

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100gaana-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

				(2/12)
Pin	Package	Data	Fields of	Ordering Part Number
count		flash	Application	
			Note	
25 nins	25-nin plastic	Mounted	А	R5F1008AALA#U0, R5F1008CALA#U0, R5F1008DALA#U0,
20 pino	10^{-1} pid site	Wounted		R5F1008EALA#U0
	$VVI = OA(3 \times 3 mm),$			R5F1008AALA#W0, R5F1008CALA#W0, R5F1008DALA#W0,
	0.5 mm pitch)			R5F1008EALA#W0
			G	R5F1008AGLA#U0, R5F1008CGLA#U0, R5F1008DGLA#U0,
				R5F1008EGLA#U0
				R5F1008AGLA#W0, R5F1008CGLA#W0, R5F1008DGLA#W0,
				R5F1008EGLA#W0
		Not	А	R5F1018AALA#U0, R5F1018CALA#U0, R5F1018DALA#U0,
		mounted		
				R5F1018AALA#WU, R5F1018CALA#WU, R5F1018DALA#WU,
00	00 allo alsortic LOOOD	Maximutant	Δ	
30 pins	30-pin plastic LSSOP	wounted	~	R5E100AEASP#V0, R5E100AEASP#V0, R5E100AGASP#V0,
	(7.62 mm (300), 0.65			R5F100AAASP#X0_R5F100ACASP#X0_R5F100ADASP#X0
	mm pitch)			R5F100AEASP#X0, R5F100AFASP#X0, R5F100AGASP#X0
			D	R5F100AADSP#V0, R5F100ACDSP#V0, R5F100ADDSP#V0,
				R5F100AEDSP#V0, R5F100AFDSP#V0, R5F100AGDSP#V0
				R5F100AADSP#X0, R5F100ACDSP#X0, R5F100ADDSP#X0,
				R5F100AEDSP#X0, R5F100AFDSP#X0, R5F100AGDSP#X0
			G	R5F100AAGSP#V0, R5F100ACGSP#V0,
				R5F100ADGSP#V0,R5F100AEGSP#V0,
				R5F100AFGSP#V0, R5F100AGGSP#V0
				R5F100AAGSP#X0, R5F100ACGSP#X0,
				R5F100ADGSP#X0,R5F100AEGSP#X0,
			^	
		Not	A	R5F101AAASF#V0, R5F101ACASF#V0, R5F101ADASF#V0, R5F101AEASP#V0, R5F101AEASP#V0, R5F101ACASP#V0,
		mounted		
				R5F101AFASP#X0_R5F101AFASP#X0_R5F101AGASP#X0
			D	R5F101AADSP#V0. R5F101ACDSP#V0. R5F101ADDSP#V0.
			-	R5F101AEDSP#V0, R5F101AFDSP#V0, R5F101AGDSP#V0
				R5F101AADSP#X0, R5F101ACDSP#X0, R5F101ADDSP#X0,
				R5F101AEDSP#X0, R5F101AFDSP#X0, R5F101AGDSP#X0
32 pins	32-pin plastic	Mounted	А	R5F100BAANA#U0, R5F100BCANA#U0, R5F100BDANA#U0,
	HWOEN $(5 \times 5 \text{ mm})$			R5F100BEANA#U0, R5F100BFANA#U0, R5F100BGANA#U0
	0.5 mm nitch)			R5F100BAANA#W0, R5F100BCANA#W0, R5F100BDANA#W0,
			_	R5F100BEANA#W0, R5F100BFANA#W0, R5F100BGANA#W0
			D	R5F100BADNA#U0, R5F100BCDNA#U0, R5F100BDDNA#U0,
				R5F100BEDNA#U0, R5F100BFDNA#U0, R5F100BGDNA#U0
				R5F100BADNA#WU, R5F100BCDNA#WU, R5F100BDDNA#WU,
			G	
			9	R5F100BAGNA#U0, R5F100BCGNA#U0, R5F100BDGNA#U0,
				R5E100BAGNA#W0 R5E100BCGNA#W0 R5E100BDGNA#W0
				R5F100BEGNA#W0, R5F100BFGNA#W0. R5F100BGGNA#W0
		Not	А	R5F101BAANA#U0, R5F101BCANA#U0, R5F101BDANA#U0.
		mounted		R5F101BEANA#U0, R5F101BFANA#U0, R5F101BGANA#U0
		mounted		R5F101BAANA#W0, R5F101BCANA#W0, R5F101BDANA#W0,
				R5F101BEANA#W0, R5F101BFANA#W0, R5F101BGANA#W0
			D	R5F101BADNA#U0, R5F101BCDNA#U0, R5F101BDDNA#U0,
				R5F101BEDNA#U0, R5F101BFDNA#U0, R5F101BGDNA#U0
				R5F101BADNA#W0, R5F101BCDNA#W0, R5F101BDDNA#W0,
				R5F101BEDNA#W0, R5F101BFDNA#W0, R5F101BGDNA#W0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.4 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.12 80-pin products

- 80-pin plastic LQFP (14 \times 14 mm, 0.65 mm pitch)
- 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)

Cautions 1. Make EVsso pin the same potential as Vss pin.

- 2. Make VDD pin the potential that is higher than EVDD0 pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the V_{SS} and EV_{SS0} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.7 40-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	$f_{IH} = 32 \ MHz^{Note 4}$	$V_{DD} = 5.0 \text{ V}$		0.54	1.63	mA
Current	Note 2	mode	mode ^{Note 7}		$V_{DD} = 3.0 V$		0.54	1.63	mA
				$f_{IH} = 24 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		0.44	1.28	mA
					$V_{DD} = 3.0 V$		0.44	1.28	mA
				fiн = 16 MHz ^{Note 4}	VDD = 5.0 V		0.40	1.00	mA
					$V_{DD} = 3.0 V$		0.40	1.00	mA
			LS (low-	fin = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		260	530	μA
			speed main) mode ^{Note 7}		$V_{DD} = 2.0 V$		260	530	μA
			LV (low-	fı⊢ = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μA
			voltage main) mode Note 7		$V_{DD} = 2.0 V$		420	640	μA
			HS (high-	fмх = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				$V_{DD} = 5.0 V$	Resonator connection		0.26	0.67	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.26	0.67	mA
			LS (low- speed main) mode Note 7	$f_{MX} = 8 MHz^{Note 3}$,	Square wave input		95	330	μA
				VDD = 3.0 V	Resonator connection		145	380	μA
				$f_{MX} = 8 \text{ MHz}^{Note 3},$	Square wave input		95	330	μA
				V _{DD} = 2.0 V	Resonator connection		145	380	μA
			Subsystem	fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA
			clock	$T_A = -40^{\circ}C$	Resonator connection		0.44	0.76	μA
			operation	fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μA
				T _A = +25°C	Resonator connection		0.49	0.76	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.37	1.17	μA
				T _A = +50°C	Resonator connection		0.56	1.36	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.53	1.97	μA
				T _A = +70°C	Resonator connection		0.72	2.16	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.82	3.37	μA
				T _A = +85°C	Resonator connection		1.01	3.56	μA
	DD3	STOP	$T_A = -40^{\circ}C$				0.18	0.50	μA
		mode	T _A = +25°C				0.23	0.50	μA
			T _A = +50°C	Ta = +50°C			0.30	1.10	μA
			T _A = +70°C				0.46	1.90	μA
			$T_A = +85^{\circ}C$				0.75	3.30	μA

(Notes and Remarks are listed on the next page.)

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}) (1/2)$

Parameter	Symbol		Conditions						MAX.	Unit
Supply	IDD1	Operating	HS (high-	$f_{\text{IH}} = 32 \text{ MHz}^{\text{Note 3}}$	Basic	$V_{DD} = 5.0 V$		2.6		mA
current		mode	speed main) mode ^{№te 5}		operation	$V_{DD} = 3.0 V$		2.6		mA
			mode		Normal	$V_{DD} = 5.0 V$		6.1	9.5	mA
					operation	$V_{DD} = 3.0 V$		6.1	9.5	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	V _{DD} = 5.0 V		4.8	7.4	mA
					operation	$V_{DD} = 3.0 V$		4.8	7.4	mA
				$f_{\text{IH}} = 16 \; MHz^{Note \; 3}$	Normal	$V_{DD} = 5.0 V$		3.5	5.3	mA
					operation	$V_{DD} = 3.0 V$		3.5	5.3	mA
			LS (low-	$f_{IH} = 8 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 3.0 V$		1.5	2.3	mA
			speed main) mode ^{Note 5}		operation	$V_{DD} = 2.0 V$		1.5	2.3	mA
			LV (low-	$f_{IH} = 4 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 3.0 V$		1.5	2.0	mA
			voltage main) mode		operation	$V_{DD} = 2.0 V$		1.5	2.0	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal	Square wave input		3.9	6.1	mA
			speed main) mode ^{Note 5}	$V_{DD} = 5.0 V$	operation	Resonator connection		4.1	6.3	mA
				$f_{MX} = 20 \text{ MHz}^{Note 2}$,	Normal	Square wave input		3.9	6.1	mA
				$V_{DD} = 3.0 V$	operation	Resonator connection		4.1	6.3	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2}$,	Normal	Square wave input		2.5	3.7	mA
				$V_{DD} = 5.0 V$	operation	Resonator connection		2.5	3.7	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2}$,	Normal	Square wave input		2.5	3.7	mA
			$V_{DD} = 3.0 V$	operation	Resonator connection		2.5	3.7	mA	
			LS (low- speed main) mode ^{Note 5}	$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.4	2.2	mA
				$V_{DD} = 3.0 V$	operation	Resonator connection		1.4	2.2	mA
				$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.4	2.2	mA
				$V_{DD} = 2.0 V$	operation	Resonator connection		1.4	2.2	mA
			Subsystem	fsub = 32.768 kHz	Normal	Square wave input		5.4	6.5	μA
			clock operation	$T_A = -40^{\circ}C$	operation	Resonator connection		5.5	6.6	μA
				fsub = 32.768 kHz	Normal	Square wave input		5.5	6.5	μA
				T _A = +25°C	operation	Resonator connection		5.6	6.6	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.6	9.4	μA
				$T_{A} = +50^{\circ}C$	operation	Resonator connection		5.7	9.5	μA
				fsue = 32.768 kHz	Normal	Square wave input		5.9	12.0	μA
				TA = +70°C	operation	Resonator connection		6.0	12.1	μA
				fsuв = 32.768 kHz	Normal	Square wave input		6.6	16.3	μA
				Note 4 TA = $+85^{\circ}C$	operation	Resonator connection		6.7	16.4	μA

(Notes and Remarks are listed on the next page.)

- 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode.

Remarks 1. fill: Low-speed on-chip oscillator clock frequency

- **2.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tксү1 \geq 2/fclk	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$	62.5		250		500		ns
			$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	83.3		250		500		ns
SCKp high-/low-level width	tкнı, tк∟ı	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V \\ \\ 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V \\ \end{array} \qquad \qquad$		tксү1/2 – 7		tксү1/2 – 50		tксү1/2 – 50		ns
				tксү1/2 – 10		tксү1/2 – 50		tксү1/2 – 50		ns
SIp setup time (to SCKp↑)	tsik1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$		23		110		110		ns
Note 1		$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		33		110		110		ns
SIp hold time (from SCKp↑) ^{№te 2}	tksii	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 20 рF №	te 4		10		10		10	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** This value is valid only when CSI00's peripheral I/O redirect function is not used.
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM numbers (g = 1)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00))

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (hig main)	h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SCKp cycle time	tkCY2	$4.0~V \leq EV_{\text{DD0}} \leq 5.5$	20 MHz < fмск	8/fмск				_		ns
Note 5		V	fмск ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5$	16 MHz < fмск	8/fмск				_		ns
		V	fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$	6/fмск and 750		6/fмск and 750		6/fмск and 750		ns	
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns	
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 5.5$	_		6/fмск and 1500		6/fмск and 1500		ns	
SCKp high-/low- level width	tкн2, tкL2	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 7		tксү2/2 - 7		tксү2/2 - 7		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 8		tксү2/2 - 8		tксү2/2 - 8		ns
		$1.8~V \leq EV_{DD0} \leq 5.5~V$		tксү2/2 – 18		tксү2/2 – 18		tксү2/2 – 18		ns
		$1.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 66		tксү2/2 - 66		tксү2/2 - 66		ns
		$1.6 V \le EV_{DD0} \le 5.5$	V			tксү2/2 - 66		tксү2/2 - 66		ns

(Notes, Caution, and Remarks are listed on the next page.)

Parameter	Symbo I	Í	Conditions	HS (higł main)	n-speed Mode	LS (low-sp Mo	eed main) de	LV (low-vol Mo	ltage main) ode	Unit			
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.				
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	2.7 V ≤ E	$V_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск+2 0		1/fмск+30		1/fмск+30		ns			
		1.8 V ≤ E	$V_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск+3 0		1/fмск+30		1/fмск+30		ns			
		1.7 V ≤ E	$V_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск+4 0		1/fмск+40		1/fмск+40		ns			
		1.6 V ≤ I	$EV_{DD0} \leq 5.5 V$			1/fмск+40		1/fмск+40		ns			
SIp hold time (from SCKp↑)	tksi2	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск+3 1		1/fмск+31		1/fмск+31		ns			
Note 2		1.7 V ≤ E	$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			1/fмск+ 250		1/fмск+ 250		ns			
		1.6 V ≤ I	$EV_{DD0} \leq 5.5 V$	_		1/fмск+ 250		1/fмск+ 250		ns			
Delay time from SCKp↓ to	tkso2	tĸso2	C = 30 pF ^{Note 4}	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/f _{мск+} 44		2/f _{мск+} 110		2/f _{мск+} 110	ns		
SOp output ^{Note} 3			$2.4 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск+ 75		2/fмск+ 110		2/fмск+ 110	ns			
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+ 110		2/fмск+ 110		2/fмск+ 110	ns			
						$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск+ 220		2/fмск+ 220		2/fмск+ 220	ns
			$1.6 V \le EV_{DD0} \le 5.5$ V		—		2/fмск+ 220		2/fмск+ 220	ns			

(4)	During communication at same potential (CSI mode) (slave mode, SCKp external clock input) (2/2)
	$(T_A = -40 \text{ to } \pm 85^{\circ}\text{C} = 1.6 \text{ V} \le \text{EV}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}$ Vec = EVeca = EVeca = 0.V)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Parameter	Symbol	Conditions	HS (hig main)	h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$		1000 Note 1		400 Note 1		400 Note 1	kHz
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$		400 Note 1		400 Note 1		400 Note 1	kHz
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$		300 Note 1		300 Note 1		300 Note 1	kHz
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$		250 Note 1		250 Note 1		250 Note 1	kHz
		1.6 V ≤ EV _{DD0} < 1.8 V, C₀ = 100 pF, R₀ = 5 kΩ		_		250 Note 1		250 Note 1	kHz
Hold time when SCLr = "L"	tLow	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$	1150		1150		1150		ns
		1.8 V \leq EV _{DD0} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1550		1550		1550		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$	1850		1850		1850		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$			1850		1850		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$	1150		1150		1150		ns
		1.8 V \leq EV _{DD0} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1550		1550		1550		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$	1850		1850		1850		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$	_		1850		1850		ns

(5) During communication at same potential (simplified I²C mode) (1/2)

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
 h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fмск: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

3.2 Oscillator Characteristics

3.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ^{Note}	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
	crystal resonator	$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		16.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

- **Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- **Remark** When using the X1 oscillator and XT1 oscillator, refer to **5.4 System Clock Oscillator**.

3.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		32	MHz
High-speed on-chip oscillator		–20 to +85 °C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-1.0		+1.0	%
clock frequency accuracy		–40 to –20 °C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-1.5		+1.5	%
		+85 to +105 °C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

Items	Symbol	Conditio	MIN.	TYP.	MAX.	Unit		
Input leakage current, high	Цнт	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVDDO				1	μA
	Іцн2	P20 to P27, P137, P150 to P156, RESET	$V_{\text{I}} = V_{\text{DD}}$				1	μA
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	$V_{I} = V_{DD}$	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVsso				-1	μA
	ILIL2	P20 to P27, P137, P150 to P156, RESET	VI = Vss				-1	μA
	Ilili	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	$V_1 = V_{\text{SS}}$	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVsso	, In input port	10	20	100	kΩ

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or Vss, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz

2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V@1 MHz to 16 MHz

- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
 h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m

= 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 00, 01, 02, 10, 12, 13), n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

		Description				
Rev.	Date	Page	Summary			
3.00	Aug 02, 2013	81	Modification of figure of AC Timing Test Points			
		81	Modification of description and note 3 in (1) During communication at same potential (UART mode)			
		83	Modification of description in (2) During communication at same potential (CSI mode)			
		84	Modification of description in (3) During communication at same potential (CSI mode)			
		85	Modification of description in (4) During communication at same potential (CSI mode) (1/2)			
		86	Modification of description in (4) During communication at same potential (CSI mode) (2/2)			
		88	Modification of table in (5) During communication at same potential (simplified I ² C mode) (1/2)			
		89	Modification of table and caution in (5) During communication at same potential (simplified I ² C mode) (2/2)			
		91	Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)			
		92, 93	Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)			
		94	Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)			
		95	Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2)			
		96 Modification of table and caution in (7) Communication at different po (2.5 V, 3 V) (CSI mode) (2/2)				
		97	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)			
		98	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)			
		99	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)			
		100	Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)			
		102	Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)			
		103	Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)			
		106	Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2)			
		107	Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (2/2)			
		109	Addition of (1) I ² C standard mode			
		111	Addition of (2) I ² C fast mode			
		112	Addition of (3) I ² C fast mode plus			
		112	Modification of IICA serial transfer timing			
		113	Addition of table in 2.6.1 A/D converter characteristics			
		113	Modification of description in 2.6.1 (1)			
		114	Modification of notes 3 to 5 in 2.6.1 (1)			
		115	Modification of description and notes 2, 4, and 5 in 2.6.1 (2)			
		116	Modification of description and notes 3 and 4 in 2.6.1 (3)			
		117	Modification of description and notes 3 and 4 in 2.6.1 (4)			