

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100fjdfp-v0

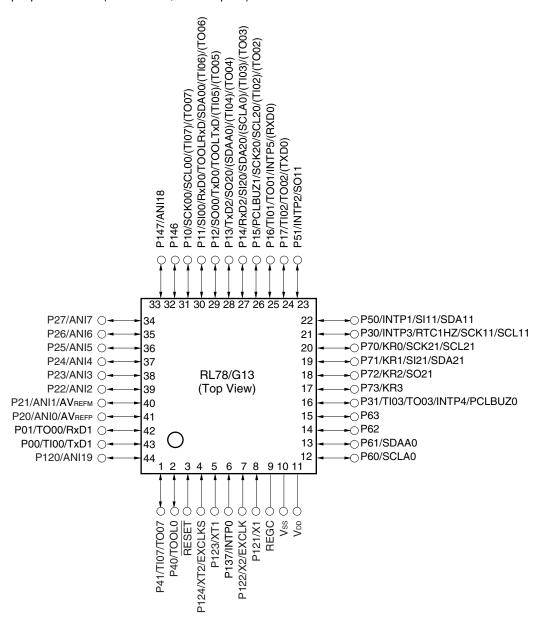
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

(3/12)

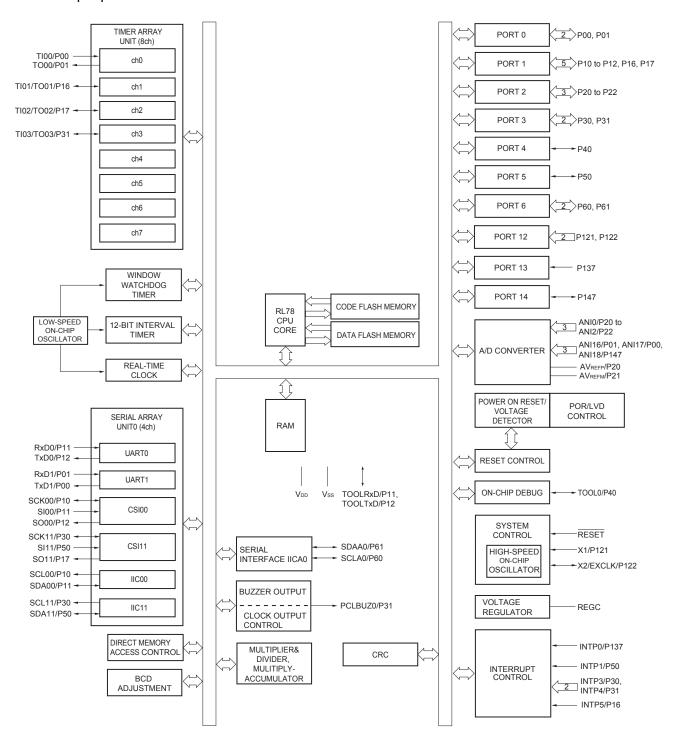
Pin count	Package	Data flash	Fields of Application	Ordering Part Number
			Note	
36 pins	36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)	Mounted	A G	R5F100CAALA#U0, R5F100CCALA#U0, R5F100CDALA#U0, R5F100CEALA#U0, R5F100CFALA#U0, R5F100CGALA#U0 R5F100CAALA#W0, R5F100CAALA#W0, R5F100CBALA#W0, R5F100CEALA#W0, R5F100CGALA#W0 R5F100CAGLA#W0 R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CBA#U0, R5F100CBA#U0 R5F100CAGLA#W0, R5F100CAGLA#W0 R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0
		Not mounted	A	R5F101CAALA#U0, R5F101CCALA#U0, R5F101CDALA#U0, R5F101CEALA#U0, R5F101CFALA#U0, R5F101CGALA#U0 R5F101CAALA#W0, R5F101CCALA#W0, R5F101CDALA#W0,
40 pins	40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch)	Mounted	A	R5F101CEALA#W0, R5F101CFALA#W0, R5F101CGALA#W0 R5F100EAANA#U0, R5F100ECANA#U0, R5F100EDANA#U0, R5F100EEANA#U0, R5F100EFANA#U0, R5F100EGANA#U0, R5F100EHANA#U0 R5F100EAANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100EEANA#W0, R5F100EFANA#W0, R5F100EGANA#W0,
			D	R5F100EHANA#W0 R5F100EADNA#U0, R5F100ECDNA#U0, R5F100EDDNA#U0, R5F100EEDNA#U0, R5F100EFDNA#U0, R5F100EGDNA#U0, R5F100EHDNA#U0 R5F100EADNA#W0, R5F100ECDNA#W0, R5F100EDDNA#W0, R5F100EEDNA#W0, R5F100EFDNA#W0, R5F100EGDNA#W0, R5F100EHDNA#W0
			G	R5F100EAGNA#U0, R5F100ECGNA#U0, R5F100EDGNA#U0, R5F100EEGNA#U0, R5F100EFGNA#U0, R5F100EGGNA#U0, R5F100EHGNA#U0 R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100EDGNA#W0, R5F100EEGNA#W0, R5F100EFGNA#W0, R5F100EFGNA#W0, R5F100EHGNA#W0
		Not mounted	A D	R5F101EAANA#U0, R5F101ECANA#U0, R5F101EDANA#U0, R5F101EEANA#U0, R5F101EFANA#U0, R5F101EGANA#U0, R5F101EHANA#U0 R5F101EAANA#W0, R5F101ECANA#W0, R5F101EDANA#W0, R5F101EEANA#W0, R5F101EGANA#W0, R5F101EHANA#W0 R5F101EHANA#W0 R5F101EADNA#U0, R5F101ECDNA#U0, R5F101EDDNA#U0, R5F101EEDNA#U0, R5F101EEDNA#U0, R5F101EEDNA#U0, R5F101EHDNA#U0 R5F101EADNA#W0, R5F101ECDNA#W0, R5F101EDDNA#W0, R5F101EDDNA#W0, R5F101EDDNA#W0, R5F101EDDNA#W0, R5F101EDDNA#W0, R5F101EDDNA#W0, R5F101EDDNA#W0,


Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.8 44-pin products

• 44-pin plastic LQFP (10 × 10 mm, 0.8 mm pitch)



Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.2 24-pin products

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

(2/2)

Item						(2/2) 128-pin			
Ite	em	80-		100					
		R5F100Mx	R5F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx		
Clock output/buzz	er output		2		2		2		
		• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz							
		(Main system clock: fmain = 20 MHz operation)							
		• 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation)							
8/10-bit resolution	A/D converter	17 channels 20 channels 26 channels							
Serial interface	TAB CONVOICE		, 128-pin produc			20 onamoio			
ocha interiace				: 2 channels/UAR	T: 1 channal				
			•	: 2 channels/UAR					
			•	: 2 channels/UAR		ting LIN-bus): 1 o	channel		
		CSI: 2 channel	els/simplified I ² C	2 channels/UAR	T: 1 channel				
	I ² C bus	2 channels		2 channels		2 channels			
Multiplier and divid	der/multiply-	• 16 bits × 16 bi	ts = 32 bits (Uns	igned or signed)					
accumulator		• 32 bits ÷ 32 bi	ts = 32 bits (Uns	igned)					
		• 16 bits × 16 bi	ts + 32 bits = 32	bits (Unsigned or	signed)				
DMA controller		4 channels							
Vectored	Internal	3	37	3	37		41		
interrupt sources	External	1	13	1	3		13		
Key interrupt			8	;	8		8		
Reset		Reset by RES	SET pin						
			by watchdog tim						
			by power-on-res						
			by voltage detec	ctor ction execution Note					
			by RAM parity e						
			by illegal-memo						
Power-on-reset ci	rcuit	Power-on-res	et: 1.51 V (TY	′P.)					
		Power-down-	reset: 1.50 V (TY	'P.)					
Voltage detector		Rising edge :	1.67 V to 4	1.06 V (14 stages))				
		Falling edge: 1.63 V to 3.98 V (14 stages)							
On-chip debug fur	nction	Provided							
Power supply volt	age	$V_{DD} = 1.6 \text{ to } 5.5$	$V (T_A = -40 \text{ to } +8$	35°C)					
		$V_{DD} = 2.4 \text{ to } 5.5 \text{ V } (T_A = -40 \text{ to } +105^{\circ}\text{C})$							
Operating ambien	t temperature	$T_A = 40 \text{ to } +85^\circ$	C (A: Consumer	applications, D: Ir	ndustrial applicat	ions)			
		$T_A = 40 \text{ to } +105$	°C (G: Industrial	applications)					

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($T_A = 25$ °C) (1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.5 to +6.5	V
	EV _{DD0} , EV _{DD1}	EV _{DD0} = EV _{DD1}	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	Vıı	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		V
	V _{I2}	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	V _I 3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	Vo ₁	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147		V
	V ₀₂	P20 to P27, P150 to P156	-0.3 to V _{DD} +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI26	-0.3 to EV _{DD0} +0.3 and -0.3 to AV _{REF} (+) +0.3 ^{Notes 2,3}	V
	V _{Al2}	ANI0 to ANI14	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF} (+) +0.3 Notes 2, 3	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. AV_{REF} (+): + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (3/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		0.8EVDDO		EV _{DD0}	V
	V _{IH2}	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V	2.2		EV _{DD0}	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EV _{DD0}	V
				1.5		EV _{DD0}	V
	V _{IH3}	P20 to P27, P150 to P156		0.7V _{DD}		V _{DD}	٧
	V _{IH4}	P60 to P63		0.7EV _{DD0}		6.0	٧
	V _{IH5}	P121 to P124, P137, EXCLK, EXCL	KS, RESET	0.8V _{DD}		V _{DD}	٧
Input voltage, low	V _{IL1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	,	0		0.2EV _{DD0}	V
	V _{IL2}	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V	0		0.5	V
			TTL input buffer 1.6 V ≤ EV _{DD0} < 3.3 V	0		0.32	V
	V _{IL3}	P20 to P27, P150 to P156		0		0.3V _{DD}	٧
	V _{IL4}	P60 to P63		0		0.3EV _{DD0}	٧
	V _{IL5}	P121 to P124, P137, EXCLK, EXCL	KS, RESET	0		0.2V _{DD}	٧

Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (1/2)

Parameter	Symbol			Conditions	,	_	MIN.	TYP.	MAX.	Unit
Supply current Note 1	I _{DD1}	Operating	HS (high-	fih = 32 MHz Note 3	Basic	V _{DD} = 5.0 V		2.6		mA
current		mode	speed main) mode Note 5		operation	$V_{DD} = 3.0 \text{ V}$		2.6		mA
					Normal	$V_{DD} = 5.0 \text{ V}$		6.1	9.5	mA
					operation	$V_{DD} = 3.0 \text{ V}$		6.1	9.5	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 \text{ V}$		4.8	7.4	mA
					operation	$V_{DD} = 3.0 \text{ V}$		4.8	7.4	mA
				$f_{IH} = 16 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 \text{ V}$		3.5	5.3	mA
					operation	$V_{DD} = 3.0 \text{ V}$		3.5	5.3	mA
			LS (low-	$f_{IH} = 8 \text{ MHz}^{Note 3}$	Nomal	$V_{DD} = 3.0 \text{ V}$		1.5	2.3	mA
			speed main) mode Note 5		operation	V _{DD} = 2.0 V		1.5	2.3	mA
			LV (low-	$f_{IH} = 4 \text{ MHz}^{Note 3}$	Normal	V _{DD} = 3.0 V		1.5	2.0	mA
			voltage main) mode		operation	V _{DD} = 2.0 V		1.5	2.0	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.9	6.1	mA
			speed main) mode Note 5	$V_{DD} = 5.0 \text{ V}$	operation	Resonator connection		4.1	6.3	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input		3.9	6.1	mA
				$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		4.1	6.3	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.5	3.7	mA
				$V_{DD} = 5.0 \text{ V}$	operation	Resonator connection		2.5	3.7	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input		2.5	3.7	mA
				$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		2.5	3.7	mA
			LS (low-	$f_{MX} = 8 MHz^{Note 2}$	Nomal	Square wave input		1.4	2.2	mA
			speed main) mode Note 5	$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		1.4	2.2	mA
				$f_{MX} = 8 MHz^{Note 2}$	Nomal	Square wave input		1.4	2.2	mA
				$V_{DD} = 2.0 \text{ V}$	operation	Resonator connection		1.4	2.2	mA
			Subsystem	fsub = 32.768 kHz	Nomal	Square wave input		5.4	6.5	μΑ
			clock operation	T _A = -40°C	operation	Resonator connection		5.5	6.6	μΑ
				fsub = 32.768 kHz	Nomal	Square wave input		5.5	6.5	μΑ
				T _A = +25°C	operation	Resonator connection		5.6	6.6	μΑ
				fsub = 32.768 kHz	Nomal	Square wave input		5.6	9.4	μΑ
				TA = +50°C	operation	Resonator connection		5.7	9.5	μΑ
				fsuB = 32.768 kHz	Normal	Square wave input		5.9	12.0	μΑ
		No	Note 4 $T_A = +70^{\circ}C$	operation	Resonator connection		6.0	12.1	μΑ	
				fsuв = 32.768 kHz	Normal	Square wave input		6.6	16.3	μΑ
				Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		6.7	16.4	μΑ

(Notes and Remarks are listed on the next page.)

- **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode.
- Remarks 1. fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - **4.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

2.4 AC Characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main	HS (high-	$2.7 V \le V_{DD} \le 5.5 V$	0.03125		1	μS
instruction execution time)		system clock (fmain)	speed main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
		operation	LS (low-speed main) mode	$1.8 V \le V_{DD} \le 5.5 V$	0.125		1	μS
			LV (low- voltage main) mode	1.6 V ≤ V _{DD} ≤ 5.5 V	0.25		1	μS
		Subsystem of	clock (fsuв)	$1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	28.5	30.5	31.3	μS
		operation						
		In the self	HS (high-	$2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}$	0.03125		1	μS
		programming mode	speed main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
			LS (low-speed main) mode	$1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.125		1	μS
			LV (low- voltage main) mode	1.8 V ≤ V _{DD} ≤ 5.5 V	0.25		1	μS
External system clock	fex	2.7 V ≤ V _{DD} ≤	≤ 5.5 V		1.0		20.0	MHz
frequency		2.4 V ≤ V _{DD} <			1.0		16.0	MHz
		1.8 V ≤ V _{DD} <	< 2.4 V		1.0		8.0	MHz
		1.6 V ≤ V _{DD} <	< 1.8 V		1.0		4.0	MHz
	fexs				32		35	kHz
External system clock input	texh, texl	2.7 V ≤ V _{DD} ≤	≤ 5.5 V		24			ns
high-level width, low-level width		2.4 V ≤ V _{DD} •	< 2.7 V		30			ns
		1.8 V ≤ V _{DD} •	< 2.4 V		60			ns
		1.6 V ≤ V _{DD} «	< 1.8 V		120			ns
	texhs, texhs				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтін, tтіL				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	fто	HS (high-spe	eed 4.0 V	≤ EV _{DD0} ≤ 5.5 V			16	MHz
output frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			1.8 V	≤ EV _{DD0} < 2.7 V			4	MHz
			1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
		LS (low-spec	ed 1.8 V	\leq EV _{DD0} \leq 5.5 V			4	MHz
		main) mode	1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-volta main) mode	age 1.6 V	\leq EV _{DD0} \leq 5.5 V			2	MHz
PCLBUZ0, PCLBUZ1 output	fpcL	HS (high-spe	eed 4.0 V	≤ EV _{DD0} ≤ 5.5 V			16	MHz
frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			1.8 V	≤ EV _{DD0} < 2.7 V			4	MHz
				≤ EV _{DD0} < 1.8 V			2	MHz
		LS (low-spee		\leq EV _{DD0} \leq 5.5 V			4	MHz
		main) mode	_	≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-volta main) mode		\leq EV _{DD0} \leq 5.5 V \leq EV _{DD0} $<$ 1.8 V			2	MHz MHz
Interrupt input high-level width,	tinitii	INTP0		$\leq V_{DD} \leq 1.8 \text{ V}$ $\leq V_{DD} \leq 5.5 \text{ V}$	1			
low-level width	tinth, tintl	INTPU		≤ VDD ≤ 5.5 V ≤ EVDD0 ≤ 5.5 V	1			μS
Key interrupt input low-level	tkr	KR0 to KR7	1.8 V	≤ EV _{DD0} ≤ 5.5 V	250			ns
width			1.6 V	≤ EV _{DD0} < 1.8 V	1			μS
RESET low-level width	trsl		•		10			μS

(Note and Remark are listed on the next page.)

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	C	Conditions	HS (high main)	•	LS (low main)	•	LV (low- main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 4/fс∟к	$2.7~V \leq EV_{DD0} \leq 5.5$ V	125		500		1000		ns
			$2.4~V \leq EV_{DD0} \leq 5.5$ V	250		500		1000		ns
			$1.8~V \leq EV_{DD0} \leq 5.5$ V	500		500		1000		ns
			$1.7~V \le EV_{DD0} \le 5.5$ V	1000		1000		1000		ns
			$1.6~V \le EV_{DD0} \le 5.5$ V	_		1000		1000		ns
SCKp high-/low-level width	tкн1, tкL1	4.0 V ≤ EV _{DD}	₀₀ ≤ 5.5 V	tксу1/2 — 12		tксу1/2 — 50		tксү1/2 — 50		ns
		2.7 V ≤ EVD	₀₀ ≤ 5.5 V	tксу1/2 — 18		tксу1/2 — 50		tксү1/2 — 50		ns
		2.4 V ≤ EVD	₀₀ ≤ 5.5 V	tксү1/2 – 38		tксү1/2 – 50		tксү1/2 – 50		ns
		1.8 V ≤ EVD	₀₀ ≤ 5.5 V	tксү1/2 — 50		tксу1/2 — 50		tксү1/2 — 50		ns
		1.7 V ≤ EVD	₀₀ ≤ 5.5 V	tксу1/2 — 100		tксу1/2 — 100		tксу1/2 — 100		ns
		1.6 V ≤ EV _D	₀₀ ≤ 5.5 V	_		tксу1/2 — 100		tксу1/2 — 100		ns
SIp setup time	tsıĸı	4.0 V ≤ EV _{DI}	00 ≤ 5.5 V	44		110		110		ns
(to SCKp↑)		2.7 V ≤ EV _{DI}	00 ≤ 5.5 V	44		110		110		ns
		2.4 V ≤ EV _{DI}	00 ≤ 5.5 V	75		110		110		ns
		1.8 V ≤ EV _{DI}	oo ≤ 5.5 V	110		110		110		ns
		1.7 V ≤ EV _{DI}	oo ≤ 5.5 V	220		220		220		ns
		1.6 V ≤ EV _{DI}	00 ≤ 5.5 V	_		220		220		ns
SIp hold time	t _{KSI1}	1.7 V ≤ EV _{DI}	00 ≤ 5.5 V	19		19		19		ns
(from SCKp↑) Note 2		1.6 V ≤ EV _{DI}	00 ≤ 5.5 V	_		19		19		ns
Delay time from SCKp↓ to SOp	tkso1	$1.7 \text{ V} \le \text{EV}_{DI}$ $C = 30 \text{ pF}^{\text{Note}}$			25		25		25	ns
output Note 3		$1.6 \text{ V} \leq \text{EV}_{DI}$ $C = 30 \text{ pF}^{\text{Note}}$			_		25		25	ns

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Condit		HS (hig	h-speed Mode	LS (low	r-speed Mode	LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy2	$4.0~V \leq EV_{DD0} \leq 5.5$	20 MHz < fмск	8/fмск				_		ns
Note 5		V	fмcк ≤ 20 MHz	6/fмск		6/ƒмск		6/ƒмск		ns
		$2.7~V \leq EV_{DD0} \leq 5.5$	16 MHz < fмск	8/fмск		_		_		ns
		V	fмcк ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4~V \le EV_{DD0} \le 5.5~V$		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		$1.8~V \leq EV_{DD0} \leq 5.5~V$		6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
		1.6 V ≤ EV _{DD0} ≤ 5.5	V	_		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/low- level width	tkH2,	4.0 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 – 7		tксү2/2 - 7		tксү2/2 - 7		ns
		$2.7~\text{V} \leq \text{EV}_\text{DD0} \leq 5.5~\text{V}$		tксу2/2 — 8		tксу2/2 - 8		tксу2/2 - 8		ns
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 – 18		tксу2/2 - 18		tксу2/2 - 18		ns
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 – 66		tксү2/2 - 66		tксү2/2 - 66		ns
		1.6 V ≤ EV _{DD0} ≤ 5.5	V	_		tkcy2/2 - 66		tkcy2/2 - 66		ns

(Notes, Caution, and Remarks are listed on the next page.)

3. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

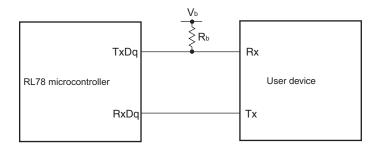
Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $EV_{DD0} \ge V_b$.
- **6.** The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


$$\text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \text{ln } (1 - \frac{1.5}{V_b})\} \times 3} \text{ [bps]}$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

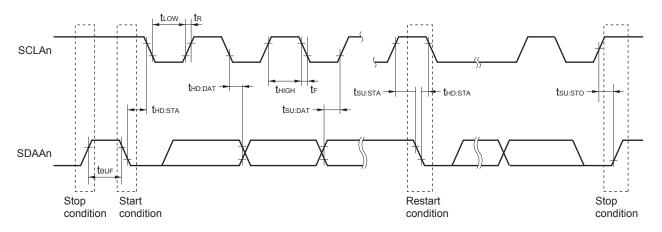
<R>

(3) I2C fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions		HS (high-speed main) Mode		r-speed Mode		-voltage Mode	Unit
					MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: fcLk≥ 10 MHz	. 2.7 4 = 2 4 5 5 6 5 6 5 4		1000	_		_		kHz
Setup time of restart condition	tsu:sta	2.7 V ≤ EV _{DD0} ≤ 5.5	.7 V ≤ EV _{DD0} ≤ 5.5 V			_		_	_	μS
Hold time ^{Note 1}	thd:STA	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$	$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			_		_		μS
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ EV _{DD0} ≤ 5.5	2.7 V ≤ EV _{DD0} ≤ 5.5 V			_		_		μS
Hold time when SCLA0 = "H"	tніgн	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	0.26		_		_		μS
Data setup time (reception)	tsu:dat	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	50		_	-	_	_	μS
Data hold time (transmission) ^{Note 2}	thd:dat	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	0	0.45	_	-	_	_	μS
Setup time of stop condition	tsu:sto	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	0.26			_	_	_	μs
Bus-free time	tbuf	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	0.5		_	_	_	_	μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: $C_b = 120 \ pF, \ R_b = 1.1 \ k\Omega$

IICA serial transfer timing

Remark n = 0, 1

2.6.2 Temperature sensor/internal reference voltage characteristics

(TA = -40 to $+85^{\circ}$ C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, Ta = +25°C		1.05		٧
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvтмps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

2.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	V _{PDR}	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	T _{PW}		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

Absolute Maximum Ratings (TA = 25°C) (2/2)

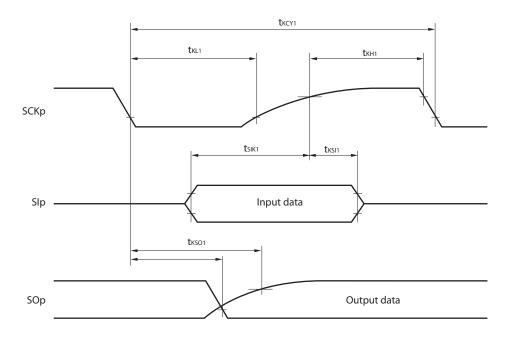
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins -170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	- 70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lo _{L1}	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	lo _{L2}	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient temperature	TA	In normal operati	on mode programming mode	-40 to +105	°C
	<u> </u>				

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

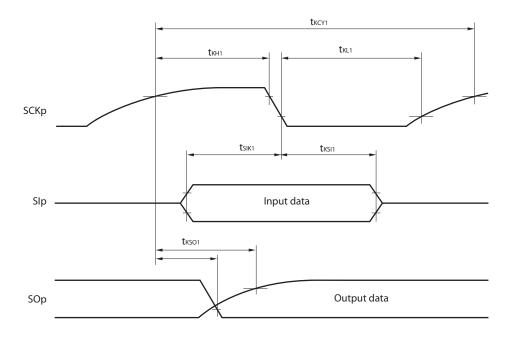
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(3) Peripheral Functions (Common to all products)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$


Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	FIL Note 1				0.20		μΑ
RTC operating current	RTC Notes 1, 2, 3				0.02		μΑ
12-bit interval timer operating current	IIT Notes 1, 2, 4				0.02		μА
Watchdog timer operating current	WDT Notes 1, 2, 5	fil = 15 kHz			0.22		μΑ
A/D converter	IADC Notes 1, 6	When conversion	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
operating current	Notes 1, 6	at maximum speed	Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	ADREF Note 1				75.0		μА
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	LVD Notes 1, 7				0.08		μА
Self programming operating current	FSP Notes 1, 9				2.50	12.20	mA
BGO operating current	BGO Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	Isnoz		The mode is performed Note 10		0.50	1.10	mA
	Note 1		The A/D conversion operations are performed, Loe voltage mode, AVREFP = VDD = 3.0 V		1.20	2.04	mA
		CSI/UART operation	on		0.70	1.54	mA

Notes 1. Current flowing to the VDD.


- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 00, 01, 02, 10, 12, 13), n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

4.8 44-pin Products

R5F100FAAFP, R5F100FCAFP, R5F100FDAFP, R5F100FEAFP, R5F100FFAFP, R5F100FGAFP,

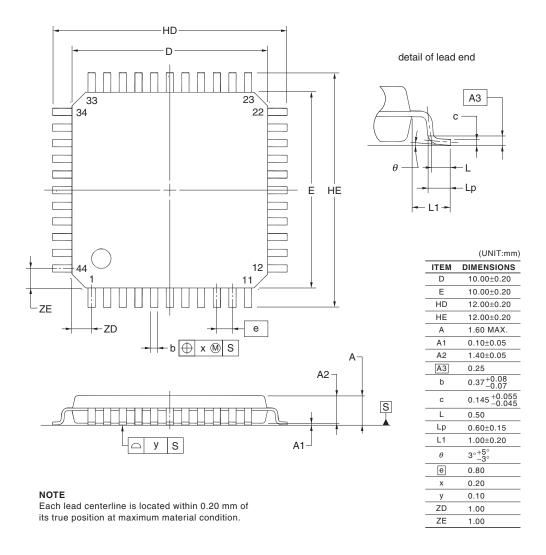
R5F100FHAFP, R5F100FJAFP, R5F100FKAFP, R5F100FLAFP

R5F101FAAFP, R5F101FCAFP, R5F101FDAFP, R5F101FEAFP, R5F101FFAFP, R5F101FGAFP,

R5F101FHAFP, R5F101FJAFP, R5F101FKAFP, R5F101FLAFP

R5F100FADFP, R5F100FCDFP, R5F100FDDFP, R5F100FEDFP, R5F100FFDFP, R5F100FGDFP,

R5F100FHDFP, R5F100FJDFP, R5F100FKDFP, R5F100FLDFP


R5F101FADFP, R5F101FCDFP, R5F101FDDFP, R5F101FEDFP, R5F101FFDFP, R5F101FGDFP,

R5F101FHDFP, R5F101FJDFP, R5F101FKDFP, R5F101FLDFP

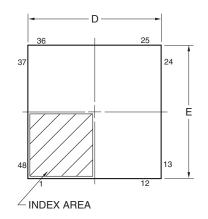
R5F100FAGFP, R5F100FCGFP, R5F100FDGFP, R5F100FEGFP, R5F100FFGFP, R5F100FGGFP,

R5F100FHGFP, R5F100FJGFP

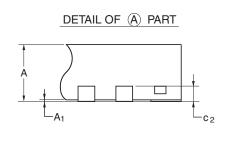
JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP44-10x10-0.80	PLQP0044GC-A	P44GB-80-UES-2	0.36

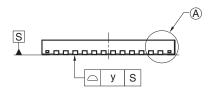
© 2012 Renesas Electronics Corporation. All rights reserved.

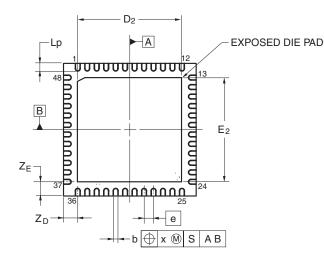
R5F100GAANA, R5F100GCANA, R5F100GDANA, R5F100GEANA, R5F100GFANA, R5F100GHANA, R5F100GHANA, R5F100GKANA, R5F100GKANA, R5F100GKANA, R5F100GKANA


R5F101GAANA, R5F101GCANA, R5F101GDANA, R5F101GEANA, R5F101GFANA, R5F101GHANA, R5F101GHANA, R5F101GHANA, R5F101GKANA, R5F101GKANA, R5F101GLANA

R5F100GADNA, R5F100GCDNA, R5F100GDDNA, R5F100GEDNA, R5F100GFDNA, R5F100GDNA, R5F100GHDNA, R5F100GJDNA, R5F100GKDNA, R5F100GLDNA


R5F101GADNA, R5F101GCDNA, R5F101GDDNA, R5F101GEDNA, R5F101GFDNA, R5F101GGDNA, R5F101GHDNA, R5F101GJDNA, R5F101GKDNA, R5F101GLDNA


R5F100GAGNA, R5F100GCGNA, R5F100GDGNA, R5F100GEGNA, R5F100GFGNA, R5F100GHGNA, R5F100GJGNA


JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HWQFN48-7x7-0.50	PWQN0048KB-A	48PJN-A P48K8-50-5B4-6	0.13

Referance	Dimension in Millimeters			
Symbol	Min	Nom	Max	
D	6.95	7.00	7.05	
Е	6.95	7.00	7.05	
Α			0.80	
A ₁	0.00			
b	0.18	0.25	0.30	
е		0.50	_	
Lp	0.30	0.40	0.50	
Х			0.05	
у			0.05	
Z _D		0.75	_	
Z _E		0.75		
C ₂	0.15	0.20	0.25	
D ₂		5.50	_	
E ₂		5.50	_	

©2013 Renesas Electronics Corporation. All rights reserved.

		Description		
Rev.	Date	Page	Summary	
3.00	Aug 02, 2013	163	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2)	
		164, 165	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2)	
		166	Modification of table in 3.5.2 Serial interface IICA	
		166	Modification of IICA serial transfer timing	
		167	Addition of table in 3.6.1 A/D converter characteristics	
		167, 168	Modification of table and notes 3 and 4 in 3.6.1 (1)	
		169	Modification of description in 3.6.1 (2)	
		170	Modification of description and note 3 in 3.6.1 (3)	
		171	Modification of description and notes 3 and 4 in 3.6.1 (4)	
		172	Modification of table and note in 3.6.3 POR circuit characteristics	
		173	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode	
		173	Modification from Supply Voltage Rise Time to 3.6.5 Power supply voltage rising slope characteristics	
		174	Modification of 3.9 Dedicated Flash Memory Programmer Communication (UART)	
		175	Modification of table, figure, and remark in 3.10 Timing Specs for Switching Flash Memory Programming Modes	
3.10	Nov 15, 2013	123	Caution 4 added.	
		125	Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted.	
3.30	Mar 31, 2016		Modification of the position of the index mark in 25-pin plastic WFLGA (3 \times 3 mm, 0.50 mm pitch) of 1.3.3 25-pin products	
			Modification of power supply voltage in 1.6 Outline of Functions [20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products]	
			Modification of power supply voltage in 1.6 Outline of Functions [40-pin, 44-pin, 48-pin, 52-pin, 64-pin products]	
			Modification of power supply voltage in 1.6 Outline of Functions [80-pin, 100-pin, 128-pin products]	
			ACK corrected to ACK	
			ACK corrected to ACK	

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.