

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100gdgna-w0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.9 48-pin products

• 48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.8 44-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.

- The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).
- 4. When setting to PIOR = 1

												(2/2	.)
Ite	m	20-	·pin	24-	pin	25-	pin	30-	pin	32-	-pin	36	-pin
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	R5F101Cx
Clock output/buzze	er output		_		1		1		2		2		2
		• 2.44 (Mair	kHz, 4.8 n systen	38 kHz, 9 n clock: f	0.76 kHz main = 20	, 1.25 MI) MHz op	Hz, 2.5 N eration)	/Hz, 5 M	IHz, 10 N	MHz			
8/10-bit resolution	A/D converter	6 chanı	nels	6 chan	nels	6 chanı	nels	8 chani	nels	8 chan	nels	8 chan	nels
Serial interface Multiplier and divid accumulator	I ² C bus ler/multiply-	[20-pin, • CSI: • CSI: [30-pin, • CSI: •	24-pin, 1 chann 1 chann 1 chann 1 chann 1 chann 1 chann 1 chann 1 chann 1 chann 2 chann 	25-pin p el/simpli el/simpli products el/simpli el/simpli el/simpli el/simpli el/simpli el/simpli its = 32 t its = 32 t its = 32 t	roducts] fied I ² C: fied I ² C: hified I ² C: fied I ² C: fiel fiel fiel fiel fiel fiel fiel fiel	1 channe 1 channe 1 channe 1 channe 1 channe 1 channe 2 channe 1 c	el/UART el/UART el/UART el/UART el/UART el/UART nels/UART nels/UART signed) signed o	: 1 chanr : 1 chanr : 1 chanr : 1 chanr (UART : : 1 chanr : 1 chanr RT (UAR 1 chanr r signed	nel nel nel supportir nel T suppo nel	ng LIN-br rting LIN 1 chan	g LIN-bus): 1 channel ing LIN-bus): 1 channel 1 channel 1 channel		
DMA controller		2 channels											
Vectored interrupt	Internal	2	23	2	24	2	24	2	27	2	27	2	27
sources	External		3		5		5		6		6		6
Key interrupt								-					
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 											
Power-on-reset cir	cuit	Power-on-reset: 1.51 V (TYP.) Power-down-reset: 1.50 V (TYP.)											
Voltage detector		 Rising edge : 1.67 V to 4.06 V (1 Falling edge : 1.63 V to 3.98 V (1 				(14 stage (14 stage	es) es)						
On-chip debug fun	iction	Provide	ed .										
Power supply volta	age	$V_{DD} = 1.6 \text{ to } 5.5 \text{ V} (T_{A} = -40 \text{ to } +85^{\circ}\text{C})$											
		V _{DD} = 2	.4 to 5.5	$V(T_A = \cdot$	-40 to +1	105°C)							
Operating ambient	temperature	$T_A = 40$ to +85°C (A: Consumer applications, D: Industrial applications) $T_A = 40$ to +105°C (G: Industrial applications)											

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

[80-pin, 100-pin, 128-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

				-			(1/2)			
	Item	80-	pin	100	-pin	128	3-pin			
		R5F100Mx	R5F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx			
Code flash me	emory (KB)	96 te	o 512	96 te	o 512	192	to 512			
Data flash me	emory (KB)	8	—	8	-	8	-			
RAM (KB)		8 to 3	8 to 32 Note 1 8 to 32 Note 1 16 to 32 Note 1							
Address spac	e	1 MB	1 MB							
Main system clock	High-speed system clock	X1 (crystal/cera HS (High-speed HS (High-speed LS (Low-speed LV (Low-voltage	mic) oscillation, d main) mode: 1 d main) mode: 1 main) mode: 1 e main) mode: 1	external main sys to 20 MHz (V_{DD} = to 16 MHz (V_{DD} = to 8 MHz (V_{DD} = to 4 MHz (V_{DD} =	tem clock input (= 2.7 to 5.5 V), = 2.4 to 5.5 V), 1.8 to 5.5 V), 1.6 to 5.5 V)	EXCLK)				
High-speed on-chip oscillatorHS (High-speed main) mode: 1 to 32 MHz ($V_{DD} = 2.7$ to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz ($V_{DD} = 2.4$ to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz ($V_{DD} = 1.8$ to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz ($V_{DD} = 1.6$ to 5.5 V)										
Subsystem cl	ock	XT1 (crystal) os 32.768 kHz	cillation, externa	l subsystem cloc	k input (EXCLKS	i)				
Low-speed on-chip oscillator		15 kHz (TYP.)								
General-purpose register		(8-bit register \times	8) \times 4 banks							
Minimum instruction execution time		0.03125 <i>μ</i> s (Hig	gh-speed on-chip	oscillator: fiн = 3	2 MHz operation)				
			peed system clo	ck: fмx = 20 MHz	operation)					
		30.5 <i>µ</i> s (Subsys	stem clock: fsub =	= 32.768 kHz ope	ration)					
Instruction set	t	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 								
I/O port	Total	7	74	ç	92	1	20			
	CMOS I/O	(N-ch O.D. I/O voltag	64 [EV₀₀ withstand ge]: 21)	ہ N-ch O.D. I/O) voltag	32 [EV _{DD} withstand je]: 24)	1 (N-ch O.D. I/O voltag	10 [EV₂₂ withstand ge]: 25)			
	CMOS input		5		5		5			
	CMOS output		1		1		1			
	N-ch O.D. I/O (withstand voltage: 6 V)		4		4		4			
Timer	16-bit timer	12 cha	annels	12 cha	annels	16 ch	annels			
	Watchdog timer	1 cha	annel	1 cha	annel	1 cha	annel			
	Real-time clock (RTC)	1 cha	annel	1 cha	annel	1 cha	annel			
	12-bit interval timer (IT)	1 cha	annel	1 cha	annel	1 cha	annel			
	Timer output	12 channels 12 channels 16 channels (PWM outputs: 10 ^{Note 2}) (PWM outputs: 10 ^{Note 2}) (PWM outputs: 14 ^{Note 2})					14 ^{Note 2})			
	RTC output	1 channel • 1 Hz (subsys	tem clock: fsuв =	32.768 kHz)						

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xJ, R5F101xJ (x = M, P): Start address FAF00H

R5F100xL, R5F101xL (x = M, P, S): Start address F7F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library** for RL78 Family (R20UT2944).

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

- **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
- **3.** fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))
- **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVDO	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		VLVD1	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		Vlvd7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pul	se width	t∟w		300			μS
Detection de	lay time					300	μs

2.10 Timing of Entry to Flash Memory Programming Modes

$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \leq \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{su:}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or Vss, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 32 MHz

2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V@1 MHz to 16 MHz

- 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. file: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

- Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter is in operation.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- **9.** Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode in the RL78/G13 User's Manual.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(2)	During communication at same potential (CSI mode) (master mode, SCKp internal clock output)
	$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time	tkCY1	$t_{KCY1} \geq 4/f_{CLK}$	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	250		ns
			$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$	500		ns
SCKp high-/low-level width	tкнı,	$4.0~V \leq EV_{\text{DD}}$	$4.0~V \leq EV_{DD0} \leq 5.5~V$			ns
	tĸ∟1	$2.7 \ V \le EV_{DD}$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			ns
		$2.4 \ V \le EV_{DD}$	$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			ns
SIp setup time (to SCKp↑) Note 1	tsik1	$4.0~V \leq EV_{\text{DD}}$	$_{0} \leq 5.5 \text{ V}$	66		ns
		$2.7 \ V \le EV_{DD}$	$_{0} \leq 5.5 \text{ V}$	66		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$	$_{0} \leq 5.5 \text{ V}$	113		ns
SIp hold time (from SCKp \uparrow) Note 2	tksi1			38		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF ^{Note}	54		50	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

Parameter	Symbol	Conc	ditions	HS (high-speed ma	in) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 5	tксү2	$4.0~V \leq EV_{\text{DD0}} \leq 5.5$	20 MHz < fмск	16/f мск		ns
		V	fмск ≤ 20 MHz	12/fмск		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5$	16 MHz < fмск	16/f мск		ns
		V	fмск ≤ 16 MHz	12/fмск		ns
		$2.4~V \leq EV_{DD0} \leq 5.5~V$		16/f мск		ns
				12/fмск and 1000		ns
SCKp high-/low-level	tкн2, tкL2	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$	V	tксү2/2 – 14		ns
width		$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 16		ns
		$2.4 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	V	tксү2/2 – 36		ns
SIp setup time	tsik2	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	V	1/fмск+40		ns
(to SCKp↑) ^{Note 1}		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~$	V	1/fмск+60		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2	$2.4~V \leq EV_{\text{DD0}} \leq 5.5~$	V	1/fмск+62		ns
Delay time from SCKp↓ to SOp output	tkso2	C = 30 pF Note 4	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+66	ns
Note 3			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+113	ns

(3)	During communication at same potential (CSI mode) (slave mode, SCKp external clock input)
	$(T_A = -40 \text{ to } \pm 105^{\circ}\text{C} = 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}$ Vec = EVeca = EVeca = 0.V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), p: Changel number (n = 0, ta 2) an EMA number (n = 0, 1, 4, 5, 0, 14)
 - n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)
 - 2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode connection diagram (during communication at same potential)

- **Notes 1.** Transfer rate in the SNOOZE mode : MAX. 1 Mbps
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_L, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 00, 01, 02,

10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))

4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(2) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26

 $(T_{A} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V},$ Reference voltage (+) = AV_{\text{REFP}}, Reference voltage (-) = AV_{\text{REFM}} = 0 \text{ V})

Parameter	Symbol	Conditior	าร	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	$\begin{array}{l} \mbox{10-bit resolution} \\ EV_{DD0} \leq AV_{\text{REFP}} = V_{\text{DD}} {}^{\text{Notes 3, 4}} \end{array}$	$\begin{array}{l} 2.4 \ V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$		1.2	±5.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
		Target pin : ANI16 to ANI26	$2.7~V \leq V\text{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V\text{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	$\begin{array}{l} 10\text{-bit resolution} \\ EV\text{DD0} \leq AV_{\text{REFP}} = V_{\text{DD}} \\ \end{array} \end{array} \label{eq:expansion}$	$\begin{array}{l} 2.4 \hspace{0.1 cm} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Efs	$\begin{array}{l} \text{10-bit resolution} \\ \text{EVDD0} \leq AV_{\text{REFP}} = V_{\text{DD}} \\ \end{array} \end{array}$	$\begin{array}{l} 2.4 \hspace{0.1 cm} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	$\begin{array}{l} \mbox{10-bit resolution} \\ EV \mbox{DD0} \leq A V_{\text{REFP}} = V_{\text{DD}} ^{\text{Notes 3, 4}} \end{array}$	$\begin{array}{l} 2.4 \ V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±3.5	LSB
Differential linearity error	DLE	$\label{eq:loss} \begin{array}{l} 10\text{-bit resolution} \\ EV DD0 \leq AV_{REFP} = V_{DD} \\ \end{array} \end{array}$	$\begin{array}{l} 2.4 \hspace{0.1 cm} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI26		0		AVREFP and EVDD0	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 When AV_{REFP} < EV_{DD0} ≤ V_{DD}, the MAX. values are as follows.
- 4. When AVREFP < EVDDO S VDD, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

(T ∧	$= -40$ to $+105^{\circ}$ C, 2.4 V $\leq EV_{DD0} = EV_{DD1} \leq V_{D}$	$D \leq 5.5 V, Vss = E$	$V_{SS0} = EV_{SS1} = 0 V,$	Reference voltage (+)	=
VDD	, Reference voltage (–) = Vss)				

Parameter	Symbol	Conditions	6	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI0 to ANI14,	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
		ANI16 to ANI26	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μS
		voltage, and temperature sensor output voltage (HS	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
		(high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±4.0	LSB
Differential linearity error	DLE	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI14	I	0		Vdd	V
		ANI16 to ANI26		0		EVDD0	V
		Internal reference voltage output	ut		$V_{\text{BGR}} {}^{\text{Note 3}}$		V
		(2.4 V \leq VDD \leq 5.5 V, HS (high-	(2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)				
		Temperature sensor output vo (2.4 V \leq VDD \leq 5.5 V, HS (high-	ltage speed main) mode)	,	VTMPS25 Note 3	3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- $\ensuremath{\textbf{2.}}$ This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVDO	Power supply rise time	3.90	4.06	4.22	V
voltage			Power supply fall time	3.83	3.98	4.13	V
		VLVD1	Power supply rise time	3.60	3.75	3.90	V
			Power supply fall time	3.53	3.67	3.81	V
		VLVD2	Power supply rise time	3.01	3.13	3.25	۷
			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		VLVD5	Power supply rise time	2.70	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width		t∟w		300			μS
Detection delay time						300	μs

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDD0	VPOC2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage			2.64	2.75	2.86	V
mode	node V _{LVDD1} LVIS1, LVIS0 = 1, 0		Rising release reset voltage	2.81	2.92	3.03	V	
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

3.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

R5F100PFAFA, R5F100PGAFA, R5F100PHAFA, R5F100PJAFA, R5F100PKAFA, R5F100PLAFA R5F101PFAFA, R5F101PGAFA, R5F101PHAFA, R5F101PJAFA, R5F101PKAFA, R5F101PLAFA R5F100PFDFA, R5F100PGDFA, R5F100PHDFA, R5F100PJDFA, R5F100PKDFA, R5F100PLDFA R5F101PFDFA, R5F101PGDFA, R5F101PHDFA, R5F101PJDFA, R5F101PKDFA, R5F101PLDFA R5F100PFGFA, R5F100PGGFA, R5F100PHGFA, R5F100PJGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP100-14x20-0.65	PLQP0100JC-A	P100GF-65-GBN-1	0.92

©2012 Renesas Electronics Corporation. All rights reserved.

0.10

0.575

0.825

y ZD

ZE

4.14 128-pin Products

R5F100SHAFB, R5F100SJAFB, R5F100SKAFB, R5F100SLAFB R5F101SHAFB, R5F101SJAFB, R5F101SKAFB, R5F101SLAFB R5F100SHDFB, R5F100SJDFB, R5F100SKDFB, R5F100SLDFB R5F101SHDFB, R5F101SJDFB, R5F101SKDFB, R5F101SLDFB

©2012 Renesas Electronics Corporation. All rights reserved.

х

y ZD

ZE

0.08

0.75

0.75

