

Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Active                                                                          |
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 32MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, LINbus, UART/USART                                       |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                         |
| Number of I/O              | 34                                                                              |
| Program Memory Size        | 96KB (96K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | 8K x 8                                                                          |
| RAM Size                   | 8K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V                                                                     |
| Data Converters            | A/D 10x8/10b                                                                    |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 48-LQFP                                                                         |
| Supplier Device Package    | 48-LFQFP (7x7)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100gfdfb-30 |

Email: info@E-XFL.COM

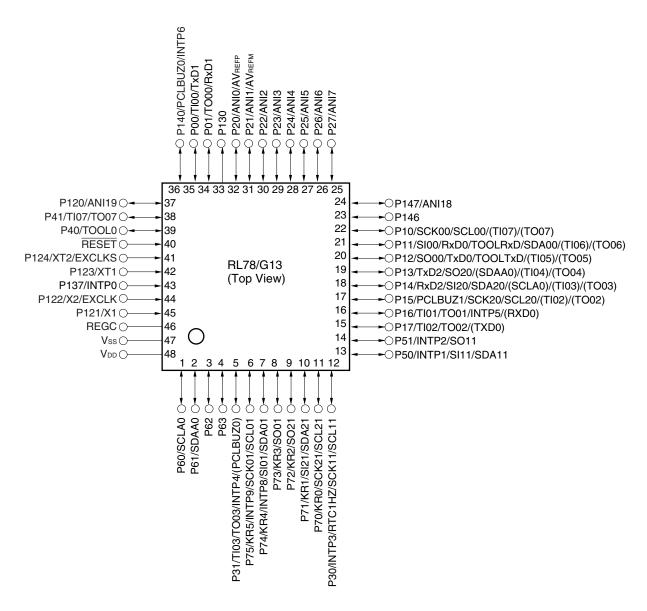
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

| Flash    | Data  | RAM   |          |          | RL78     | /G13     |          |          |
|----------|-------|-------|----------|----------|----------|----------|----------|----------|
| ROM      | flash |       | 20 pins  | 24 pins  | 25 pins  | 30 pins  | 32 pins  | 36 pins  |
| 128      | 8 KB  | 12    | -        | -        | -        | R5F100AG | R5F100BG | R5F100CG |
| KB       | -     | KB    | -        | -        | -        | R5F101AG | R5F101BG | R5F101CG |
| 96       | 8 KB  | 8 KB  | =        | =        | =        | R5F100AF | R5F100BF | R5F100CF |
| KB       | -     |       | -        | -        | -        | R5F101AF | R5F101BF | R5F101CF |
| 64       | 4 KB  | 4 KB  | R5F1006E | R5F1007E | R5F1008E | R5F100AE | R5F100BE | R5F100CE |
| KB       | =     | Note  | R5F1016E | R5F1017E | R5F1018E | R5F101AE | R5F101BE | R5F101CE |
| 48       | 4 KB  | 3 KB  | R5F1006D | R5F1007D | R5F1008D | R5F100AD | R5F100BD | R5F100CD |
| KB       | _     | 1.0.0 | R5F1016D | R5F1017D | R5F1018D | R5F101AD | R5F101BD | R5F101CD |
| 32       | 4 KB  | 2 KB  | R5F1006C | R5F1007C | R5F1008C | R5F100AC | R5F100BC | R5F100CC |
| KB       | =     |       | R5F1016C | R5F1017C | R5F1018C | R5F101AC | R5F101BC | R5F101CC |
| 16<br>KB | 4 KB  | 2 KB  | R5F1006A | R5F1007A | R5F1008A | R5F100AA | R5F100BA | R5F100CA |
| КВ       | -     |       | R5F1016A | R5F1017A | R5F1018A | R5F101AA | R5F101BA | R5F101CA |

| Flash | Data  | RAM           |          |          |          | RL78     | 3/G13    |          |          |          |
|-------|-------|---------------|----------|----------|----------|----------|----------|----------|----------|----------|
| ROM   | flash |               | 40 pins  | 44 pins  | 48 pins  | 52 pins  | 64 pins  | 80 pins  | 100 pins | 128 pins |
| 512   | 8 KB  | 32 KB<br>Note | =        | R5F100FL | R5F100GL | R5F100JL | R5F100LL | R5F100ML | R5F100PL | R5F100SL |
| KB    | -     | Note          | -        | R5F101FL | R5F101GL | R5F101JL | R5F101LL | R5F101ML | R5F101PL | R5F101SL |
| 384   | 8 KB  | 24 KB         | 1        | R5F100FK | R5F100GK | R5F100JK | R5F100LK | R5F100MK | R5F100PK | R5F100SK |
| KB    | -     |               | -        | R5F101FK | R5F101GK | R5F101JK | R5F101LK | R5F101MK | R5F101PK | R5F101SK |
| 256   | 8 KB  | 20 KB<br>Note | -        | R5F100FJ | R5F100GJ | R5F100JJ | R5F100LJ | R5F100MJ | R5F100PJ | R5F100SJ |
| KB    | _     | Note          | 1        | R5F101FJ | R5F101GJ | R5F101JJ | R5F101LJ | R5F101MJ | R5F101PJ | R5F101SJ |
| 192   | 8 KB  | 16 KB         | R5F100EH | R5F100FH | R5F100GH | R5F100JH | R5F100LH | R5F100MH | R5F100PH | R5F100SH |
| KB    | =     |               | R5F101EH | R5F101FH | R5F101GH | R5F101JH | R5F101LH | R5F101MH | R5F101PH | R5F101SH |
| 128   | 8 KB  | 12 KB         | R5F100EG | R5F100FG | R5F100GG | R5F100JG | R5F100LG | R5F100MG | R5F100PG | -        |
| KB    | -     |               | R5F101EG | R5F101FG | R5F101GG | R5F101JG | R5F101LG | R5F101MG | R5F101PG | -        |
| 96    | 8 KB  | 8 KB          | R5F100EF | R5F100FF | R5F100GF | R5F100JF | R5F100LF | R5F100MF | R5F100PF | =        |
| KB    | _     |               | R5F101EF | R5F101FF | R5F101GF | R5F101JF | R5F101LF | R5F101MF | R5F101PF | -        |
| 64    | 4 KB  | 4 KB<br>Note  | R5F100EE | R5F100FE | R5F100GE | R5F100JE | R5F100LE | =        | =        | =        |
| KB    | _     | Note          | R5F101EE | R5F101FE | R5F101GE | R5F101JE | R5F101LE | -        | =        | -        |
| 48    | 4 KB  | 3 KB Note     | R5F100ED | R5F100FD | R5F100GD | R5F100JD | R5F100LD | =        | =        | =        |
| KB    | -     |               | R5F101ED | R5F101FD | R5F101GD | R5F101JD | R5F101LD | =        | =        | =        |
| 32    | 4 KB  | 2 KB          | R5F100EC | R5F100FC | R5F100GC | R5F100JC | R5F100LC | -        | =        | -        |
| KB    | _     | 1             | R5F101EC | R5F101FC | R5F101GC | R5F101JC | R5F101LC | -        | -        | -        |
| 16    | 4 KB  | 2 KB          | R5F100EA | R5F100FA | R5F100GA | =        | =        | =        | =        | =        |
| KB    | _     | 1             | R5F101EA | R5F101FA | R5F101GA | -        | -        | -        | -        | =        |

Note The flash library uses RAM in self-programming and rewriting of the data flash memory.

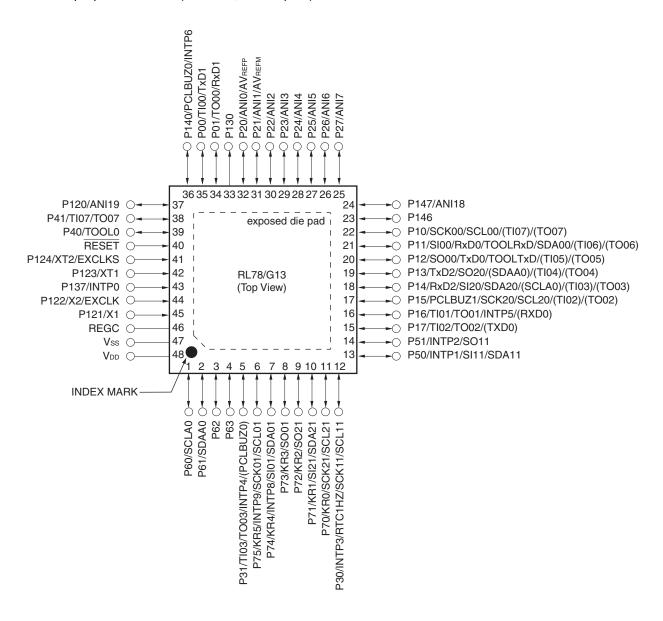

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = 6 to 8, A to C, E to G, J, L): Start address FF300H R5F100xE, R5F101xE (x = 6 to 8, A to C, E to G, J, L): Start address FEF00H R5F100xJ, R5F101xJ (x = F, G, J, L, M, P): Start address FAF00H R5F100xL, R5F101xL (x = F, G, J, L, M, P, S): Start address F7F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

# 1.3.9 48-pin products

• 48-pin plastic LFQFP (7 x 7 mm, 0.5 mm pitch)

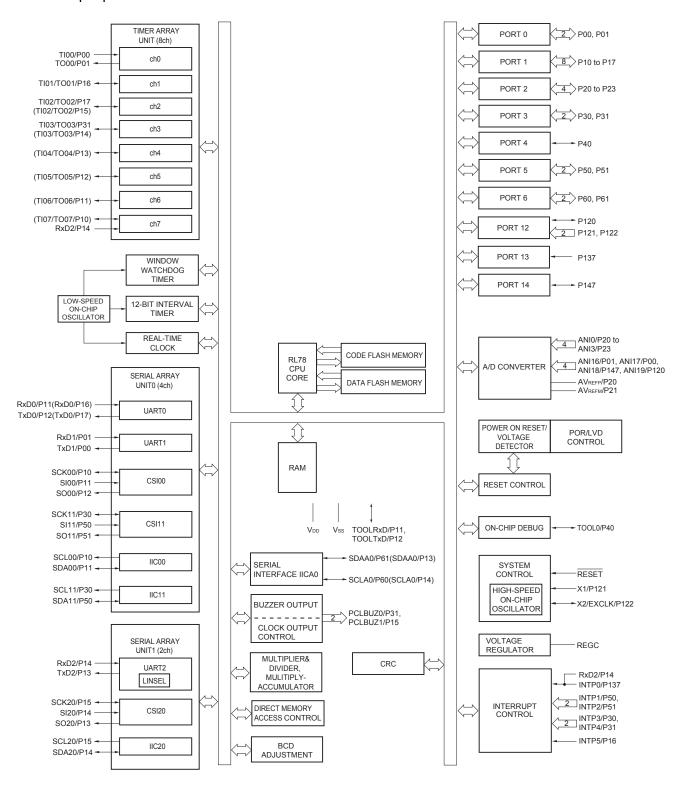



Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

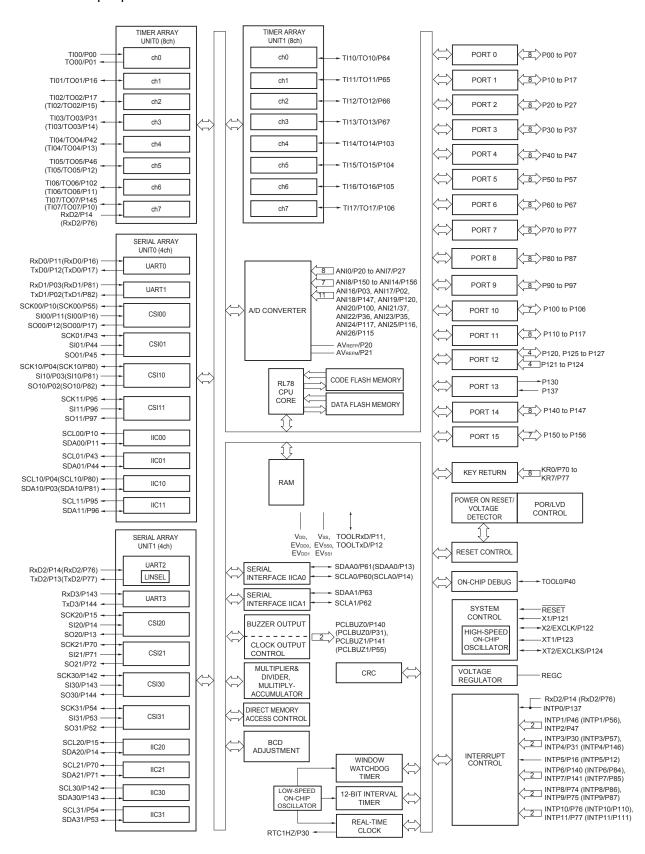
Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

• 48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch)




Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.


- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to  $V_{\rm ss.}$

# 1.5.4 30-pin products



Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

# 1.5.14 128-pin products



Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

### 1.6 Outline of Functions

[20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(1/2)

|                                           |                                         |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |                                     |                      |                                     |                                                    |                     |                                               |          | (1/2                                        | )        |
|-------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------|-------------------------------------|----------------------------------------------------|---------------------|-----------------------------------------------|----------|---------------------------------------------|----------|
|                                           | Item                                    | 20-                                                                                                                                                                                                                                                     | pin                                                                                                                                                                                                                                                                                                                                                                         | 24-                                                                                                               | pin                                 | 25                   | -pin                                | 30-                                                | pin                 | 32-                                           | pin      | 36-                                         | pin      |
|                                           |                                         | R5F1006x                                                                                                                                                                                                                                                | R5F1016x                                                                                                                                                                                                                                                                                                                                                                    | R5F1007x                                                                                                          | R5F1017x                            | R5F1008x             | R5F1018x                            | R5F100Ax                                           | R5F101Ax            | R5F100Bx                                      | R5F101Bx | R5F100Cx                                    | R5F101Cx |
| Code flash me                             | emory (KB)                              | 16 to                                                                                                                                                                                                                                                   | o 64                                                                                                                                                                                                                                                                                                                                                                        | 16 t                                                                                                              | o 64                                | 16 t                 | o 64                                | 16 to                                              | 128                 | 16 to                                         | 128      | 16 to                                       | 128      |
| Data flash me                             | mory (KB)                               | 4                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                 | -                                   | 4                    | =                                   | 4 to 8                                             | =                   | 4 to 8                                        | -        | 4 to 8                                      | =        |
| RAM (KB)                                  |                                         | 2 to                                                                                                                                                                                                                                                    | 2 to 4 <sup>Note1</sup> 2 to 4 <sup>Note1</sup> 2 to 4 <sup>Note1</sup> 2 to 12 <sup>Note1</sup> 2 to 12 <sup>Note1</sup> 2 to 12 <sup>Note1</sup>                                                                                                                                                                                                                          |                                                                                                                   |                                     |                      |                                     |                                                    |                     | 2 <sup>Note1</sup>                            |          |                                             |          |
| Address space                             | е                                       | 1 MB                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |                                     |                      |                                     |                                                    |                     |                                               |          |                                             |          |
| Main system clock                         | High-speed system clock                 | HS (Hig<br>HS (Hig<br>LS (Lov                                                                                                                                                                                                                           | X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode: 1 to 20 MHz (V <sub>DD</sub> = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (V <sub>DD</sub> = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (V <sub>DD</sub> = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (V <sub>DD</sub> = 1.6 to 5.5 V) |                                                                                                                   |                                     |                      |                                     |                                                    |                     |                                               |          |                                             |          |
|                                           | High-speed on-chip oscillator           | HS (Hig<br>LS (Lov                                                                                                                                                                                                                                      | jh-speed<br>v-speed                                                                                                                                                                                                                                                                                                                                                         | l main) m<br>main) m                                                                                              | node: 1 t<br>ode: 1 t               | :o 16 MH<br>:o 8 MHz | Iz (Vdd =                           | 2.7 to 5.<br>2.4 to 5.<br>1.8 to 5.5<br>1.6 to 5.5 | 5 V),<br>V),        |                                               |          |                                             |          |
| Subsystem clo                             |                                         | LV (Low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)  –                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |                                     |                      |                                     |                                                    |                     |                                               |          |                                             |          |
| Low-speed on                              | 15 kHz (TYP.)                           |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |                                     |                      |                                     |                                                    |                     |                                               |          |                                             |          |
| General-purpose registers                 |                                         | (8-bit register × 8) × 4 banks                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |                                     |                      |                                     |                                                    |                     |                                               |          |                                             |          |
| Minimum instr                             | ruction execution time                  | 0.03125                                                                                                                                                                                                                                                 | 5 μs (Hig                                                                                                                                                                                                                                                                                                                                                                   | h-speed                                                                                                           | on-chip                             | oscillato            | r: fін = 3                          | 2 MHz op                                           | peration            | )                                             |          |                                             |          |
|                                           |                                         | 0.05 μs (High-speed system clock: f <sub>MX</sub> = 20 MHz operation)                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |                                     |                      |                                     |                                                    |                     |                                               |          |                                             |          |
| Instruction set                           | t                                       | <ul> <li>Data transfer (8/16 bits)</li> <li>Adder and subtractor/logical operation (8/16 bits)</li> <li>Multiplication (8 bits × 8 bits)</li> <li>Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |                                     |                      |                                     |                                                    |                     |                                               |          |                                             |          |
| I/O port                                  | Total                                   | 1                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                 | 0                                   | 2                    | 21                                  | 2                                                  | 6                   | 2                                             | 8        | 3                                           | 2        |
|                                           | CMOS I/O                                | 1<br>(N-ch C<br>[Vpp wit<br>voltag                                                                                                                                                                                                                      | D.D. I/O<br>thstand                                                                                                                                                                                                                                                                                                                                                         | (N-ch C                                                                                                           | 5<br>D.D. I/O<br>thstand<br>ge]: 6) | (N-ch (              | 5<br>D.D. I/O<br>thstand<br>ge]: 6) | 2<br>(N-ch C<br>[V <sub>DD</sub> wit<br>voltag     | D.D. I/O<br>thstand | 2<br>(N-ch (<br>[V <sub>DD</sub> wi<br>voltag | thstand  | (N-ch C<br>[V <sub>DD</sub> with<br>voltage | thstand  |
|                                           | CMOS input                              | 3                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                           | ;                                                                                                                 | 3                                   | ;                    | 3                                   | 3                                                  | 3                   | ;                                             | 3        | 3                                           | 3        |
|                                           | CMOS output                             | -                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                 | -                                   |                      | 1                                   | _                                                  | -                   | -                                             | -        | -                                           | -        |
| N-ch O.D. I/O<br>(withstand voltage: 6 V) |                                         | =                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                 | 2                                   | :                    | 2                                   | 2                                                  | 2                   | (                                             | 3        | 3                                           | 3        |
| Timer                                     | 16-bit timer                            |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |                                     |                      | 8 cha                               | nnels                                              |                     |                                               |          |                                             |          |
|                                           |                                         |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |                                     | 1 cha                | annel                               |                                                    |                     |                                               |          |                                             |          |
|                                           |                                         |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |                                     | 1 chan               | nel Note 2                          |                                                    |                     |                                               |          |                                             |          |
|                                           |                                         |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |                                     | 1 cha                | annel                               |                                                    |                     |                                               |          |                                             |          |
|                                           | 12-bit interval timer (IT) Timer output |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                             | 3 channels (PWM outputs: 3 Note 3)  4 channels (PWM outputs: 3 Note 3), 8 channels (PWM outputs: 7 Note 3) Note 4 |                                     |                      |                                     |                                                    |                     |                                               |          |                                             |          |
|                                           | RTC output                              |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |                                     |                      | =                                   | =                                                  |                     |                                               |          |                                             |          |
| · · · · · · · · · · · · · · · · · · ·     |                                         |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |                                     |                      |                                     |                                                    |                     |                                               |          |                                             |          |

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = 6 to 8, A to C): Start address FF300H R5F100xE, R5F101xE (x = 6 to 8, A to C): Start address FEF00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

2. Only the constant-period interrupt function when the low-speed on-chip oscillator clock (fill) is selected

#### 2.3 DC Characteristics

## 2.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/5)$ 

| Items                                     | Symbol       | Conditions                                                                                                                                                                                                |                                  | MIN. | TYP. | MAX.             | Unit |
|-------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------|------|------------------|------|
| Output current,<br>high <sup>Note 1</sup> | Іон1         | Per pin for P00 to P07, P10 to P17,<br>P30 to P37, P40 to P47, P50 to P57, P64<br>to P67, P70 to P77, P80 to P87, P90 to<br>P97, P100 to P106,<br>P110 to P117, P120, P125 to P127,<br>P130, P140 to P147 | $1.6~V \le EV_{DD0} \le 5.5~V$   |      |      | -10.0<br>Note 2  | mA   |
|                                           |              | Total of P00 to P04, P07, P32 to P37,                                                                                                                                                                     | $4.0~V \leq EV_{DD0} \leq 5.5~V$ |      |      | -55.0            | mA   |
|                                           |              | P40 to P47, P102 to P106, P120,<br>P125 to P127, P130, P140 to P145                                                                                                                                       | $2.7~V \leq EV_{DD0} < 4.0~V$    |      |      | -10.0            | mA   |
|                                           |              | $(When duty \le 70\%^{Note 3})$                                                                                                                                                                           | $1.8~V \leq EV_{DD0} < 2.7~V$    |      |      | -5.0             | mA   |
|                                           |              | 1                                                                                                                                                                                                         | $1.6~V \leq EV_{DD0} < 1.8~V$    |      |      | -2.5             | mA   |
|                                           |              | Total of P05, P06, P10 to P17, P30, P31,                                                                                                                                                                  |                                  |      |      | -80.0            | mA   |
|                                           |              | P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to                                                                                                                           | $2.7~V \leq EV_{DD0} < 4.0~V$    |      |      | -19.0            | mA   |
|                                           |              | P117, P146, P147                                                                                                                                                                                          | $1.8~V \leq EV_{DD0} < 2.7~V$    |      |      | -10.0            | mA   |
|                                           |              | (When duty $\leq 70\%$ Note 3)                                                                                                                                                                            | $1.6~V \leq EV_{DD0} < 1.8~V$    |      |      | -5.0             | mA   |
|                                           |              | Total of all pins (When duty ≤ 70% Note 3)                                                                                                                                                                | $1.6~V \leq EV_{DD0} \leq 5.5~V$ |      |      | -135.0<br>Note 4 | mA   |
|                                           | <b>І</b> он2 | Per pin for P20 to P27, P150 to P156                                                                                                                                                                      | $1.6~V \leq V_{DD} \leq 5.5~V$   |      |      | -0.1 Note 2      | mA   |
|                                           |              | Total of all pins (When duty ≤ 70% Note 3)                                                                                                                                                                | $1.6~V \leq V_{DD} \leq 5.5~V$   |      |      | -1.5             | mA   |

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV<sub>DD0</sub>, EV<sub>DD1</sub>, V<sub>DD</sub> pins to an output pin.
  - 2. However, do not exceed the total current value.
  - 3. Specification under conditions where the duty factor  $\leq 70\%$ .

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

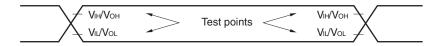
• Total output current of pins =  $(IOH \times 0.7)/(n \times 0.01)$ 

<Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins =  $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$  mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

**4.** The applied current for the products for industrial application (R5F100xxDxx, R5F101xxDxx, R5F100xxGxx) is -100 mA.


Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



# 2.5 Peripheral Functions Characteristics

## **AC Timing Test Points**



## 2.5.1 Serial array unit

## (1) During communication at same potential (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ 

| Parameter            | Symbol |            | Conditions                                                        | \ \  | h-speed<br>Mode  | LS (low-speed main) Mode |                  | LV (low-voltage main) Mode |        | Unit |
|----------------------|--------|------------|-------------------------------------------------------------------|------|------------------|--------------------------|------------------|----------------------------|--------|------|
|                      |        |            |                                                                   | MIN. | MAX.             | MIN.                     | MAX.             | MIN.                       | MAX.   |      |
| Transfer rate Note 1 |        | 2.4 V≤ EV  | odo ≤ 5.5 V                                                       |      | fMCK/6<br>Note 2 |                          | fмск/6           |                            | fмск/6 | bps  |
|                      |        |            | Theoretical value of the maximum transfer rate fmck = fclk Note 3 |      | 5.3              |                          | 1.3              |                            | 0.6    | Mbps |
|                      |        | 1.8 V ≤ EV | $_{\text{DD0}} \leq 5.5 \text{ V}$                                |      | fMCK/6<br>Note 2 |                          | fмск/6           |                            | fмск/6 | bps  |
|                      |        |            | Theoretical value of the maximum transfer rate fmck = fclk Note 3 |      | 5.3              |                          | 1.3              |                            | 0.6    | Mbps |
|                      |        | 1.7 V ≤ EV | $000 \le 5.5 \text{ V}$                                           |      | fMCK/6<br>Note 2 |                          | fMCK/6<br>Note 2 |                            | fмск/6 | bps  |
|                      |        |            | Theoretical value of the maximum transfer rate fMCK = fCLK Note 3 |      | 5.3              |                          | 1.3              |                            | 0.6    | Mbps |
|                      |        | 1.6 V ≤ EV | $000 \le 5.5 \text{ V}$                                           | _    | _                |                          | fMCK/6<br>Note 2 |                            | fмск/6 | bps  |
|                      |        |            | Theoretical value of the maximum transfer rate fMCK = fCLK Note 3 | _    |                  |                          | 1.3              |                            | 0.6    | Mbps |

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The following conditions are required for low voltage interface when EVDDO < VDD.

 $2.4 \text{ V} \le \text{EV}_{\text{DDO}} < 2.7 \text{ V} : \text{MAX. } 2.6 \text{ Mbps}$   $1.8 \text{ V} \le \text{EV}_{\text{DDO}} < 2.4 \text{ V} : \text{MAX. } 1.3 \text{ Mbps}$   $1.6 \text{ V} \le \text{EV}_{\text{DDO}} < 1.8 \text{ V} : \text{MAX. } 0.6 \text{ Mbps}$ 

3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 32 MHz (2.7 V  $\leq$  V<sub>DD</sub>  $\leq$  5.5 V)

 $16~MHz~(2.4~V \leq V_{DD} \leq 5.5~V)$ 

LS (low-speed main) mode: 8 MHz (1.8 V  $\leq$  VDD  $\leq$  5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V  $\leq$  VDD  $\leq$  5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

# (3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

| Parameter                       | Symbol        | C                                                                     | Conditions                                                                                       | HS (high<br>main) | •    | LS (low<br>main) | •    | LV (low-<br>main) | -voltage<br>Mode | Unit |
|---------------------------------|---------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------|------|------------------|------|-------------------|------------------|------|
|                                 |               |                                                                       |                                                                                                  | MIN.              | MAX. | MIN.             | MAX. | MIN.              | MAX.             |      |
| SCKp cycle time                 | tkcy1         | tксү1 ≥ 4/fс∟к                                                        | $2.7~V \leq EV_{DD0} \leq 5.5$ V                                                                 | 125               |      | 500              |      | 1000              |                  | ns   |
|                                 |               |                                                                       | $2.4~V \leq EV_{DD0} \leq 5.5$ V                                                                 | 250               |      | 500              |      | 1000              |                  | ns   |
|                                 |               |                                                                       | $1.8~V \le EV_{DD0} \le 5.5$ V                                                                   | 500               |      | 500              |      | 1000              |                  | ns   |
|                                 |               |                                                                       | $1.7~V \le EV_{DD0} \le 5.5$ V                                                                   | 1000              |      | 1000             |      | 1000              |                  | ns   |
|                                 |               |                                                                       | $1.6~V \le EV_{DD0} \le 5.5$ V                                                                   | _                 |      | 1000             |      | 1000              |                  | ns   |
| SCKp high-/low-level width      | tkhi,<br>tkli | 4.0 V ≤ EV <sub>D</sub>                                               | 00 ≤ 5.5 V                                                                                       | tксү1/2 –<br>12   |      | tксу1/2 —<br>50  |      | tксү1/2 –<br>50   |                  | ns   |
|                                 |               | 2.7 V ≤ EV <sub>D</sub>                                               | 00 ≤ 5.5 V                                                                                       | tксү1/2 –<br>18   |      | tксу1/2 —<br>50  |      | tксү1/2 –<br>50   |                  | ns   |
|                                 |               | $2.4~V \leq EV_{DD0} \leq 5.5~V$                                      |                                                                                                  | tксү1/2 –<br>38   |      | tксу1/2 —<br>50  |      | tксү1/2 —<br>50   |                  | ns   |
|                                 |               | 1.8 V ≤ EV <sub>D</sub>                                               | 00 ≤ 5.5 V                                                                                       | tксү1/2 —<br>50   |      | tксү1/2 —<br>50  |      | tксү1/2 –<br>50   |                  | ns   |
|                                 |               | 1.7 V ≤ EV <sub>D</sub>                                               | 00 ≤ 5.5 V                                                                                       | tксу1/2 —<br>100  |      | tксу1/2 —<br>100 |      | tксу1/2 —<br>100  |                  | ns   |
|                                 |               | 1.6 V ≤ EVD                                                           | <sub>00</sub> ≤ 5.5 V                                                                            | _                 |      | tксу1/2 —<br>100 |      | tксу1/2 —<br>100  |                  | ns   |
| SIp setup time                  | tsıĸı         | 4.0 V ≤ EV <sub>DI</sub>                                              | 00 ≤ 5.5 V                                                                                       | 44                |      | 110              |      | 110               |                  | ns   |
| (to SCKp↑)                      |               | 2.7 V ≤ EV <sub>DI</sub>                                              | 00 ≤ 5.5 V                                                                                       | 44                |      | 110              |      | 110               |                  | ns   |
|                                 |               | 2.4 V ≤ EV <sub>DI</sub>                                              | 00 ≤ 5.5 V                                                                                       | 75                |      | 110              |      | 110               |                  | ns   |
|                                 |               | 1.8 V ≤ EV <sub>DI</sub>                                              | oo ≤ 5.5 V                                                                                       | 110               |      | 110              |      | 110               |                  | ns   |
|                                 |               | 1.7 V ≤ EV <sub>DI</sub>                                              | oo ≤ 5.5 V                                                                                       | 220               |      | 220              |      | 220               |                  | ns   |
|                                 |               | 1.6 V ≤ EV <sub>DI</sub>                                              | 00 ≤ 5.5 V                                                                                       | _                 |      | 220              |      | 220               |                  | ns   |
| SIp hold time                   | tksi1         | 1.7 V ≤ EV <sub>DI</sub>                                              | 00 ≤ 5.5 V                                                                                       | 19                |      | 19               |      | 19                |                  | ns   |
| (from SCKp↑) Note 2             |               | 1.6 V ≤ EV <sub>DI</sub>                                              | 00 ≤ 5.5 V                                                                                       | _                 |      | 19               |      | 19                |                  | ns   |
| Delay time from<br>SCKp↓ to SOp | tkso1         |                                                                       | $1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ $C = 30 \text{ pF}^{\text{Note 4}}$ |                   | 25   |                  | 25   |                   | 25               | ns   |
| output Note 3                   |               | $1.6 \text{ V} \leq \text{EV}_{DI}$ $C = 30 \text{ pF}^{\text{Note}}$ |                                                                                                  |                   | _    |                  | 25   |                   | 25               | ns   |

**Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

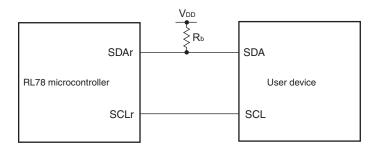
220

220

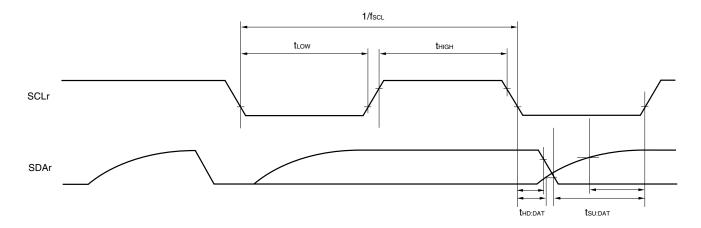
# (4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ Parameter Symbo Conditions HS (high-speed LS (low-speed main) LV (low-voltage main) Unit main) Mode ı Mode Mode MIN. MIN. MAX. MIN. MAX. MAX. Slp setup time tsik2  $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$  $1/f_{MCK}+2$ 1/fmck+30 1/fmck+30 ns (to SCKp↑) Note 1 n  $1.8~V \leq EV_{DD0} \leq 5.5~V$ 1/fмск+3 1/fмск+30 1/fмcк+30 ns 0  $1.7~V \leq EV_{DD0} \leq 5.5~V$ 1/fмск+4  $1/f_{MCK}+40$  $1/f_{MCK}+40$ ns 0 1/fмск+40 1/fмск+40  $1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$ ns Slp hold time tks12  $1.8~V \leq EV_{DD0} \leq 5.5~V$ 1/fмск+3 1/fмcк+31 1/fмcк+31 ns (from SCKp↑) 1  $1.7~V \leq EV_{DD0} \leq 5.5~V$ 1/fмcк+ 1/fмск+ 1/fмcк+ ns 250 250 250  $1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$ 1/fmck+ 1/fмcк+ ns 250 250 2/f<sub>MCK+</sub> 2/f<sub>MCK+</sub> Delay time tks02 C = 30 $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fmck+ ns pF Note 4 from SCKp↓ to 44 110 110 SOp output Note  $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fmck+ 2/fмcк+ 2/fmck+ ns 110 75 110 2/fмск+  $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fмск+ 2/fмск+ ns 110 110 110  $1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fmck+ 2/fmck+ 2/fмск+ ns 220 220 220  $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fмск+ 2/fмск+ ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to  $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 4. C is the load capacitance of the SOp output lines.
  - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

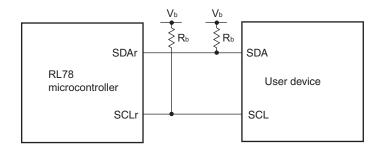

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)
  - 2. fmck: Serial array unit operation clock frequency

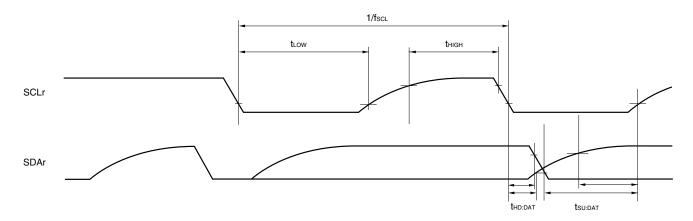

    (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

    n: Channel number (mn = 00 to 03, 10 to 13))

# Simplified I<sup>2</sup>C mode mode connection diagram (during communication at same potential)




## Simplified I<sup>2</sup>C mode serial transfer timing (during communication at same potential)




- **Remarks 1.** R<sub>b</sub>[Ω]:Communication line (SDAr) pull-up resistance, C<sub>b</sub>[F]: Communication line (SDAr, SCLr) load capacitance
  - 2. r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14), h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
  - fmck: Serial array unit operation clock frequency
     (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),
    - n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

# Simplified I<sup>2</sup>C mode connection diagram (during communication at different potential)



## Simplified I<sup>2</sup>C mode serial transfer timing (during communication at different potential)



- **Remarks 1.**  $R_b[\Omega]$ :Communication line (SDAr, SCLr) pull-up resistance,  $C_b[F]$ : Communication line (SDAr, SCLr) load capacitance,  $V_b[V]$ : Communication line voltage
  - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
  - 3. fmck: Serial array unit operation clock frequency
    (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
    n: Channel number (mn = 00, 01, 02, 10, 12, 13)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$  (4/5)

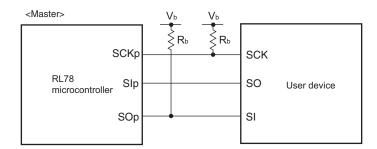
| Items                   | Symbol           | Conditions                                                                                     |                                                                                                    | MIN.                    | TYP. | MAX. | Unit |
|-------------------------|------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------|------|------|------|
| Output voltage,<br>high | V <sub>OH1</sub> | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64                                | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = $-3.0 \text{ mA}$             | EV <sub>DD0</sub> – 0.7 |      |      | ٧    |
|                         |                  | to P67, P70 to P77, P80 to P87,<br>P90 to P97, P100 to P106, P110 to                           | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -2.0 \text{ mA}$ | EV <sub>DD0</sub> – 0.6 |      |      | ٧    |
|                         |                  | I P140 to P147                                                                                 | $2.4 \ V \leq EV_{DD0} \leq 5.5 \ V,$ Iон1 = $-1.5 \ mA$                                           | EV <sub>DD0</sub> – 0.5 |      |      | V    |
|                         | V <sub>OH2</sub> | P20 to P27, P150 to P156                                                                       | $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ Iон2 = $-100 \ \mu \text{ A}$                 | V <sub>DD</sub> – 0.5   |      |      | V    |
| Output voltage,<br>low  | V <sub>OL1</sub> | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64                                | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 8.5~mA$                                               |                         |      | 0.7  | V    |
|                         |                  | DOO 4- DOZ D100 4- D100 D110 4-                                                                | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 3.0~mA$                                               |                         |      | 0.6  | V    |
|                         |                  | P140 to P147                                                                                   | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$                                               |                         |      | 0.4  | V    |
|                         |                  |                                                                                                | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 0.6~mA$                                               |                         |      | 0.4  | V    |
|                         | V <sub>OL2</sub> | P20 to P27, P150 to P156                                                                       | $2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$ $\text{Iol2} = 400 \ \mu \text{ A}$         |                         |      | 0.4  | V    |
|                         | Vоцз             | P60 to P63                                                                                     | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 15.0~mA$                                              |                         |      | 2.0  | V    |
|                         |                  |                                                                                                | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 5.0~mA$                                               |                         |      | 0.4  | V    |
|                         |                  | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $\text{Iol3} = 3.0 \text{ mA}$ |                                                                                                    |                         | 0.4  | V    |      |
|                         |                  |                                                                                                | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 2.0~mA$                                               |                         |      | 0.4  | V    |

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
  - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
  - 3. When high-speed system clock and subsystem clock are stopped.
  - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
  - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:  $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$  to 32 MHz  $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$  to 16 MHz


- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fin: High-speed on-chip oscillator clock frequency
  - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
  - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

# (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (Ta = -40 to $+105^{\circ}$ C, 2.4 V $\leq$ EV<sub>DD0</sub> $\leq$ V<sub>DD</sub> $\leq$ 5.5 V, Vss = EV<sub>SS0</sub> = 0 V) (2/2)

| Parameter | Symbol                 |                        |                                           | Conditions                                   |                         | MIN.                                | TYP.              | MAX.  | Unit |      |    |  |  |  |                        |                      |  |      |      |    |
|-----------|------------------------|------------------------|-------------------------------------------|----------------------------------------------|-------------------------|-------------------------------------|-------------------|-------|------|------|----|--|--|--|------------------------|----------------------|--|------|------|----|
| Supply    | I <sub>DD2</sub>       | HALT                   | HS (high-                                 | fih = 32 MHz Note 4                          | V <sub>DD</sub> = 5.0 V |                                     | 0.54              | 2.90  | mA   |      |    |  |  |  |                        |                      |  |      |      |    |
| current   | Note 2                 | mode                   | speed main)<br>mode Note 7                |                                              | V <sub>DD</sub> = 3.0 V |                                     | 0.54              | 2.90  | mA   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        |                                           | fih = 24 MHz Note 4                          | V <sub>DD</sub> = 5.0 V |                                     | 0.44              | 2.30  | mA   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        |                                           |                                              | V <sub>DD</sub> = 3.0 V |                                     | 0.44              | 2.30  | mA   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        |                                           | fih = 16 MHz Note 4                          | V <sub>DD</sub> = 5.0 V |                                     | 0.40              | 1.70  | mA   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        |                                           |                                              | V <sub>DD</sub> = 3.0 V |                                     | 0.40              | 1.70  | mA   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        | HS (high-                                 | $f_{MX} = 20 \text{ MHz}^{Note 3},$          | Square wave input       |                                     | 0.28              | 1.90  | mA   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        | speed main)<br>mode Note 7                | V <sub>DD</sub> = 5.0 V                      | Resonator connection    |                                     | 0.45              | 2.00  | mA   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        |                                           | f <sub>MX</sub> = 20 MHz <sup>Note 3</sup> , | Square wave input       |                                     | 0.28              | 1.90  | mA   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        |                                           | V <sub>DD</sub> = 3.0 V                      | Resonator connection    |                                     | 0.45              | 2.00  | mA   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        |                                           | $f_{MX} = 10 \text{ MHz}^{Note 3},$          | Square wave input       |                                     | 0.19              | 1.02  | mA   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        |                                           | V <sub>DD</sub> = 5.0 V                      | Resonator connection    |                                     | 0.26              | 1.10  | mA   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        |                                           |                                              |                         | $f_{MX} = 10 \text{ MHz}^{Note 3},$ | Square wave input |       | 0.19 | 1.02 | mA |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        |                                           | V <sub>DD</sub> = 3.0 V                      | Resonator connection    |                                     | 0.26              | 1.10  | mA   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        | Subsystem                                 | fsub = 32.768 kHz <sup>Note 5</sup>          | Square wave input       |                                     | 0.25              | 0.57  | μΑ   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        | clock<br>operation     | T <sub>A</sub> = -40°C                    | Resonator connection                         |                         | 0.44                                | 0.76              | μΑ    |      |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        | operation                                 | fsub = 32.768 kHz <sup>Note 5</sup>          | Square wave input       |                                     | 0.30              | 0.57  | μΑ   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        |                                           | T <sub>A</sub> = +25°C                       | Resonator connection    |                                     | 0.49              | 0.76  | μΑ   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        |                                           | fsub = 32.768 kHz <sup>Note 5</sup>          | Square wave input       |                                     | 0.37              | 1.17  | μΑ   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        |                                           | T <sub>A</sub> = +50°C                       | Resonator connection    |                                     | 0.56              | 1.36  | μΑ   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        |                                           | fsub = 32.768 kHz <sup>Note 5</sup>          | Square wave input       |                                     | 0.53              | 1.97  | μΑ   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        |                                           | T <sub>A</sub> = +70°C                       | Resonator connection    |                                     | 0.72              | 2.16  | μΑ   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        |                                           | fsub = 32.768 kHz <sup>Note 5</sup>          | Square wave input       |                                     | 0.82              | 3.37  | μΑ   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        |                                           | _                                            |                         |                                     |                   | -     |      |      |    |  |  |  | T <sub>A</sub> = +85°C | Resonator connection |  | 1.01 | 3.56 | μΑ |
|           |                        |                        |                                           | fsub = 32.768 kHz <sup>Note 5</sup>          | Square wave input       |                                     | 3.01              | 15.37 | μΑ   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        |                                           | T <sub>A</sub> = +105°C                      | Resonator connection    |                                     | 3.20              | 15.56 | μΑ   |      |    |  |  |  |                        |                      |  |      |      |    |
|           | mode <sup>Note 8</sup> | T <sub>A</sub> = -40°C |                                           |                                              |                         | 0.18                                | 0.50              | μΑ    |      |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        | T <sub>A</sub> = +25°C |                                           |                                              |                         | 0.23                                | 0.50              | μΑ    |      |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        | T <sub>A</sub> = +50°C                    |                                              |                         |                                     | 0.30              | 1.10  | μΑ   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        | TA                     | $T_A = +70^{\circ}C$ $T_A = +85^{\circ}C$ |                                              |                         |                                     | 0.46              | 1.90  | μΑ   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        |                                           |                                              |                         |                                     | 0.75              | 3.30  | μΑ   |      |    |  |  |  |                        |                      |  |      |      |    |
|           |                        |                        | T <sub>A</sub> = +105°C                   |                                              |                         |                                     | 2.94              | 15.30 | μΑ   |      |    |  |  |  |                        |                      |  |      |      |    |

(Notes and Remarks are listed on the next page.)

## CSI mode connection diagram (during communication at different potential)



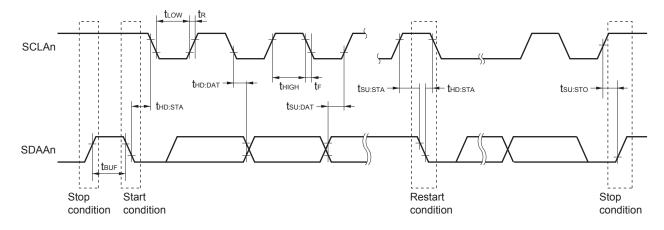
- Remarks 1.  $R_b[\Omega]$ :Communication line (SCKp, SOp) pull-up resistance,  $C_b[F]$ : Communication line (SCKp, SOp) load capacitance,  $V_b[V]$ : Communication line voltage
  - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
  - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
  - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

### 3.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ 

| Parameter                           | Symbol  | Conditions                  | HS (h              | igh-spee | ed main) | Mode | Unit |
|-------------------------------------|---------|-----------------------------|--------------------|----------|----------|------|------|
|                                     |         |                             | Standard Fast Mode |          | Mode     |      |      |
|                                     |         |                             | MIN.               | MAX.     | MIN.     | MAX. |      |
| SCLA0 clock frequency               | fscL    | Fast mode: fclk ≥ 3.5 MHz   | -                  | _        | 0        | 400  | kHz  |
|                                     |         | Standard mode: fcLK ≥ 1 MHz | 0                  | 100      | ı        | _    | kHz  |
| Setup time of restart condition     | tsu:sta |                             | 4.7                |          | 0.6      |      | μS   |
| Hold time <sup>Note 1</sup>         | thd:sta |                             | 4.0                |          | 0.6      |      | μS   |
| Hold time when SCLA0 = "L"          | tLOW    |                             | 4.7                |          | 1.3      |      | μS   |
| Hold time when SCLA0 = "H"          | tніgн   |                             | 4.0                |          | 0.6      |      | μS   |
| Data setup time (reception)         | tsu:dat |                             | 250                |          | 100      |      | ns   |
| Data hold time (transmission)Note 2 | thd:dat |                             | 0                  | 3.45     | 0        | 0.9  | μS   |
| Setup time of stop condition        | tsu:sto |                             | 4.0                |          | 0.6      |      | μS   |
| Bus-free time                       | tBUF    |                             | 4.7                |          | 1.3      |      | μS   |

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination.

**Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode:  $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ Fast mode:  $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$ 

## **IICA** serial transfer timing



Remark n = 0, 1

<R>

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}} = 0 \text{ V})$ 

| Parameter                                  | Symbol | Condition                                                           | าร                                                                  | MIN.   | TYP. | MAX.                   | Unit |
|--------------------------------------------|--------|---------------------------------------------------------------------|---------------------------------------------------------------------|--------|------|------------------------|------|
| Resolution                                 | RES    |                                                                     |                                                                     | 8      |      | 10                     | bit  |
| Overall error <sup>Note 1</sup>            | AINL   | 10-bit resolution $EV_{DD0} \leq AV_{REFP} = V_{DD}^{Notes  3,  4}$ | $\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$ |        | 1.2  | ±5.0                   | LSB  |
| Conversion time                            | tconv  | 10-bit resolution                                                   | $3.6~V \leq V_{DD} \leq 5.5~V$                                      | 2.125  |      | 39                     | μs   |
|                                            |        | Target pin : ANI16 to ANI26                                         | $2.7~V \leq V_{DD} \leq 5.5~V$                                      | 3.1875 |      | 39                     | μs   |
|                                            |        |                                                                     | $2.4~V \leq V_{DD} \leq 5.5~V$                                      | 17     |      | 39                     | μS   |
| Zero-scale error <sup>Notes 1, 2</sup>     | Ezs    | 10-bit resolution $EV_{DD0} \leq AV_{REFP} = V_{DD}^{Notes  3,  4}$ | $2.4~V \le AV_{REFP} \le 5.5$ V                                     |        |      | ±0.35                  | %FSR |
| Full-scale error <sup>Notes 1, 2</sup>     | Ers    | 10-bit resolution $EV_{DD0} \le AV_{REFP} = V_{DD}^{Notes  3,  4}$  | $2.4~V \le AV_{REFP} \le 5.5$ V                                     |        |      | ±0.35                  | %FSR |
| Integral linearity error <sup>Note 1</sup> | ILE    | 10-bit resolution $EVDD0 \le AV_{REFP} = V_{DD}^{Notes 3, 4}$       | 2.4 V ≤ AVREFP ≤ 5.5 V                                              |        |      | ±3.5                   | LSB  |
| Differential linearity error               | DLE    | 10-bit resolution $EVDD0 \le AV_{REFP} = V_{DD}^{Notes 3, 4}$       | $2.4~V \le AV_{REFP} \le 5.5$ V                                     |        |      | ±2.0                   | LSB  |
| Analog input voltage                       | Vain   | ANI16 to ANI26                                                      |                                                                     | 0      |      | AVREFP<br>and<br>EVDD0 | V    |

## **Notes 1.** Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When  $AV_{REFP} < V_{DD}$ , the MAX. values are as follows.

Overall error: Add  $\pm 1.0$  LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.

Zero-scale error/Full-scale error: Add  $\pm 0.05\% FSR$  to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.

Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

**4.** When  $AV_{REFP} < EV_{DD0} \le V_{DD}$ , the MAX. values are as follows.

Overall error: Add  $\pm 4.0$  LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.

Zero-scale error/Full-scale error: Add  $\pm 0.20\% FSR$  to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

|      |              |               | Description                                                                                                                                        |
|------|--------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Rev. | Date         | Page          | Summary                                                                                                                                            |
| 3.00 | Aug 02, 2013 | 118           | Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics                                                       |
|      |              | 118           | Modification of table and note in 2.6.3 POR circuit characteristics                                                                                |
|      |              | 119           | Modification of table in 2.6.4 LVD circuit characteristics                                                                                         |
|      |              | 120           | Modification of table of LVD Detection Voltage of Interrupt & Reset Mode                                                                           |
|      |              | 120           | Renamed to 2.6.5 Power supply voltage rising slope characteristics                                                                                 |
|      |              | 122           | Modification of table, figure, and remark in 2.10 Timing Specs for Switching Flash Memory Programming Modes                                        |
|      |              | 123           | Modification of caution 1 and description                                                                                                          |
|      |              | 124           | Modification of table and remark 3 in Absolute Maximum Ratings (T <sub>A</sub> = 25°C)                                                             |
|      |              | 126           | Modification of table, note, caution, and remark in 3.2.1 X1, XT1 oscillator characteristics                                                       |
|      |              | 126           | Modification of table in 3.2.2 On-chip oscillator characteristics                                                                                  |
|      |              | 127           | Modification of note 3 in 3.3.1 Pin characteristics (1/5)                                                                                          |
|      |              | 128           | Modification of note 3 in 3.3.1 Pin characteristics (2/5)                                                                                          |
|      |              | 133           | Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (1/2)                                                        |
|      |              | 135           | Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (2/2)                                                    |
|      |              | 137           | Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (1/2)                                                      |
|      |              | 139           | Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (2/2)                                                  |
|      |              | 140           | Modification of (3) Peripheral Functions (Common to all products)                                                                                  |
|      |              | 142           | Modification of table in 3.4 AC Characteristics                                                                                                    |
|      |              | 143           | Addition of Minimum Instruction Execution Time during Main System Clock Operation                                                                  |
|      |              | 143           | Modification of figure of AC Timing Test Points                                                                                                    |
|      |              | 143           | Modification of figure of External System Clock Timing                                                                                             |
|      |              | 145           | Modification of figure of AC Timing Test Points                                                                                                    |
|      |              | 145           | Modification of description, note 1, and caution in (1) During communication at same potential (UART mode)                                         |
|      |              | 146           | Modification of description in (2) During communication at same potential (CSI mode)                                                               |
|      |              | 147           | Modification of description in (3) During communication at same potential (CSI mode)                                                               |
|      |              | 149           | Modification of table, note 1, and caution in (4) During communication at same potential (simplified I <sup>2</sup> C mode)                        |
|      |              | 151           | Modification of table, note 1, and caution in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)                       |
|      |              | 152 to<br>154 | Modification of table, notes 2 to 6, caution, and remarks 1 to 4 in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) |
|      |              | 155           | Modification of table in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)                                             |
|      |              | 156           | Modification of table and caution in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)                                 |
|      |              | 157, 158      | Modification of table, caution, and remarks 3 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)               |
|      |              | 160, 161      | Modification of table and caution in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode)                                       |

### NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.