

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI

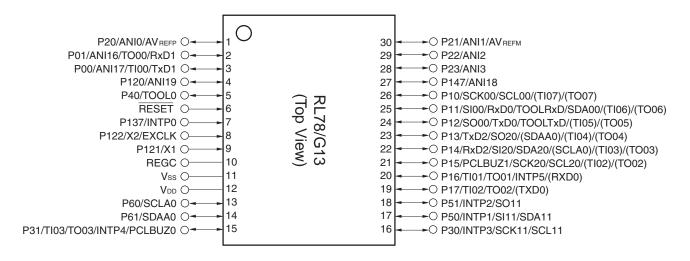
Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100geafb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

				(10/12)
Pin count	Package	Data flash	Fields of Application	Ordering Part Number
80 pins	80-pin plastic LQFP (14 × 14 mm, 0.65 mm pitch)	Mounted	A	R5F100MFAFA#V0, R5F100MGAFA#V0, R5F100MHAFA#V0, R5F100MJAFA#V0, R5F100MKAFA#V0, R5F100MLAFA#V0 R5F100MFAFA#X0, R5F100MGAFA#X0, R5F100MHAFA#X0, R5F100MJAFA#X0, R5F100MKAFA#X0, R5F100MLAFA#X0 R5F100MFDFA#V0, R5F100MGDFA#V0, R5F100MHDFA#V0,
				R5F100MJDFA#V0, R5F100MKDFA#V0, R5F100MLDFA#V0 R5F100MFDFA#X0, R5F100MGDFA#X0, R5F100MHDFA#X0, R5F100MJDFA#X0, R5F100MKDFA#X0, R5F100MLDFA#X0
			G	R5F100MFGFA#V0, R5F100MGGFA#V0, R5F100MHGFA#V0, R5F100MJGFA#V0 R5F100MFGFA#X0, R5F100MGGFA#X0, R5F100MHGFA#X0, R5F100MJGFA#X0
		Not mounted	A	R5F101MFAFA#V0, R5F101MGAFA#V0, R5F101MHAFA#V0, R5F101MJAFA#V0, R5F101MKAFA#V0, R5F101MLAFA#V0 R5F101MFAFA#X0, R5F101MGAFA#X0, R5F101MHAFA#X0, R5F101MJAFA#X0, R5F101MKAFA#X0, R5F101MLAFA#X0
			D	R5F101MFDFA#V0, R5F101MGDFA#V0, R5F101MHDFA#V0, R5F101MJDFA#V0, R5F101MKDFA#V0, R5F101MLDFA#V0 R5F101MFDFA#X0, R5F101MGDFA#X0, R5F101MHDFA#X0, R5F101MJDFA#X0, R5F101MKDFA#X0, R5F101MLDFA#X0
	80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)	Mounted	A	R5F100MFAFB#V0, R5F100MGAFB#V0, R5F100MHAFB#V0, R5F100MJAFB#V0, R5F100MKAFB#V0, R5F100MLAFB#V0 R5F100MFAFB#X0, R5F100MGAFB#X0, R5F100MHAFB#X0, R5F100MJAFB#X0, R5F100MKAFB#X0, R5F100MLAFB#X0
			D	R5F100MFDFB#V0, R5F100MGDFB#V0, R5F100MHDFB#V0, R5F100MJDFB#V0, R5F100MKDFB#V0, R5F100MLDFB#V0 R5F100MFDFB#X0, R5F100MGDFB#X0, R5F100MHDFB#X0, R5F100MJDFB#X0, R5F100MKDFB#X0, R5F100MLDFB#X0
			G	R5F100MFGFB#V0, R5F100MGGFB#V0, R5F100MHGFB#V0, R5F100MJGFB#V0 R5F100MFGFB#X0, R5F100MGGFB#X0, R5F100MHGFB#X0, R5F100MJGFB#X0
		Not mounted	A	R5F101MFAFB#V0, R5F101MGAFB#V0, R5F101MHAFB#V0, R5F101MJAFB#V0, R5F101MKAFB#V0, R5F101MLAFB#V0 R5F101MFAFB#X0, R5F101MGAFB#X0, R5F101MHAFB#X0, R5F101MJAFB#X0, R5F101MKAFB#X0, R5F101MLAFB#X0
			D	R5F101MFDFB#V0, R5F101MGDFB#V0, R5F101MHDFB#V0, R5F101MJDFB#V0, R5F101MKDFB#V0, R5F101MLDFB#V0 R5F101MFDFB#X0, R5F101MGDFB#X0, R5F101MHDFB#X0, R5F101MJDFB#X0, R5F101MKDFB#X0, R5F101MLDFB#X0

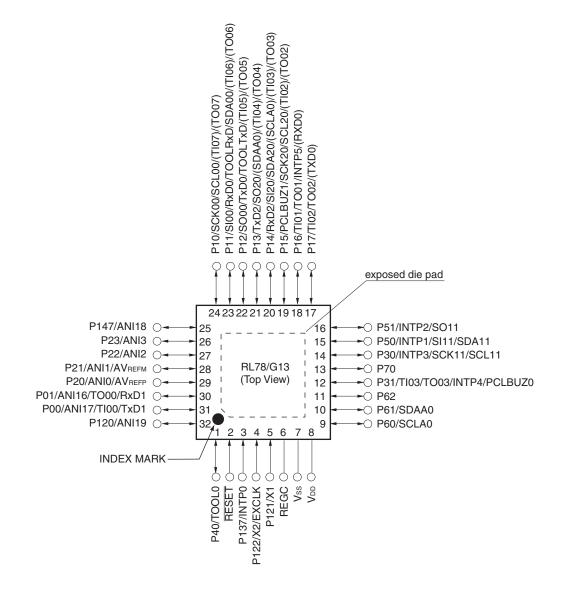

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.4 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

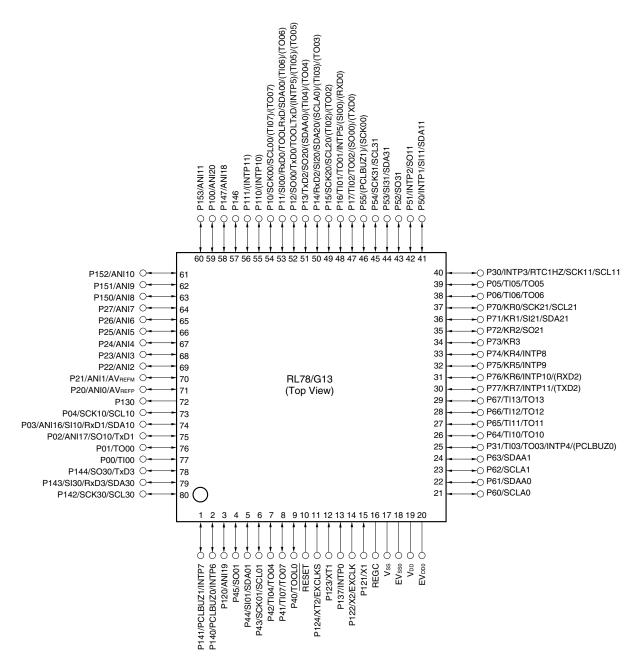

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.5 32-pin products

• 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch)

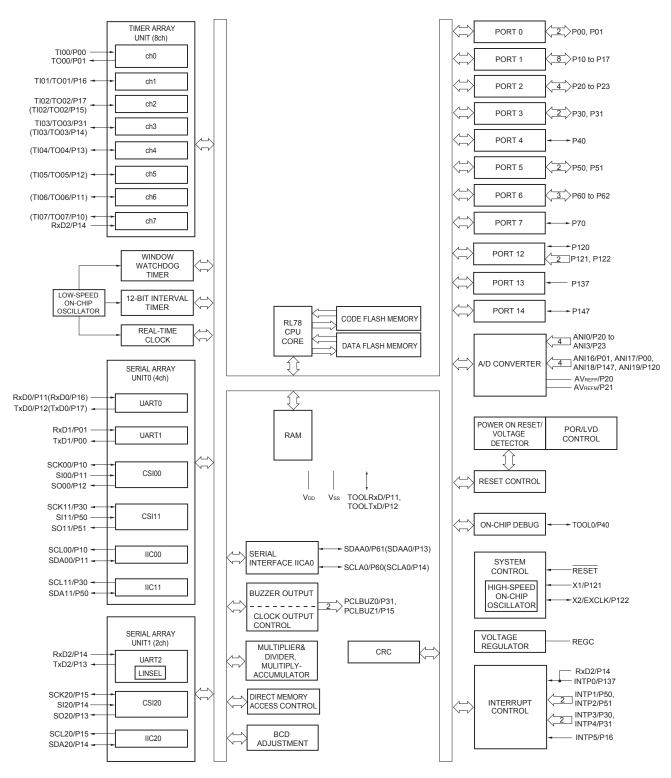
Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to V_{ss} .

1.3.12 80-pin products

- 80-pin plastic LQFP (14 \times 14 mm, 0.65 mm pitch)
- 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)



Cautions 1. Make EVsso pin the same potential as Vss pin.

- 2. Make VDD pin the potential that is higher than EVDD0 pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the V_{SS} and EV_{SS0} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.5 32-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

- The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).
- 4. When setting to PIOR = 1

													
Ite	m	20-	pin	24-	pin	25-	pin	30-	pin	32-	-pin	36	-pin
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	
Clock output/buzze	er output	-	_		1		1		2		2		2
						, 1.25 Mł) MHz op		ИHz, 5 M	Hz, 10 I	ИНz			
8/10-bit resolution	A/D converter	6 chanr	nels	6 chanı	nels	6 chanr	nels	8 chanr	nels	8 chanı	nels	8 chan	nels
Serial interface		 CSI: CSI: [30-pin, CSI: CSI: CSI: (36-pin) CSI: CSI: CSI: CSI: 	1 chann 1 chann 32-pin 1 chann 1 chann 1 chann product 1 chann 1 chann 1 chann	el/simplif products el/simplif el/simplif el/simplif el/simplif el/simplif	fied I ² C: fied I ² C:	1 channe 1 channe 1 channe 1 channe 1 channe 1 channe 1 channe	el/UART el/UART el/UART el/UART el/UART el/UART	: 1 chanr : 1 chanr : 1 chanr (UART s : 1 chanr : 1 chanr	nel nel supportin nel nel	-		channel	
Multiplier and divid	I ² C bus ler/multiply-		_	1 chani	nel	1 chanr	nel	1 chanı	nel	1 chanı	nel	1 chan	nel
accumulator		 16 bits 32 bits 16 bits 	– s × 16 b s ÷ 32 b s × 16 b	1 chanı its = 32 k its = 32 k	nel bits (Uns bits (Uns	1 chanr signed or	nel signed)	1		1 chanı	nel	1 chan	nel
accumulator DMA controller	ler/multiply-	16 bit: 32 bit: 16 bit: 2 chann	- s × 16 b s ÷ 32 b s × 16 b nels	1 chanı its = 32 k its = 32 k its + 32 k	nel bits (Uns bits (Uns bits = 32	1 chann signed or signed) bits (Uns	nel signed) signed o	r signed)	1	I			
accumulator	ler/multiply-	 16 bit 32 bit 16 bit 2 chann 	- s × 16 b s ÷ 32 b s × 16 b nels 3	1 chani its = 32 k its = 32 k its + 32 k	nel bits (Uns bits (Uns bits = 32 24	1 chann signed or signed) bits (Uns	nel signed) signed o 24	or signed)	27		27		27
accumulator DMA controller Vectored interrupt	ler/multiply-	 16 bit 32 bit 16 bit 2 chann 	- s × 16 b s ÷ 32 b s × 16 b nels	1 chani its = 32 k its = 32 k its + 32 k	nel bits (Uns bits (Uns bits = 32	1 chann signed or signed) bits (Uns	nel signed) signed o 24 5	or signed)	1				
accumulator DMA controller Vectored interrupt sources	ler/multiply-	 16 bit. 32 bit. 16 bit. 2 chann 2 chann 2 chann 2 chann 2 chann 9 Rese 9 Intern 9 Intern	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 chani its = 32 b its = 32 b its + 32 b its + 32 b SET pin by watc by volta by volta by volta by RAM	hel bits (Uns bits (Uns bits = 32 24 5 4 5 4 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 chann iigned or iigned) bits (Uns 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	nel signed o 24 5	r signed)	27		27		27
accumulator DMA controller Vectored interrupt sources Key interrupt	ler/multiply-	 16 bit. 32 bit. 16 bit. 2 chann 2 chann 2 chann 2 nese Interr Interr Interr Interr Interr Interr Interr Powe 	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 chani its = 32 t its = 32 t its + 32 t its + 32 t 2 SET pin by watc by powe by volta t by illega by RAM t by illega	hel bits (Uns bits (Uns bits = 32 24 5 5 4 4 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9	1 chann igned or igned) bits (Un: 2 bits (Un: 2 channel of the set ctor ctor exector ctor exector ctor exector ry access TYP.)	nel signed o 24 5	r signed)	27		27		27
accumulator DMA controller Vectored interrupt sources Key interrupt Reset	ler/multiply-	 16 bit. 32 bit. 16 bit. 2 chann 2 chann 2 chann 2 nese Interr Interr Interr Interr Interr Interr Interr Powe 	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 channel its = 32 b its = 32 b its = 32 b its + 32 b SET pin by watc by volta by volta by illega by illega set: 1 rreset: 1	hel bits (Uns bits (Uns bits = 32 24 5 24 5 4 5 4 5 4 5 4 5 24 5 5 1 5 1 5 1 5 1 5 1 7 1 5 1 7 1 5 1 7 1 1 5 7 7 1 5 1 7 1 1 5 1 7 1 7	1 chann igned or igned) bits (Un: 2 bits (Un: 2 channel of the set ctor ctor exector ctor exector ctor exector ry access TYP.)	nel signed o 24 5 cution ™ s	r signed)	27		27		27
accumulator DMA controller Vectored interrupt sources Key interrupt Reset Power-on-reset cir	ler/multiply-	 16 bit. 32 bit. 16 bit. 2 chann 4 chann <	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 channel its = 32 b its = 32 b its = 32 b its + 32 b SET pin by watc by volta by volta by illega by illega set: 1 rreset: 1	hel bits (Uns bits (Uns bits = 32 24 5 24 5 4 5 4 5 4 5 4 5 24 5 5 1 5 1 5 1 5 1 5 1 7 1 5 1 7 1 5 1 7 1 1 5 7 7 1 5 1 7 1 1 5 1 7 1 7	1 chann signed or signed) bits (Uns bits (Uns can be channed) bits (Uns can be channed) can be channed can be channed of comparison	nel signed o 24 5 cution ™ s	r signed)	27		27		27
accumulator DMA controller Vectored interrupt sources Key interrupt Reset Power-on-reset cir Voltage detector	ler/multiply-	 16 bit. 32 bit. 16 bit. 2 chann 4 chann 4 chann 5 chann 6 chann 7 chann <	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 channel its = 32 b its = 32 b its = 32 b its + 32 b SET pin by watc by volta by volta by illega by illega set: 1 rreset: 1	hel bits (Uns bits (Uns bits = 32 24 5 4 5 4 5 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 chann igned or igned) bits (Unstantional bits (Unstantional 2 2 	nel signed o 24 5 cution ™ s	r signed)	27		27		27
accumulator DMA controller Vectored interrupt sources Key interrupt Reset Power-on-reset cir Voltage detector On-chip debug fur Power supply volta	Internal External cuit age	 16 bit. 32 bit. 16 bit. 2 chann 4 chann 5 chann 7 chann <	$\frac{-}{s \times 16 \text{ b}}$ $\frac{s \times 16 \text{ b}}{s \times 32 \text{ b}}$ $\frac{s \times 16 \text{ b}}{s \times 16 \text{ b}}$	1 chann its = 32 t its = 32 t its = 32 t its + 32 t 2 SET pin t by watc by volta t by illega by RAM t by illega set: 1 reset: 1 f v ($T_a = -$ V ($T_a = -$	nel pits (Uns pits (Uns pits = 32 24 5 hdog tim er-on-res ge detect al instruct l parity e al-memo l.51 V (1 l.50 V (1 l.63 V to l.63 V to -40 to +1 40 to +1	1 chann igned or igned) bits (Unstantional bits (Unstantional constantional	tel signed o 24 5 cution [№] s	r signed)	27 6		27		27
accumulator DMA controller Vectored interrupt sources Key interrupt Reset Power-on-reset cir Voltage detector On-chip debug fur	Internal External cuit age	• 16 bit • 32 bit • 16 bit 2 chann 2 • Rese • Interr • Interr • Interr • Interr • Interr • Interr • Risin • Rese • Interr • Interr • Interr • Rese • Interr • Interr • Interr • Powe • Risin • Fallin Provide V_{DD} = 1 V_{DD} = 2. T_A = 40	$\frac{-}{s \times 16 \text{ b}}$ $\frac{s \times 16 \text{ b}}{s \times 32 \text{ b}}$ $\frac{s \times 16 \text{ b}}{s \times 16 \text{ b}}$ $s \times 1$	1 channel its = 32 t its = 32 t its = 32 t its = 32 t its + 32 t its + 32 t SET pin by watc by power by volta by illegat by illegat set: 1 it 1	nel pits (Uns pits (Uns pits = 32 24 5 hdog tim er-on-res ge detect al instruct l parity e al-memo l.51 V (T l.50 V (T l.67 V to l.63 V to -40 to +1 r40 to +1 nsumer	1 chann igned or igned) bits (Un: 2 2 her set ctor ry access rry - ry - (YP.) 0 4.06 V (0 3.98 V (B5°C)	nel signed o 24 5 cution ^{№t} s 14 stage 14 stage 14 stage	r signed)	27 6		27		27

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

[80-pin, 100-pin, 128-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

							(1/2)	
	Item	80-	•	100)-pin	128	-pin	
		R5F100Mx	R5F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx	
Code flash m	emory (KB)	96 te	512	96 t	o 512	192	to 512	
Data flash me	emory (KB)	8	_	8	-	8	-	
RAM (KB)		8 to 3	8 to 32 ^{Note 1} 8 to 32 ^{Note 1} 16 to 32 ^{Note 1}					
Address space	e	1 MB						
Main system clock	High-speed system clock	HS (High-speed HS (High-speed LS (Low-speed	mic) oscillation, I main) mode: 1 I main) mode: 1 main) mode: 1 e main) mode: 1	to 20 MHz (V_{DD} to 16 MHz (V_{DD} to 8 MHz (V_{DD} =	= 2.4 to 5.5 V), 1.8 to 5.5 V),	(EXCLK)		
	High-speed on-chip oscillator	HS (High-speed LS (Low-speed	I main) mode: 1 I main) mode: 1 main) mode: 1 e main) mode: 1	to 16 MHz (V _{DD} to 8 MHz (V _{DD} =	= 2.4 to 5.5 V), 1.8 to 5.5 V),			
Subsystem cl	ock	XT1 (crystal) os 32.768 kHz	cillation, externa	I subsystem cloc	k input (EXCLKS	i)		
Low-speed or	n-chip oscillator	15 kHz (TYP.)						
General-purp	ose register	(8-bit register \times 8) \times 4 banks						
Minimum inst	ruction execution time	0.03125 μ s (High-speed on-chip oscillator: fi μ = 32 MHz operation)						
		0.05 µs (High-speed system clock: f _{MX} = 20 MHz operation)						
		30.5 μs (Subsystem clock: fsuв = 32.768 kHz operation)						
Instruction se	t	Multiplication	btractor/logical c (8 bits \times 8 bits)		its) reset, test, and B	oolean operation), etc.	
I/O port	Total	7	74		92	1	20	
	CMOS I/O	(N-ch O.D. I/O	64 [EV _{DD} withstand le]: 21)	(N-ch O.D. I/O	82 [EV⊳⊳ withstand ge]: 24)	(N-ch O.D. I/O	10 [EV _{DD} withstand ge]: 25)	
	CMOS input		5		5		5	
	CMOS output		1		1		1	
	N-ch O.D. I/O (withstand voltage: 6 V)		4		4		4	
Timer	16-bit timer	12 cha	annels	12 ch	annels	16 ch	annels	
	Watchdog timer	1 cha	annel	1 ch	annel	1 cha	annel	
	Real-time clock (RTC)	1 cha	annel	1 ch	annel	1 cha	annel	
	12-bit interval timer (IT)	1 cha	annel	1 ch	annel	1 cha	annel	
	Timer output	12 channels (PWM outputs:	10 ^{Note 2})	12 channels (PWM outputs:	10 Note 2)	16 channels (PWM outputs:	14 Note 2)	
	RTC output	1 channel • 1 Hz (subsyster)	tem clock: fsuв =	32.768 kHz)				

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

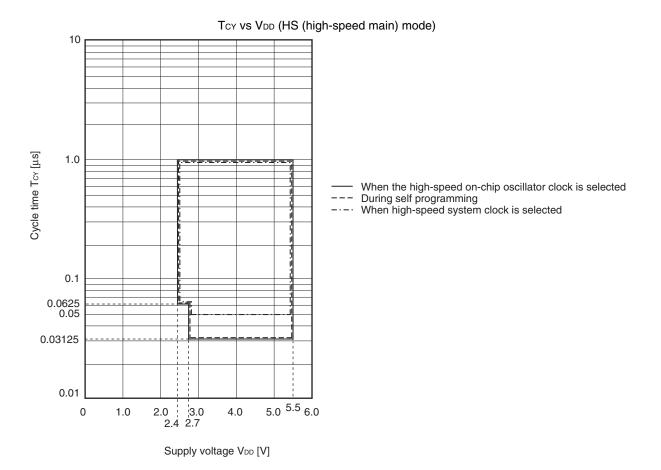
The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xJ, R5F101xJ (x = M, P): Start address FAF00H

R5F100xL, R5F101xL (x = M, P, S): Start address F7F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library** for RL78 Family (R20UT2944).

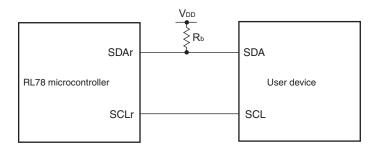
- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C

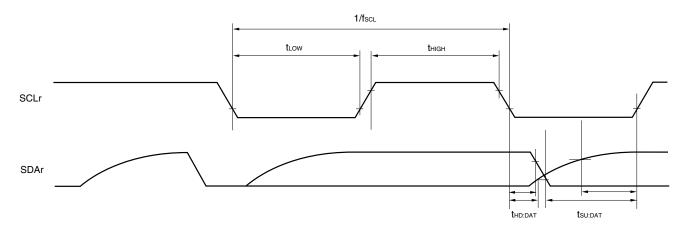


NoteThe following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$ $1.8 V \le EV_{DD0} < 2.7 V : MIN. 125 ns$ $1.6 V \le EV_{DD0} < 1.8 V : MIN. 250 ns$

 $\label{eq:rescaled} \textbf{Remark} \quad \text{f_{MCK}: Timer array unit operation clock frequency}$

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))


Minimum Instruction Execution Time during Main System Clock Operation


R01DS0131EJ0330 Rev.3.30 Mar 31, 2016

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
 h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		VLVD1	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	۷
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum p	ulse width	t∟w		300			μS
Detection d	elay time					300	μS

RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105°C)

Remark The electrical characteristics of the products G: Industrial applications (T_A = -40 to +105°C) are different from those of the products "A: Consumer applications, and D: Industrial applications". For details, refer to 3.1 to 3.10.

3.1 Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		–0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	–0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	–0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V_{DD} +0.3 $^{\text{Note 1}}$	V
Input voltage	VI1	P00 to P07, P10 to P17, P30 to P37, P40 to P47,	-0.3 to EV _{DD0} +0.3	V
		P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	and –0.3 to V_{DD} +0.3 ^{Note 2}	
	V _{I2}	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	Voi	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147		V
	V ₀₂	P20 to P27, P150 to P156	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANI16 to ANI26	-0.3 to EV_DD0 +0.3 and -0.3 to AV_{REF}(+) +0.3 $^{\text{Notes 2, 3}}$	V
	Vai2	ANI0 to ANI14	-0.3 to V_DD +0.3 and -0.3 to AV_{REF}(+) +0.3^{Notes 2, 3}	V

Absolute Maximum Ratings (T_A = 25°C) (1/2)

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - **3.** Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - **3.** Vss : Reference voltage

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVDDO				1	μA
	Ілна	P20 to P27, P137, P150 to P156, RESET	$V_{I} = V_{DD}$				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low			Vi = EVsso				-1	μA
	Ilile	P20 to P27, P137, P150 to P156, RESET	VI = Vss				-1	μA
	Ililis	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVsso	, In input port	10	20	100	kΩ

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or Vss, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz

2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V@1 MHz to 16 MHz

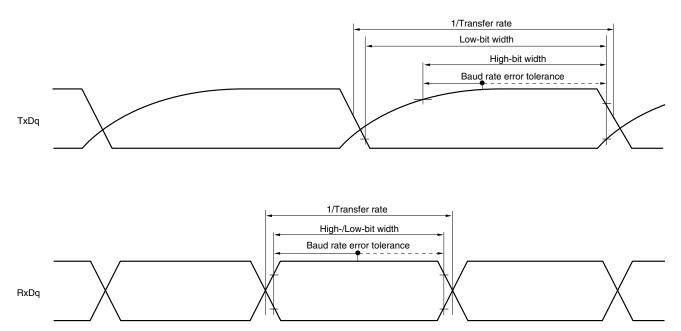
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	FIL Note 1				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	IT Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter	ADC Notes 1, 6	When conversion	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.3	1.7	mA
operating current	Notes 1, 6	at maximum speed	Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		0.5	0.7	mA
A/D converter reference voltage current	ADREF Note 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	LVD Notes 1, 7				0.08		μA
Self programming operating current	FSP Notes 1, 9				2.50	12.20	mA
BGO operating current	BGO Notes 1, 8				2.50	12.20	mA
SNOOZE	Isnoz	ADC operation	The mode is performed Note 10		0.50	1.10	mA
operating current	Note 1		The A/D conversion operations are performed, Loe voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		1.20	2.04	mA
		CSI/UART operatio	on		0.70	1.54	mA

(3) Peripheral Functions (Common to all products) (TA = -40 to $+105^{\circ}$ C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.



- Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter is in operation.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- **9.** Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode in the RL78/G13 User's Manual.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

UART mode bit width (during communication at different potential) (reference)

 Remarks 1.
 Rb[Ω]:Communication line (TxDq) pull-up resistance,

 Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

- **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
- 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V}, \text{ Reference voltage (+)} = 10^{\circ}\text{C}, 10^{$
VDD, Reference voltage (-) = Vss)

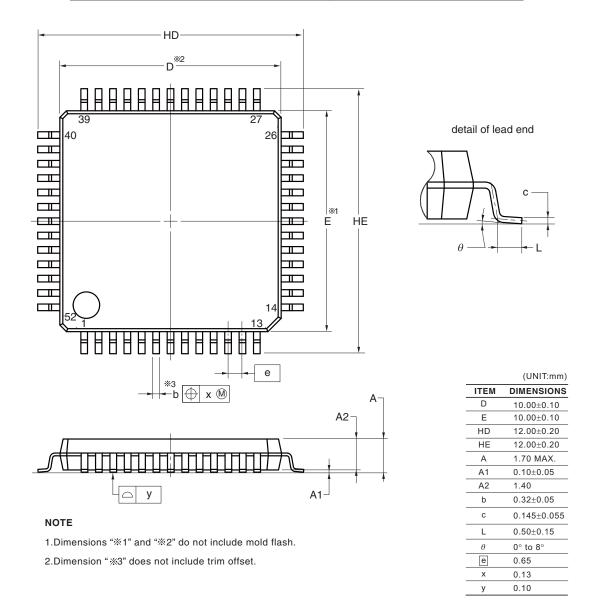
Parameter	Symbol	Conditions	S	MIN.	TYP.	MAX.	Unit
Resolution	RES		8		10	bit	
Overall error ^{Note 1}	AINL	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI0 to ANI14,	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		ANI16 to ANI26	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal reference	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \le V \text{DD} \le 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
Differential linearity error	DLE	10-bit resolution	$2.4~V \leq V \text{dd} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI14		0		VDD	V
		ANI16 to ANI26		0		EVDD0	V
		Internal reference voltage output (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)			VBGR Note 3		V
		Temperature sensor output vo (2.4 V \leq VDD \leq 5.5 V, HS (high-	0	,	VTMPS25 Note :	3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- $\ensuremath{\textbf{2.}}$ This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

4.10 52-pin Products

R5F100JCAFA, R5F100JDAFA, R5F100JEAFA, R5F100JFAFA, R5F100JGAFA, R5F100JHAFA, R5F100JJAFA, R5F100JLAFA

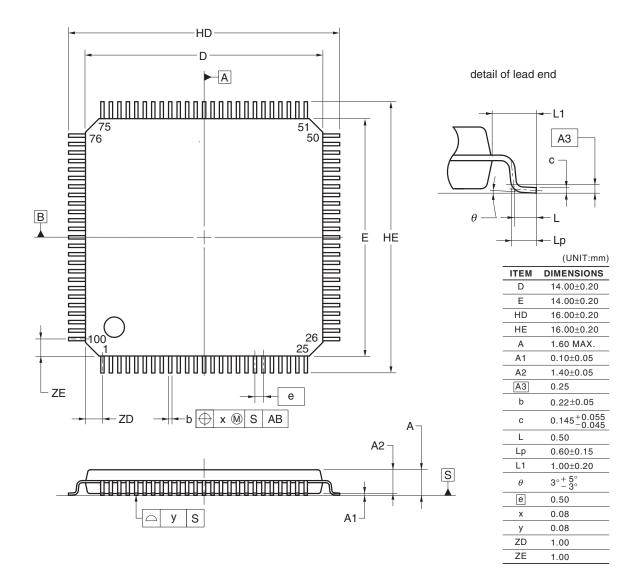

R5F101JCAFA, R5F101JDAFA, R5F101JEAFA, R5F101JFAFA, R5F101JGAFA, R5F101JHAFA, R5F101JJAFA, R5F101JLAFA

R5F100JCDFA, R5F100JDDFA, R5F100JEDFA, R5F100JFDFA, R5F100JGDFA, R5F100JHDFA, R5F100JJDFA, R5F100JLDFA

R5F101JCDFA, R5F101JDDFA, R5F101JEDFA, R5F101JFDFA, R5F101JGDFA, R5F101JHDFA, R5F101JJDFA, R5F101JLDFA

R5F100JCGFA, R5F100JDGFA, R5F100JEGFA, R5F100JFGFA, R5F100JGGFA, R5F100JHGFA, R5F100JJGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3


© 2012 Renesas Electronics Corporation. All rights reserved.

4.13 100-pin Products

R5F100PFAFB, R5F100PGAFB, R5F100PHAFB, R5F100PJAFB, R5F100PKAFB, R5F100PLAFB R5F101PFAFB, R5F101PGAFB, R5F101PHAFB, R5F101PJAFB, R5F101PKAFB, R5F101PLAFB R5F100PFDFB, R5F100PGDFB, R5F100PHDFB, R5F100PJDFB, R5F100PKDFB, R5F100PLDFB R5F101PFDFB, R5F101PGDFB, R5F101PHDFB, R5F101PJDFB, R5F101PKDFB, R5F101PLDFB R5F100PFGFB, R5F100PGGFB, R5F100PHGFB, R5F100PJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP100-14x14-0.50	PLQP0100KE-A	P100GC-50-GBR-1	0.69

©2012 Renesas Electronics Corporation. All rights reserved.

