

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E•>< Fl

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16КВ (16К х 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100gagna-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.6 36-pin products

• 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)

	А	В	С	D	E	F	
6	P60/SCLA0	Vdd	P121/X1	P122/X2/EXCLK	P137/INTP0	P40/TOOL0	6
5	P62	P61/SDAA0	Vss	REGC	RESET	P120/ANI19	5
4	P72/SO21	P71/SI21/ SDA21	P14/RxD2/SI20/ SDA20/(SCLA0) /(TI03)/(TO03)	P31/TI03/TO03/ INTP4/ PCLBUZ0	P00/TI00/TxD1	P01/TO00/RxD1	4
3	P50/INTP1/ SI11/SDA11	P70/SCK21/ SCL21	P15/PCLBUZ1/ SCK20/SCL20/ (TI02)/(TO02)	P22/ANI2	P20/ANI0/ AVREFP	P21/ANI1/ AVREFM	3
2	P30/INTP3/ SCK11/SCL11	P16/TI01/TO01/ INTP5/(RxD0)	P12/SO00/ TxD0/TOOLTxD /(TI05)/(TO05)	P11/SI00/RxD0/ TOOLRxD/ SDA00/(TI06)/ (TO06)	P24/ANI4	P23/ANI3	2
1	P51/INTP2/ SO11	P17/TI02/TO02/ (TxD0)	P13/TxD2/ SO20/(SDAA0)/ (TI04)/(TO04)	P10/SCK00/ SCL00/(TI07)/ (TO07)	P147/ANI18	P25/ANI5	1
	A	В	С	D	E	F	•

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	(Conditions H		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tксү1 \geq 2/fclk	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$	62.5		250		500		ns
			$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	83.3		250		500		ns
SCKp high-/low-level width	tкнı, tк∟ı	4.0 V ≤ EV _D	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ tki $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ tki			tксү1/2 – 50		tксү1/2 – 50		ns
		2.7 V ≤ EV _D				tксү1/2 – 50		tксү1/2 – 50		ns
SIp setup time (to SCKp↑)	tsik1	$4.0 V \le EV_{DI}$	$00 \leq 5.5 \text{ V}$	23		110		110		ns
Note 1		$2.7 \text{ V} \leq EV_{\text{DI}}$	$00 \leq 5.5 \text{ V}$	33		110		110		ns
SIp hold time (from SCKp↑) ^{№te 2}	tksii	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 20 рF №	te 4		10		10		10	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** This value is valid only when CSI00's peripheral I/O redirect function is not used.
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM numbers (g = 1)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00))

Parameter	Symbo I	Conditions HS (high-speed LS (low-speed main main) Mode Mode		eed main) de	LV (low-vol Mo	ltage main) ode	Unit									
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.							
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск+2 0		1/fмск+30		1/fмск+30		ns						
		1.8 V ≤ E	$V_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск+3 0		1/fмск+30		1/fмск+30		ns						
1.7 V			$V_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск+4 0		1/fмск+40		1/fмск+40		ns						
		1.6 V ≤ I	$EV_{DD0} \leq 5.5 V$			1/fмск+40		1/fмск+40		ns						
SIp hold time (from SCKp↑)	tksi2	1.8 V ≤ E	$.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			1/fмск+31		1/fмск+31		ns						
Note 2		1.7 V ≤ E	$.7~V \leq EV_{\text{DD0}} \leq 5.5~V$			1/fмск+ 250		1/fмск+ 250		ns						
		$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$		_		1/fмск+ 250		1/fмск+ 250		ns						
Delay time from SCKp↓ to	tkso2	C = 30 pF ^{Note 4}	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/f _{мск+} 44		2/f _{мск+} 110		2/f _{мск+} 110	ns						
SOp output ^{Note} 3										$2.4 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск+ 75		2/fмск+ 110		2/fмск+ 110
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+ 110		2/fмск+ 110		2/fмск+ 110	ns						
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск+ 220		2/fмск+ 220		2/fмск+ 220	ns						
			$1.6 V \le EV_{DD0} \le 5.5$ V		—		2/fмск+ 220		2/fмск+ 220	ns						

(4)	During communication at same potential (CSI mode) (slave mode, SCKp external clock input) (2/2)
	$(T_A = -40 \text{ to } \pm 85^{\circ}\text{C} = 1.6 \text{ V} \le \text{EV}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}$ Vec = EVeca = EVeca = 0.V)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
 h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

Unit

ns

60

130

tput,

(7) Communica correspondi	tion at di	ifferent poter) only) (1/2)	ntial (2.5 V, 3 V) (CSI	mode) (r	naster i	node, S	СКр і	nternal o	clock ou
Parameter	Symbol		0 = EVDD1 S VDD S 3.3 Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.
SCKp cycle time	t ксү1	tксү1 ≥ 2 /fclк	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	200		1150		1150	
			$\label{eq:cb} \begin{split} C_b &= 20 \text{ pF}, R_b = 1.4 \\ k\Omega \end{split}$						
			$\label{eq:states} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \end{array}$	300		1150		1150	
			C_b = 20 pF, R_b = 2.7 $k\Omega$						
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$		tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50	
		$C_{b} = 20 \text{ pF}, \text{ f}$	R _b = 1.4 kΩ						
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} \\ 2.3 \ V \leq V_b \leq \end{array}$	o < 4.0 V, 2.7 V,	tксү1/2 – 120		tксү1/2 – 120		tксү1/2 – 120	
		C₀ = 20 pF, I	R _b = 2.7 kΩ						
SCKp low-level width	tĸ∟1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $2.7 \text{ V} \leq \text{V}_{\text{b}} \leq$	₀ ≤ 5.5 V, 4.0 V,	tксү1/2 – 7		tксү1/2 – 50		tксү1/2 – 50	
		$C_{b} = 20 \text{ pF}, \text{ F}$	R₀ = 1.4 kΩ						
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \\ 2.3 \ V \leq V_{\text{b}} \leq \end{array}$	₀ < 4.0 V, 2.7 V,	tксү1/2 – 10		tксү1/2 – 50		tксү1/2 – 50	
		$C_b = 20 \text{ pF}, \text{ f}$	R _b = 2.7 kΩ						
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \\ 2.7 \ V \leq V_{\text{b}} \leq \end{array}$	₀ ≤ 5.5 V, 4.0 V,	58		479		479	
		$C_{b} = 20 \text{ pF}, \text{ f}$	R _b = 1.4 kΩ						
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \\ 2.3 \ V \leq V_{\text{b}} \leq \end{array}$	₀ < 4.0 V, 2.7 V,	121		479		479	
		C _b = 20 pF, I	R _b = 2.7 kΩ						
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$4.0 V \le EV_{DD}$ $2.7 V \le V_{h} \le$	o ≤ 5.5 V, 4.0 V.	10		10		10	

 $2.3~V \leq V_b \leq 2.7~V,$

 $C_b = 20 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$ $2.7 V \le EV_{DD0} < 4.0 V$,

 $2.3~V \leq V_b \leq 2.7~V,$ $C_b = 20 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$ $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$

 $2.7~V \leq V_{b} \leq 4.0~V,$

 $C_{\text{b}}=20 \text{ pF}, \text{ R}_{\text{b}}=1.4 \text{ k}\Omega$ $2.7 V \le EV_{DD0} < 4.0 V$,

 $C_b = 20 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$

(Notes, Caution, and Remarks are listed on the next page.)

Delay time from

 $\mathsf{SCKp}{\downarrow} \text{ to } \mathsf{SOp}$

output Note 1

tks01

10

60

130

10

60

130

10

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

$(T_A = -40 \text{ to } +85^\circ C)$, 1.8 V ≤ EVDD0 =	$=$ EVDD1 \leq VDD \leq 5.5 V, V	Vss = EVsso = EVss1 = 0 V) (2/2)
---------------------------------------	-------------------	--------------------------------------	---------------------------	---------

Parameter	Symbol	Conditions HS (high- speed main) Mode		high- main) ode	LS (low main)	/-speed Mode	LV (low main)	Unit	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp high-/low-level width	tкн2, tкL2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$	tксү2/2 - 12		tксү2/2 - 50		tксү2/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{array}$	tксү₂/2 − 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{№ote 3}	tsık2	$\begin{array}{l} 4.0 \; V \leq E V_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 2.7 \ V \leq E V_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{array}$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi2		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output Note 5	tĸso2	$\label{eq:VDD} \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \\ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$		2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
		$\label{eq:V_def} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \\ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$\begin{split} & 1.8 \ V \leq E V_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{DD1} \ge 10^{\circ}\text{C}$
Reference voltage (–) = Vss)

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$		1.2	±7.0	LSB
			$\begin{array}{l} 1.6 \ V \leq V \text{DD} \leq 5.5 \ V \\ \text{Note 3} \end{array}$		1.2	±10.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI0 to ANI14,	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
	ANI TO LO ANIZO	$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μs	
			$1.6~V \leq V \text{DD} \leq 5.5~V$	57		95	μS
Conversion time	me tconv 10-bit resolution		$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μS
	error ^{Notes 1, 2} Ezs 10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS	
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
		$\begin{array}{l} 1.6 \ V \leq V \text{DD} \leq 5.5 \ V \\ \text{Note 3} \end{array}$			±0.85	%FSR	
Full-scale error ^{Notes 1, 2}	E _{FS} 10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR	
			$\begin{array}{l} 1.6 \ V \leq V \text{DD} \leq 5.5 \ V \\ _{\text{Note 3}} \end{array}$			±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$			±4.0	LSB
			$\begin{array}{l} 1.6 \ V \leq V \text{DD} \leq 5.5 \ V \\ _{\text{Note 3}} \end{array}$			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
			$\begin{array}{l} 1.6 \ V \leq V \text{DD} \leq 5.5 \ V \\ \text{Note 3} \end{array}$			±2.5	LSB
Analog input voltage	VAIN	ANI0 to ANI14		0		Vdd	V
		ANI16 to ANI26		0		EVDD0	V
	Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode		gh-speed main) mode)		VBGR Note 4		V
		Temperature sensor output (2.4 V \leq VDD \leq 5.5 V, HS (high	voltage gh-speed main) mode)	VTMPS25 Note 4			V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

2.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, $T_A = +25^{\circ}C$		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

(T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode)

2.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	TPW		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	Io∟1 Per pin for P00 to P07, P10 P30 to P37, P40 to P47, P5 P64 to P67, P70 to P77, P8 P90 to P97, P100 to P106, P110 to P117, P120, P125 P130, P140 to P147	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147				8.5 ^{Note 2}	mA
		Per pin for P60 to P63				15.0 ^{Note 2}	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			40.0	mA
	$\begin{array}{c c} P37, \\ P40 \ \text{to} \ P47, \ P102 \ \text{to} \ P106, \ P120, \\ P125 \ \text{to} \ P127, \ P130, \ P140 \ \text{to} \ P145 \\ (When \ duty \leq 70\%^{\text{Note 3}}) \end{array}$ $\begin{array}{c c} Total \ \text{of} \ P05, \ P06, \ P10 \ \text{to} \ P17, \ P30, \\ P31, \ P50 \ \text{to} \ P57, \ P60 \ \text{to} \ P67, \\ P70 \ \text{to} \ P77, \ P80 \ \text{to} \ P87, \ P90 \ \text{to} \ P97, \\ P100, \ P101, \ P110 \ \text{to} \ P117, \ P146, \\ P147 \\ (When \ duty \leq 70\%^{\text{Note 3}}) \end{array}$ $\begin{array}{c c} Total \ \text{of} \ all \ pins \\ (When \ duty \leq 70\%^{\text{Note 3}}) \end{array}$		$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			15.0	mA
		P125 to P127, P130, P140 to P145 (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4~V \leq EV_{DD0} < 2.7~V$			9.0	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			40.0	mA
			$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			35.0	mA
		$2,4~V \leq EV_{\text{DD0}} < 2.7~V$			20.0	mA	
		Total of all pins (When duty $\leq 70\%$ ^{Note 3})				80.0	mA
	IOL2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)	$2,4~V \leq V_{\text{DD}} \leq 5.5~V$			5.0	mA

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (2/5)

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1 and Vss pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and $I_{OL} = 10.0 \text{ mA}$

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz 2.4 V \leq V_DD \leq 5.5 V@1 MHz to 16 MHz

- 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. file: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Points

External System Clock Timing

(6)	Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp internal clock
	output) (1/3)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tксүı	tксү1 ≥ 4/fc∟к	$\begin{array}{ll} t_{\text{KCY1}} \geq 4/f_{\text{CLK}} & 4.0 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \ 2.7 \ \text{V} \leq \text{V}_{\text{b}} \leq 4.0 \\ & \text{V}, \\ & \text{C}_{\text{b}} = 30 \ \text{pF}, \ \text{B}_{\text{b}} = 1.4 \ \text{k}\Omega \end{array}$			ns
			$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \\ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1000		ns
			2.4 V \leq EV _{DD0} < 3.3 V, 1.6 V \leq V _b \leq 2.0 V, C _b = 30 pF, R _b = 5.5 k Ω	2300		ns
SCKp high-level width	tкнı	$4.0 V \le EV_{DD}$	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$			ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 30 \text{ pF, F}$	$C_{b} = 30 \text{ pF}$, $H_{b} = 1.4 \text{ KS2}$ 2.7 V \leq EV _{DD0} < 4.0 V, 2.3 V \leq V _b \leq 2.7 V, $C_{b} = 30 \text{ pF}$, $R_{b} = 2.7 \text{ k}\Omega$			ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 30 \text{ pF, F}$	$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega$			ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \\ C_{\text{b}} = 30 \ \text{pF}, \ \text{F} \end{array}$	$4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$			ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 30 \text{ pF, F}$	$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$			ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 30 \text{ pF}, \text{ F}$	$_{0}$ < 3.3 V, 1.6 V \leq V _b \leq 2.0 V, R _b = 5.5 kΩ	tксү1/2 – 100		ns

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed two pages after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq EVpp0 = EVpp1 \leq Vpp \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	HS (high-s	peed main) ode	Unit
			MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		400 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$		400 ^{Note 1}	kHz
				100 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$		100 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	t∟ow	$ \begin{split} & 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ & 2.7 \; V \leq V_b \leq 4.0 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split} $	1200		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1200		ns
			4600		ns
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	4600		ns
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	4650		ns
Hold time when SCLr = "H"	tніgн	$ \begin{split} & 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ & 2.7 \; V \leq V_b \leq 4.0 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split} $	620		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	500		ns
		$\label{eq:Vbb} \begin{split} & 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ & 2.7 \ V \leq V_b \leq 4.0 \ V, \\ & C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{split}$	2700		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	2400		ns
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	1830		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12, 13)

3.10 Timing of Entry to Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level
 - thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

4.2 24-pin Products

R5F1007AANA, R5F1007CANA, R5F1007DANA, R5F1007EANA R5F1017AANA, R5F1017CANA, R5F1017DANA, R5F1017EANA R5F1007ADNA, R5F1007CDNA, R5F1007DDNA, R5F1007EDNA R5F1017ADNA, R5F1017CDNA, R5F1017DDNA, R5F1017EDNA R5F1007AGNA, R5F1007CGNA, R5F1007DGNA, R5F1007EGNA

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HWQFN24-4x4-0.50	PWQN0024KE-A	P24K8-50-CAB-3	0.04

0

o

Referance	Dimens	Dimension in Millimeters			
Symbol	Min	Nom	Max		
D	3.95	4.00	4.05		
E	3.95	4.00	4.05		
A			0.80		
A ₁	0.00	—			
b	0.18	0.25	0.30		
е		0.50			
Lp	0.30	0.40	0.50		
х			0.05		
У			0.05		
ZD		0.75			
ZE		0.75			
C2	0.15	0.20	0.25		
D ₂		2.50			
E ₂		2.50			

4.4 30-pin Products

R5F100AAASP, R5F100ACASP, R5F100ADASP, R5F100AEASP, R5F100AFASP, R5F100AGASP R5F101AAASP, R5F101ACASP, R5F101ADASP, R5F101AEASP, R5F101AFASP, R5F101AGASP R5F100AADSP, R5F100ACDSP, R5F100ADDSP, R5F100AEDSP, R5F100AFDSP, R5F100AGDSP R5F101AADSP, R5F101ACDSP, R5F101ADDSP, R5F101AEDSP, R5F101AFDSP, R5F101AGDSP R5F100AAGSP, R5F100ACGSP, R5F100ADGSP, R5F100AEGSP, R5F100AFGSP, R5F100AGGSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18

0.5

0.13

0.10 3°+5°

0.25

0.6±0.15

L

M N

P T

U

©2012 Renesas Electronics Corporation. All rights reserved.

4.9 48-pin Products

R5F100GAAFB, R5F100GCAFB, R5F100GDAFB, R5F100GEAFB, R5F100GFAFB, R5F100GGAFB, R5F100GHAFB, R5F100GJAFB, R5F100GKAFB, R5F100GLAFB

R5F101GAAFB, R5F101GCAFB, R5F101GDAFB, R5F101GEAFB, R5F101GFAFB, R5F101GGAFB, R5F101GHAFB, R5F101GJAFB, R5F101GKAFB, R5F101GLAFB

R5F100GADFB, R5F100GCDFB, R5F100GDDFB, R5F100GEDFB, R5F100GFDFB, R5F100GGDFB, R5F100GHDFB, R5F100GJDFB, R5F100GKDFB, R5F100GLDFB

R5F101GADFB, R5F101GCDFB, R5F101GDDFB, R5F101GEDFB, R5F101GFDFB, R5F101GGDFB, R5F101GHDFB, R5F101GJDFB, R5F101GKDFB, R5F101GLDFB

R5F100GAGFB, R5F100GCGFB, R5F100GDGFB, R5F100GEGFB, R5F100GFGFB, R5F100GGGFB, R5F100GHGFB, R5F100GJGFB

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

		Description		
Rev.	Date	Page	Summary	
3.00	Aug 02, 2013	81	Modification of figure of AC Timing Test Points	
		81	Modification of description and note 3 in (1) During communication at same potential (UART mode)	
		83	Modification of description in (2) During communication at same potential (CSI mode)	
		84	Modification of description in (3) During communication at same potential (CSI mode)	
		85	Modification of description in (4) During communication at same potential (CSI mode) (1/2)	
		86	Modification of description in (4) During communication at same potential (CSI mode) (2/2)	
		88	Modification of table in (5) During communication at same potential (simplified I ² C mode) (1/2)	
		89	Modification of table and caution in (5) During communication at same potential (simplified I ² C mode) (2/2)	
		91	Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)	
		92, 93	Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)	
		94	Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)	
		95	Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2)	
		96	Modification of table and caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (2/2)	
		97	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)	
		98	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)	
		99	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)	
		100	Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)	
		102	Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)	
		103	Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)	
		106	Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2)	
		107	Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (2/2)	
		109	Addition of (1) I ² C standard mode	
		111	Addition of (2) I ² C fast mode	
		112	Addition of (3) I ² C fast mode plus	
		112	Modification of IICA serial transfer timing	
		113	Addition of table in 2.6.1 A/D converter characteristics	
		113	Modification of description in 2.6.1 (1)	
		114	Modification of notes 3 to 5 in 2.6.1 (1)	
		115	Modification of description and notes 2, 4, and 5 in 2.6.1 (2)	
		116	Modification of description and notes 3 and 4 in 2.6.1 (3)	
		117	Modification of description and notes 3 and 4 in 2.6.1 (4)	