

Welcome to E-XFL.COM

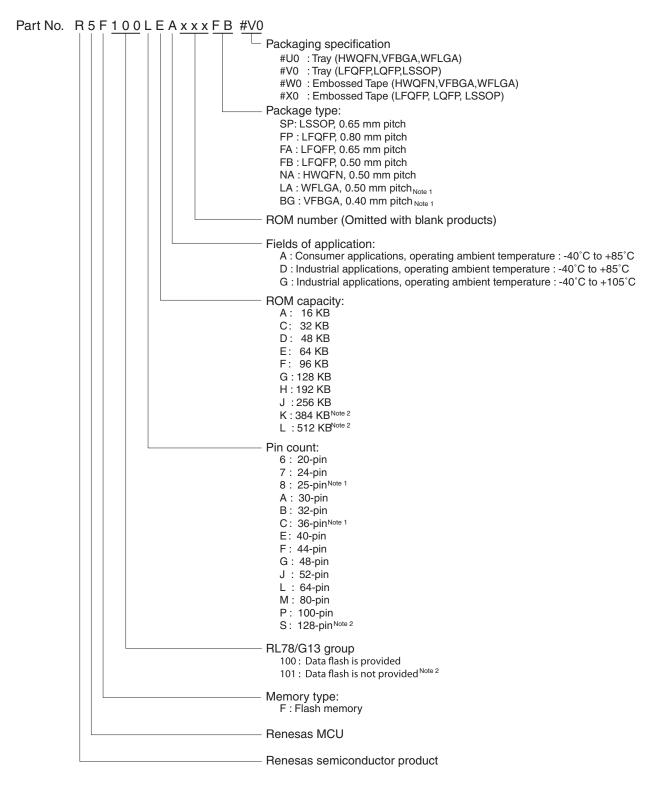
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

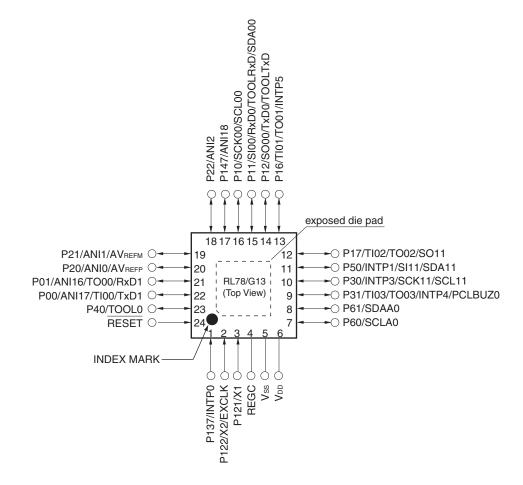
⊡XFI


Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100gegna-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

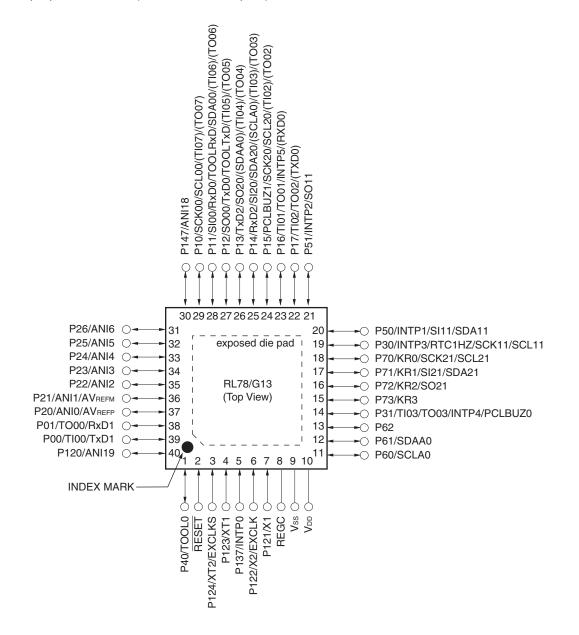
1.2 List of Part Numbers



- **Notes** 1. Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}C$)", and "G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$)"
 - **2.** Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}C$)", and "D: Industrial applications ($T_A = -40$ to $+85^{\circ}C$)"

1.3.2 24-pin products

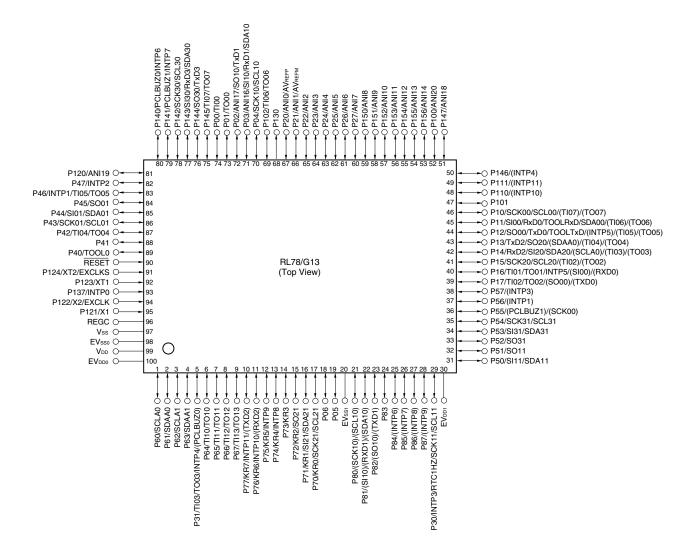
• 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)



- Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. It is recommended to connect an exposed die pad to Vss.

1.3.7 40-pin products

• 40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch)

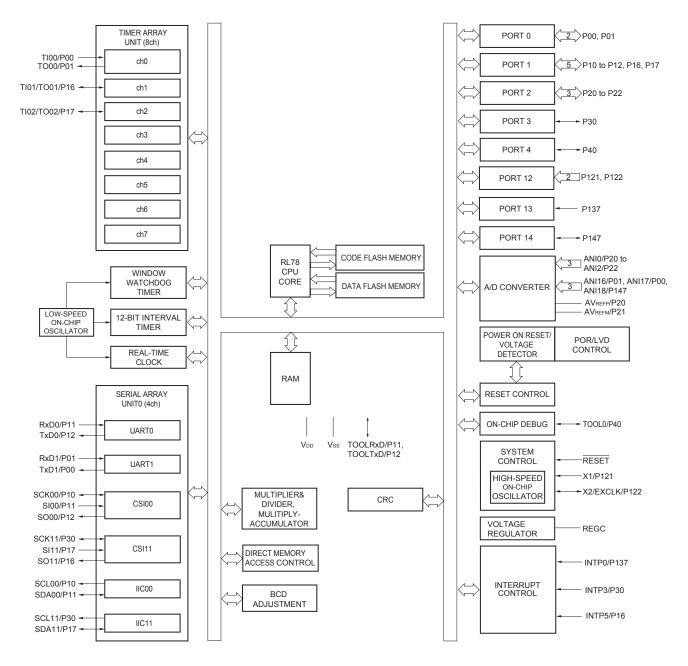


Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to $V_{ss.}$

Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin.

- 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1).
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

- 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVDD0 and EVDD1 pins and connect the Vss, EVss0 and EVss1 pins to separate ground lines.
- **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.

1.5 Block Diagram

1.5.1 20-pin products

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

						1			
Ite	m	80-pin		100					
		R5F100Mx R5	F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx		
Clock output/buzz	er output	2		:	2	(2/2) 128-pin R5F100Sx R5F101S 2 Hz 6.384 kHz, 32.768 kHz 26 channels ing LIN-bus): 1 channel 2 channels 41 13 8 			
		 2.44 kHz, 4.88 kHz (Main system clock) 256 Hz, 512 Hz, 1.0 (Subsystem clock): 	: fmain = 20 024 kHz, 2.	MHz operation) .048 kHz, 4.096 k	Hz, 8.192 kHz, 1		68 kHz		
8/10-bit resolution	A/D converter	17 channels		20 channels		26 channels			
Serial interface		[80-pin, 100-pin, 128-	pin product	ts]					
		 CSI: 2 channels/sin 	nplified I ² C: nplified I ² C:	2 channels/UAR 2 channels/UAR	T: 1 channel T (UART suppor	ting LIN-bus): 1 c	channel		
	l ² C bus	2 channels		2 channels		2 channels			
Multiplier and divid	der/multiply-	16 bits × 16 bits = 32 bits (Unsigned or signed)							
accumulator		• 32 bits ÷ 32 bits = 32 bits (Unsigned)							
		• 16 bits × 16 bits + 32	2 bits = 32	bits (Unsigned or	signed)				
DMA controller		4 channels							
Vectored	Internal	37		3	37 41		41		
interrupt sources	External	13		1	3	-	13		
Key interrupt	I	8		4	8		8		
Reset		Reset by RESET pi Internal reset by wa Internal reset by po Internal reset by vo Internal reset by ille Internal reset by RA Internal reset by ille	ttchdog tim wer-on-res Itage detec gal instruct	et tor tion execution ^{№te} rror					
Power-on-reset ci	rcuit	 Power-on-reset: 1.51 V (TYP.) Power-down-reset: 1.50 V (TYP.) 							
Voltage detector		 Rising edge : 1.67 V to 4.06 V (14 stages) Falling edge : 1.63 V to 3.98 V (14 stages) 							
On-chip debug fur	nction	Provided							
Power supply volta	age	$V_{DD} = 1.6 \text{ to } 5.5 \text{ V} (T_{A} = V_{DD} = 2.4 \text{ to } 5.5 \text{ V} (T_{A} = 0.5 \text{ V} + 0.5 \text{ V})$							
Operating ambien	t temperature	$T_A = 40 \text{ to } +85^{\circ}\text{C}$ (A: C $T_A = 40 \text{ to } +105^{\circ}\text{C}$ (G:			ndustrial applicat	ions)			

<R>

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		0.8EVDD0		EVDDO	V
	VIH2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	2.2		EVDDO	V
	ViH3 P2 ViH4 P6 ViH5 P1 ut voltage, ViL1 P0	P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EVDDO	V
			TTL input buffer $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}$	1.5		EVDD0	V
	VIH3	P20 to P27, P150 to P156	0.7V _{DD}		VDD	V	
	VIH4	P60 to P63	0.7EVDD0		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EXCL	0.8Vdd		VDD	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		0		0.2EV _{DD0}	V
	VIL2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V \leq EV _{DD0} \leq 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V \leq EV _{DD0} $<$ 4.0 V	0		0.5	V
			TTL input buffer $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}$	0		0.32	V
	VIL3	P20 to P27, P150 to P156	0		0.3Vdd	V	
	VIL4	P60 to P63		0		0.3EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EXCL	KS, RESET	0		0.2VDD	V

- Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: ~~ 1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V~$ @ 1 MHz to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

AC Timing Test Points Vін/Vон Vін/Vон Test points VIL/VOL VIL/VOL **External System Clock Timing** 1/f_{EX}/ 1/f_{EXS} texl/ texн/ **t**EXLS **t**EXHS EXCLK/EXCLKS **TI/TO Timing** t⊤ı∟ tтıн TI00 to TI07, TI10 to TI17 **1/f**то TO00 to TO07, TO10 to TO17 **Interrupt Request Input Timing t**INTL **t**INTH INTP0 to INTP11 **Key Interrupt Input Timing t**ĸĸ KR0 to KR7 **RESET** Input Timing tRSL RESET

Parameter	Symbol	C	Conditions	HS (high main)	•	LS (low main)	r-speed Mode	LV (low- main)	-	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 4/fclk	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	125		500		1000		ns
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	250		500		1000		ns
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	500		500		1000		ns
			$\begin{array}{l} 1.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	1000		1000		1000		ns
	CKn high-/low-level total 4.0 V		$\begin{array}{l} 1.6 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	—		1000		1000		ns
SCKp high-/low-level width	tкнı, tк∟ı	$4.0 \ V \leq EV_{DD0} \leq 5.5 \ V$		tксү1/2 – 12		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү1/2 – 38		tксү1/2 – 50		tксү1/2 – 50		ns
		$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DI}}$	$100 \leq 5.5 \text{ V}$	tксү1/2 – 100		tксү1/2 – 100		tксү1/2 – 100		ns
		$1.6 V \le EV_{DI}$	$500 \leq 5.5 \text{ V}$	—		tксү1/2 – 100		tксү1/2 – 100		ns
SIp setup time	tsik1	$4.0 V \le EV_{DI}$	$100 \leq 5.5 \text{ V}$	44		110		110		ns
(to SCKp↑) Note 1		$2.7 \text{ V} \leq \text{EV}_{\text{DI}}$	$00 \leq 5.5 \text{ V}$	44		110		110		ns
		$2.4 V \le EV_{DI}$	$0.0 \leq 5.5 \text{ V}$	75		110		110		ns
		$1.8 V \le EV_{DI}$	$0.0 \leq 5.5 \text{ V}$	110		110		110		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DI}}$	$0.0 \leq 5.5 \text{ V}$	220		220		220		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DI}}$	5.5 V			220		220		ns
SIp hold time	tksi1	$1.7 \text{ V} \leq \text{EV}_{\text{DI}}$	5.5 V	19		19		19		ns
(from SCKp \uparrow) Note 2		$1.6 \text{ V} \leq \text{EV}_{\text{DI}}$	5.5 V	—		19		19		ns
Delay time from t _{KS01} SCKp↓ to SOp		$\begin{array}{l} 1.7 \ V \leq EV_{DI} \\ C = 30 \ pF^{\text{Note}} \end{array}$			25		25		25	ns
output Note 3		$1.6 V \le EV_{DI}$ C = 30 pF ^{Note}			_		25		25	ns

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($T_4 = -40$ to $+85^{\circ}$ C, 1.6 V \leq EVppa = EVpp1 \leq Vpp \leq 5.5 V, Vss = EVssa = EVssa = 0 V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2) ($T_A = -40$ to $+85^{\circ}$ C, 1.6 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V)

Parameter	Symbol	Condit	tions		h-speed Mode	``	/-speed Mode	`	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү2	$4.0~V \leq EV_{\text{DD0}} \leq 5.5$	20 MHz < fмск	8/fмск		_		_		ns
Note 5		V	fмск \leq 20 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5$	16 MHz < fмск	8/fмск		_				ns
		V	fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
	$2.4~V \leq EV_{DD0} \leq 5.5~V$	$2.4 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			6/fмск and 500		6/fмск and 500		ns	
		$1.8~V \le EV_{DD0} \le 5.5~V$,	6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
	$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ $1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	$1.7~V \leq EV_{DD0} \leq 5.5~V$,	6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
		V	—		6/fмск and 1500		6/fмск and 1500		ns	
SCKp high-/low- level width	tкн2, tкL2	$4.0~V \le EV_{DD0} \le 5.5~V$,	tксү2/2 – 7		tксү2/2 - 7		tксү2/2 - 7		ns
		$2.7~V \leq EV_{DD0} \leq 5.5~V$,	tксү2/2 – 8		tксү2/2 — 8		tксү2/2 - 8		ns
		$1.8~V \le EV_{DD0} \le 5.5~V$,	tксү2/2 – 18		tксү2/2 – 18		tксү2/2 – 18		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$		tксү2/2 – 66		tксү2/2 - 66		tксү2/2 - 66		ns
		$1.6~V \le EV_{\text{DD0}} \le 5.5$	V	_		tксү2/2 - 66		tксү2/2 - 66		ns

(Notes, Caution, and Remarks are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

Parameter	Symbol	Conditions		h-speed Mode	``	/-speed Mode		-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 1}	tsıkı	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	44		110		110		ns
		$\label{eq:cb} \begin{split} C_b &= 30 \; pF, \; R_b = 1.4 \; k\Omega \\ 2.7 \; V &\leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V &\leq V_b \leq 2.7 \; V, \end{split}$	44		110		110		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$\label{eq:VDD} \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{split}$	110		110		110		ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=5.5 \text{k}\Omega$							
SIp hold time (from SCKp↓) ^{Note 1}	tksi1	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	19		19		19		ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=1.4 \text{k}\Omega$	2						
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \end{array}$	19		19		19		ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=2.7 \text{k}\Omega$							
		$\label{eq:VDD} \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{split}$	19		19		19		ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=5.5 \text{k}\Omega$							
Delay time from SCKp↑ to	tkso1	$ \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array} $		25		25		25	ns
SOp output Note 1		$C_{b}=30 \text{ pF}, \text{R}_{b}=1.4 \text{k}\Omega$							
		$\begin{array}{l} 2.7 \ V \leq EV_{\rm DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_{\rm b} \leq 2.7 \ V, \end{array}$		25		25		25	ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=2.7 \text{k}\Omega$							
		$\label{eq:VDD} \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{split}$		25		25		25	ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=5.5 \text{k}\Omega$							

		5 5 V Voo - EVo	$ = EV_{oot} = 0.V$
$T_{A} = -40$ to +85°C,		j.j v, vss = ⊑vs	$s_0 = \Box v s s_1 = U v $

Notes 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

2. Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

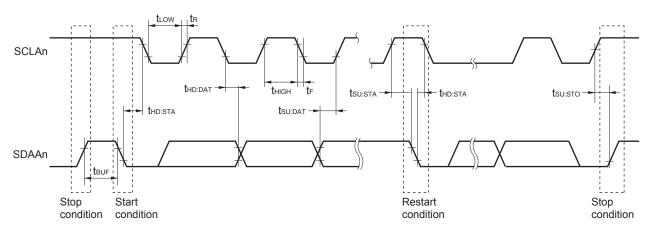
(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified l^2 C mode) (1/2) (T_A = -40 to +85°C, 1.8 V ≤ EV_{DD0} = EV_{DD1} ≤ V_{DD} ≤ 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V)

Parameter	Symbol	Conditions		h-speed Mode	``	/-speed Mode		-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD0}} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		1000 Note 1		300 Note 1		300 Note 1	kHz
		$\label{eq:linear} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 Note 1		300 Note 1		300 Note 1	kHz
				400 Note 1		300 Note 1		300 Note 1	kHz
		$\label{eq:2.7} \begin{split} & 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ & 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		400 Note 1		300 Note 1		300 ote 1	kHz
		$\begin{split} & 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ & C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		300 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	tLOW		475		1550		1550		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	475		1550		1550		ns
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	1150		1550		1550		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1150		1550		1550		ns
		$\label{eq:Vbd} \begin{split} & 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ & C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	1550		1550		1550		ns
Hold time when SCLr = "H"	tнıgн		245		610		610		ns
		$\label{eq:linear} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	200		610		610		ns
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	675		610		610		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	600		610		610		ns
		$\label{eq:linear} \begin{split} & 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ & C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{split}$	610		610		610		ns

(3) I²C fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD0} = EV_{DD1} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS0} = EV_{SS1} = 0 \text{ V})$

Parameter	Symbol	Cor	Conditions		h-speed Mode	LS (low main)	/-speed Mode	,	-voltage Mode	Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
SCLA0 clock frequency	fscL	Fast mode plus: fc∟κ≥ 10 MHz	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	1000		_	_	_	kHz	
Setup time of restart condition	tsu:sta	$2.7 V \leq EV_{DD0} \leq 5.8$	5 V	0.26		—		_	—		
Hold time ^{Note 1}	thd:sta	$2.7 V \le EV_{DD0} \le 5.8$	$.7~V \leq EV_{\text{DD0}} \leq 5.5~V$			—		_		μS	
Hold time when SCLA0 = "L"	t∟ow	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$		0.5		—		—		μS	
Hold time when SCLA0 = "H"	tніgн	$2.7 V \le EV_{DD0} \le 5.8$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			—		_		μS	
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.9$	5 V	50		_		_		μS	
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		0.45			_	_	μS	
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.9$	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			—				_	μS
Bus-free time	tвиғ	$2.7 V \le EV_{DD0} \le 5.8$	5 V	0.5		_	_	-	_	μS	


<R>

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: $C_b = 120 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

Remark n = 0, 1

2.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclк	$1.8~V \leq V_{DD} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 years Ta = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \leq \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \leq 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time Note 5	t ксү2	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	20 MHz < fмск	16/f мск		ns
			fмск ≤ 20 MHz	12/f мск		ns
		$\begin{array}{c} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	16 MHz < fмск	16/f мск		ns
			fмск \leq 16 MHz	12/fмск		ns
		$2.4~V \leq EV_{DD0} \leq 5.5~V$		16/fмск		ns
				12/fмск and 1000		ns
SCKp high-/low-level	tкн2, tк∟2	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 14		ns
width		$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 16		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 36		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsık2	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск+40		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск+60		ns
SIp hold time (from SCKp↑) ^{№te 2}	tksi2	$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск+62		ns
Delay time from SCKp↓ to SOp output № 3	tκso2 C = 30	C = 30 pF Note 4	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+66	ns
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+113	ns

(3)	During communication at same potential (CSI mode) (slave mode, SCKp external clock input)
	$(T_A = -40 \text{ to } \pm 105^{\circ}\text{C} 24 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 55 \text{ V}_{D0} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0.\text{ V}_{D1}$


- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

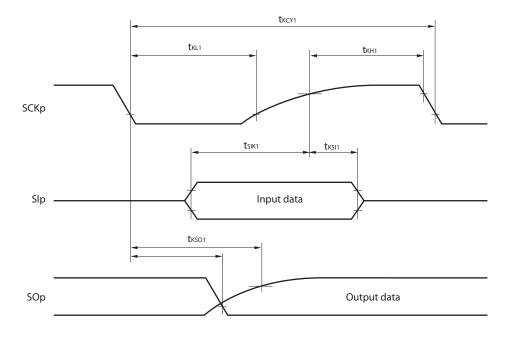
Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), p: Changel number (n = 0, ta 2) an EMA number (n = 0, 1, 4, 5, 0, 14)
 - n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)
 - 2. fmck: Serial array unit operation clock frequency

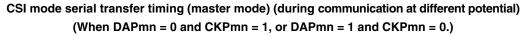
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

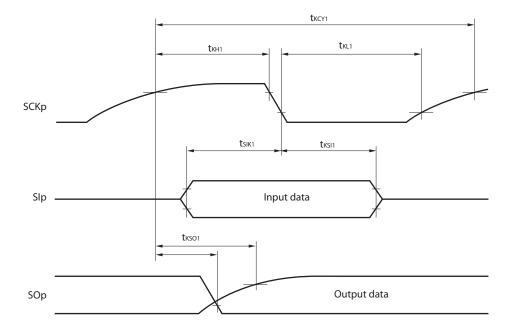
CSI mode connection diagram (during communication at same potential)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCK	p internal clock
output) (1/3)	


Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tксүı	$\label{eq:kcy1} \begin{array}{l} $t_{\text{KCY1}} \geq 4/f_{\text{CLK}}$ & $4.0 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \ 2.7 \ \text{V} \leq \text{V}_{\text{b}} \leq 4.0 $$$$$$$$$$$$$V, $$2.7 \ \text{V} \leq \text{V}_{\text{b}} \leq 4.0 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$		600		ns
			$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \\ V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1000		ns
			$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \\ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	2300		ns
SCKp high-level width	tкнı	$ \begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \\ \hline 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \\ \hline 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \\ \end{array} $		tксү1/2 – 150		ns
				tkcy1/2 - 340		ns
				tксү1/2 – 916		ns
SCKp low-level width	tĸ∟1			tксү1/2 – 24		ns
				tксү1/2 – 36		ns
				tkcy1/2 - 100		ns

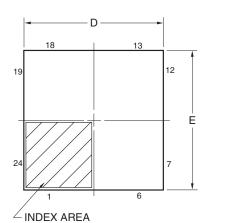
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

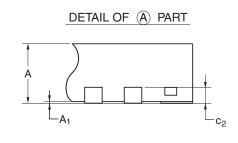

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

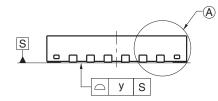

(**Remarks** are listed two pages after the next page.)

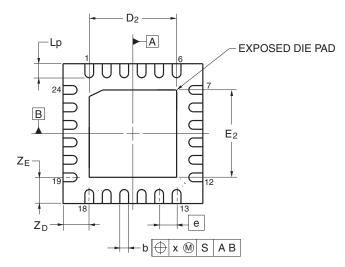
CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 00, 01, 02, 10, 12, 13), n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.


4.2 24-pin Products


R5F1007AANA, R5F1007CANA, R5F1007DANA, R5F1007EANA R5F1017AANA, R5F1017CANA, R5F1017DANA, R5F1017EANA R5F1007ADNA, R5F1007CDNA, R5F1007DDNA, R5F1007EDNA R5F1017ADNA, R5F1017CDNA, R5F1017DDNA, R5F1017EDNA R5F1007AGNA, R5F1007CGNA, R5F1007DGNA, R5F1007EGNA


JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HWQFN24-4x4-0.50	PWQN0024KE-A	P24K8-50-CAB-3	0.04


0

О

Referance	Dimension in Millimeters				
Symbol	Min	Nom	Max		
D	3.95	4.00	4.05		
E	3.95	4.00	4.05		
А			0.80		
A ₁	0.00				
b	0.18	0.25	0.30		
е		0.50			
Lp	0.30	0.40	0.50		
х			0.05		
у			0.05		
ZD		0.75			
Z _E		0.75			
C ₂	0.15	0.20	0.25		
D ₂		2.50			
E ₂		2.50			

