UAR nnels/UAR	1 channel T (UART: T: 1 channel T (UART: T: 1 channel T: 1 channel T: 1 channel	l supporting nel l supporting nel	ı LIN-bus): ı LIN-bus):	: 1 channe : 1 channe : 1 channe	l I
accumulator DMA controller	uei/munpiy-	32 bits ÷ 32 bits = 32 bits (Unsigned) 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) 2 channels									
Vectored	Internal		7	1	27		27		27		27
interrupt sources	External		7		7		10		12		 13
Key interrupt	1	4	1		4		6		8		8
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access 									
Power-on-reset ci	rcuit	Power- Power-		1.51 V et: 1.50 V	` ,						
Voltage detector	Rising edge: 1.67 V to 4.06 V (14 stages) Falling edge: 1.63 V to 3.98 V (14 stages)										
On-chip debug fur	Provided										
Power supply volt	$V_{DD} = 1.6 \text{ to } 5.5 \text{ V } (T_A = -40 \text{ to } +85^{\circ}\text{C})$ $V_{DD} = 2.4 \text{ to } 5.5 \text{ V } (T_A = -40 \text{ to } +105^{\circ}\text{C})$										
Operating ambien	t temperature				ier applica rial applica		ndustrial a	pplications	s)		

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

<R>

[80-pin, 100-pin, 128-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(1/2)

	Itam	90	nin	100	nin	100	(1/Z)			
	Item	80- R5F100Mx	R5F101Mx	R5F100Px	-pin R5F101Px	128 R5F100Sx	R5F101Sx			
Code flash me	emory (KB)		512		o 512		o 512			
Data flash me	- , ,	8	=	8	=	8	=			
RAM (KB)		8 to 3	2 Note 1	8 to 3	2 Note 1	16 to 3	32 Note 1			
Address spac	е	1 MB								
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode: 1 to 20 MHz (V _{DD} = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (V _{DD} = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (V _{DD} = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (V _{DD} = 1.6 to 5.5 V)								
	High-speed on-chip oscillator	HS (High-speed LS (Low-speed	l main) mode: 1 main) mode: 1	to 32 MHz (V _{DD} = to 16 MHz (V _{DD} = to 8 MHz (V _{DD} = to 4 MHz (V _{DD} =	= 2.4 to 5.5 V), 1.8 to 5.5 V),					
Subsystem cl	ock	XT1 (crystal) os 32.768 kHz	cillation, externa	l subsystem cloc	k input (EXCLKS	5)				
Low-speed or	n-chip oscillator	15 kHz (TYP.)								
General-purpo	ose register	(8-bit register ×	8) × 4 banks							
Minimum insti	ruction execution time	0.03125 μ s (High-speed on-chip oscillator: fih = 32 MHz operation)								
		0.05 μs (High-speed system clock: f _{MX} = 20 MHz operation)								
		30.5 <i>μ</i> s (Subsys	stem clock: fsub =	= 32.768 kHz ope	ration)					
Instruction se	t	Adder and suMultiplication	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 							
I/O port	Total	7	'4	9	92	120				
	CMOS I/O	64 82 (N-ch O.D. I/O [EV _{DD} withstand voltage]: 21) 82 (N-ch O.D. I/O [EV _{DD} withstand voltage]: 24)				(N-ch O.D. I/O	10 [EV _{DD} withstand e]: 25)			
	CMOS input	!	5		5		5			
	CMOS output		1		1		1			
	N-ch O.D. I/O (withstand voltage: 6 V)		4		4		4			
Timer	16-bit timer	12 cha	annels	12 cha	annels	16 cha	annels			
	Watchdog timer	1 cha	ınnel	1 cha	annel	1 cha	annel			
	Real-time clock (RTC)	1 cha	nnel	1 cha	annel	1 cha	annel			
	12-bit interval timer (IT)	1 cha	nnel	1 cha	annel	1 cha	annel			
	Timer output	12 channels (PWM outputs: 10 Note 2) 12 channels (PWM outputs: 10 Note 2) 16 channels (PWM outputs: 14 Note 2)								
	RTC output	1 channel • 1 Hz (subsystem clock: fsub = 32.768 kHz)								

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xJ, R5F101xJ (x = M, P): Start address FAF00H R5F100xL, R5F101xL (x = M, P, S): Start address F7F00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($T_A = 25$ °C) (1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.5 to +6.5	V
	EV _{DD0} , EV _{DD1}	EV _{DD0} = EV _{DD1}	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	Vıı	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		V
	V _{I2}	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	Vo ₁	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147		٧
	V _{O2}	P20 to P27, P150 to P156	-0.3 to V _{DD} +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI26	-0.3 to EV _{DD0} +0.3 and -0.3 to AV _{REF} (+) +0.3 ^{Notes 2, 3}	V
	V _{Al2}	ANI0 to ANI14	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF} (+) +0.3 Notes 2, 3	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Operating	HS (high-	fin = 32 MHz ^{Note 3}	Basic	$V_{DD} = 5.0 \text{ V}$		2.1		mA
current Note 1		mode	speed main) mode Note 5		operation	$V_{DD} = 3.0 \text{ V}$		2.1		mA
			mode		Normal	$V_{DD} = 5.0 \text{ V}$		4.6	7.0	mA
					operation	V _{DD} = 3.0 V		4.6	7.0	mA
				fin = 24 MHz Note 3	Normal	V _{DD} = 5.0 V		3.7	5.5	mA
					operation	V _{DD} = 3.0 V		3.7	5.5	mA
				fin = 16 MHz Note 3	Normal	V _{DD} = 5.0 V		2.7	4.0	mA
					operation	V _{DD} = 3.0 V		2.7	4.0	mA
			LS (low-	fin = 8 MHz Note 3	Normal	$V_{DD} = 3.0 \text{ V}$		1.2	1.8	mA
			speed main) mode Note 5		operation	V _{DD} = 2.0 V		1.2	1.8	mA
			LV (low-	fin = 4 MHz Note 3	Normal	$V_{DD} = 3.0 \text{ V}$		1.2	1.7	mA
			voltage main) mode		operation	V _{DD} = 2.0 V		1.2	1.7	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.6	mA
			speed main) mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		3.2	4.8	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.6	mA
				V _{DD} = 3.0 V	operation	Resonator connection		3.2	4.8	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.7	mA
				V _{DD} = 5.0 V	operation	Resonator connection		1.9	2.7	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.7	mA
				V _{DD} = 3.0 V	operation	Resonator connection		1.9	2.7	mA
			LS (low-	$f_{MX} = 8 MHz^{Note 2}$	Normal	Square wave input		1.1	1.7	mA
			speed main) mode Note 5	V _{DD} = 3.0 V	operation	Resonator connection		1.1	1.7	mA
				$f_{MX} = 8 MHz^{Note 2},$	Normal	Square wave input		1.1	1.7	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.1	1.7	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μА
			clock operation	Note 4 $T_A = -40^{\circ}C$	operation	Resonator connection		4.2	5.0	μА
				fsuB = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
				Note 4 TA = +25°C	operation	Resonator connection		4.2	5.0	μА
				fsuB = 32.768 kHz	Normal	Square wave input		4.2	5.5	μΑ
				Note 4 $T_A = +50^{\circ}C$	operation	Resonator connection		4.3	5.6	μА
				fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μΑ
				Note 4 TA = +70°C	operation	Resonator connection		4.4	6.4	μА
				fsuB = 32.768 kHz	Normal	Square wave input		4.6	7.7	μА
				Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		4.7	7.8	μА

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq VDD \leq 5.5 V@1 MHz to 32 MHz

 $2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fih: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

- **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode.
- Remarks 1. fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - **4.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

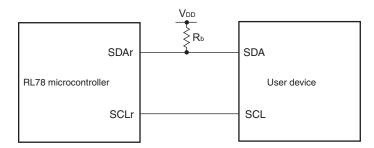
Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

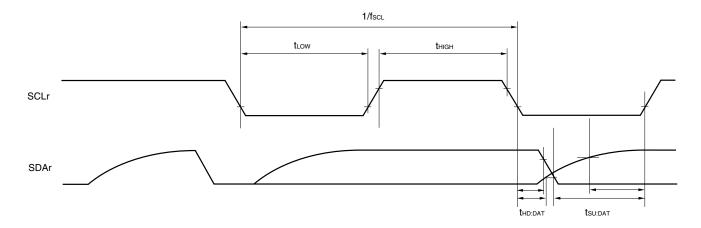
2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))


(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)


Parameter	Symbol	ol Conditions		, •	h-speed Mode	,	v-speed Mode	,	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy2	$4.0~V \leq EV_{DD0} \leq 5.5$	20 MHz < fмск	8/fмск		_		_		ns
Note 5		V	fмcκ ≤ 20 MHz	6/ƒмск		6/fмск		6/fмск		ns
		$2.7~V \leq EV_{DD0} \leq 5.5$	16 MHz < fмск	8/fмск		_		_		ns
		V	fмск ≤ 16 MHz	6/ƒмск		6/fмск		6/fмск		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V	1			6/fмск and 500		6/fмск and 500		ns
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
		1.6 V ≤ EV _{DD0} ≤ 5.5	V	_		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/low- level width	tкн2, tкL2	$4.0~\text{V} \le \text{EV}_\text{DD0} \le 5.5~\text{V}$		tксү2/2 – 7		tксу2/2 - 7		tксү2/2 - 7		ns
		$2.7~\text{V} \leq \text{EV}_{\text{DDO}} \leq 5.5~\text{V}$		tксү2/2 – 8		tксу2/2 - 8		tксу2/2 - 8		ns
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		tксу2/2 — 18		tксу2/2 - 18		tксу2/2 - 18		ns
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 – 66		tксү2/2 - 66		tксү2/2 - 66		ns
		1.6 V ≤ EV _{DD0} ≤ 5.5	V	_		tксу2/2 - 66		tксу2/2 - 66		ns

(Notes, Caution, and Remarks are listed on the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - 2. r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14), h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),
 - n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/2)$

Parameter	Symbol	ĺ	≤ VDD ≤ 5.5 V, Vss =	HS (high- main) ode	LS (low			-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1		$4.0 \text{ V} \le \text{EV}_{DD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}$	24 MHz < fмск	14/ fмск		_		_		ns
			20 MHz < fмcκ ≤ 24 MHz	12/ fмск						ns
			8 MHz < fмcк ≤ 20 MHz	10/ fмск		_		_		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/ fмск		_		ns
			fmck ≤ 4 MHz	6/fмск		10/ fмск		10/ fмск		ns
		$2.7 \text{ V} \le \text{EV}_{DD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$	24 MHz < fмск	20/ fмск		_		_		ns
			20 MHz < fмcк ≤ 24 MHz	16/ fмск		_		_		ns
			16 MHz < fмcк ≤ 20 MHz	14/ fмск		_		_		ns
			8 MHz < fмcк ≤ 16 MHz	12/ fмск		_		_		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/ fмск		_		ns
			fмск ≤ 4 MHz	6/ƒмск		10/ fмск		10/ fмск		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}^{\text{Note}}$	24 MHz < fмск	48/ fмск		_		_		ns
		2	20 MHz < fмcк ≤ 24 MHz	36/ fмск		_		_		ns
			16 MHz < fмcк ≤ 20 MHz	32/ fмск		_		_		ns
			8 MHz < f _{MCK} ≤ 16 MHz	26/ fмск						ns
			4 MHz < f _{MCK} ≤ 8 MHz	16/ fмск		16/ fмск		_		ns
			fмcк ≤ 4 MHz	10/ fмск		10/ fмск		10/ fмск		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

This chapter describes the following electrical specifications.

Target products G: Industrial applications $T_A = -40$ to +105°C R5F100xxGxx

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product.
 - 4. Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to $+105^{\circ}C$. Derating is the systematic reduction of load for the sake of improved reliability.

Remark When RL78/G13 is used in the range of $T_A = -40$ to +85°C, see CHAPTER 2 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C).

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	Aŗ	oplication
	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode Operating voltage range	HS (high-speed main) mode: $2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0}1 \text{ MHz to } 32 \text{ MHz}$ $2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0}1 \text{ MHz to } 16 \text{ MHz}$ $LS \text{ (low-speed main) mode:}$ $1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0}1 \text{ MHz to } 8 \text{ MHz}$ $LV \text{ (low-voltage main) mode:}$ $1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0}1 \text{ MHz to } 4 \text{ MHz}$	HS (high-speed main) mode only: $2.7~V \le V_{DD} \le 5.5~V @ 1~MHz~to~32~MHz$ $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz~to~16~MHz$
High-speed on-chip oscillator clock accuracy	1.8 V \leq V _{DD} \leq 5.5 V \pm 1.0%@ T _A = -20 to +85°C \pm 1.5%@ T _A = -40 to -20°C 1.6 V \leq V _{DD} $<$ 1.8 V \pm 5.0%@ T _A = -20 to +85°C \pm 5.5%@ T _A = -40 to -20°C	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ $\pm 2.0\%$ \bigcirc T _A = +85 to +105°C $\pm 1.0\%$ \bigcirc T _A = -20 to +85°C $\pm 1.5\%$ \bigcirc T _A = -40 to -20°C
Serial array unit	UART CSI: fclk/2 (supporting 16 Mbps), fclk/4 Simplified I ² C communication	UART CSI: fclk/4 Simplified I ² C communication
IICA	Normal mode Fast mode Fast mode plus	Normal mode Fast mode
Voltage detector	Rise detection voltage: 1.67 V to 4.06 V (14 levels) Fall detection voltage: 1.63 V to 3.98 V (14 levels)	Rise detection voltage: 2.61 V to 4.06 V (8 levels) Fall detection voltage: 2.55 V to 3.98 V (8 levels)

(Remark is listed on the next page.)

3.2 Oscillator Characteristics

3.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4~V \leq V_{DD} < 2.7~V$	1.0		16.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator.

3.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		32	MHz
High-speed on-chip oscillator clock frequency accuracy		–20 to +85 °C	$2.4~V \leq V_{DD} \leq 5.5~V$	-1.0		+1.0	%
		–40 to −20 °C	$2.4~V \leq V_{DD} \leq 5.5~V$	-1.5		+1.5	%
		+85 to +105 °C	$2.4~V \leq V_{DD} \leq 5.5~V$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

- **Notes 1.** High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.
 - 2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-spe	Unit	
			MIN.	MAX.	
SIp setup time (to SCKp↑) Note	tsıĸı	$4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	162		ns
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	354		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \ V \le EV_{DD0} < 3.3 \ V, \ 1.6 \ V \le V_b \le 2.0 \ V,$	958		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
Slp hold time (from SCKp↑) Note	tksı1	$4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \; V \leq EV_{DD0} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \ V \le EV_{DD0} < 3.3 \ V, \ 1.6 \ V \le V_b \le 2.0 \ V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
Delay time from SCKp↓ to SOp output Note	tkso1	$\label{eq:4.0} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$		200	ns
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \; V \leq EV_{DD0} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V,$		390	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \le EV_{DD0} < 3.3~V,~1.6~V \le V_b \le 2.0~V,$		966	ns
		$C_b = 30 \text{ pF, } R_b = 5.5 \text{ k}\Omega$			

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

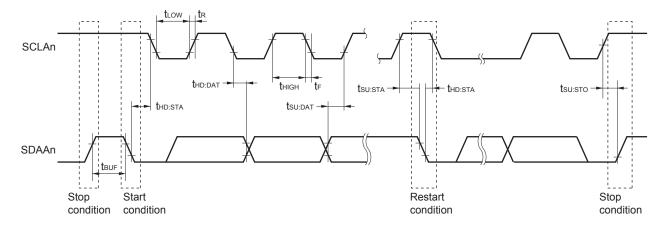
(Remarks are listed on the page after the next page.)

3.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode			
			Standard Mode		Fast Mode		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fclk ≥ 3.5 MHz	_	_	0	400	kHz
		Standard mode: fcLK ≥ 1 MHz	0	100	ı	_	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μS
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	tBUF		4.7		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

Remark n = 0, 1

<R>