

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	128KB (128K × 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12К х 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100ggdfb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

Pin count Package Data flash Application Net Fields of Application Net Ordering Part Number 36 pins 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch) Mounted A R5F100CAALA#U0, R5F100CCALA#U0, R5F100CCALA#U0, R5F100CALA#W0, R5F100CCALA#W0, R5F100CCALA#W0, R5F100CALA#W0, R5F100CCALA#W0, R5F100CCGLA#W0, R5F100CALA#W0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#U0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#U0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F101CDALA#W0, R5F101CAALA#0, R5F101CCALA#W0, R5F101CDALA#U0, R5F101CAALA#W0, R5F101CCALA#W0, R5F101CGALA#W0, R5F101CAALA#W0, R5F101CCALA#W0, R5F101CGALA#W0, R5F101CAALA#W0, R5F101CCALA#W0, R5F101CGALA#W0, R5F101CAALA#W0, R5F101CCALA#W0, R5F101CGALA#W0, R5F100ECANA#U0, R5F100ECANA#U0, R5F100EDANA#U0, R5F100ECANA#U0, R5F100ECANA#W0, R5F100EDANA#U0, R5F100ECANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100ECDNA#W0, R5F100ECANA#W0, R5F100ECDNA#W0, R5F
count Application two 36 pins 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch) Mounted A R5F100CALA#U0, R5F100CCALA#U0, R5F100CCALA#U0, R5F100CCALA#W0, R5F100CCALA#W0, R5F100CCALA#W0, R5F100CCALA#W0, R5F100CCGLA#W0, R5F100CCGLA#U0, R5F100CCGLA#U0, R5F100CCGLA#U0, R5F100CCGLA#U0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F101CCALA#U0, R5F101CCALA#U, R5F101CCALA#W0, R5F101CCALA#U0, R5F101CCALA#U0, R5F101CCALA#W0, R5F101CCALA#U0, R5F101CCALA#U0, R5F101CCALA#W0, R5F101CCALA#U0, R5F101CCALA#U0, R5F101CCALA#W0, R5F101CCALA#U0, R5F101CCALA#W0, R5F101CCALA#U0, R5F100ECANA#U0, R5F101CCALA#U0, R5F100ECANA#U0, R5F100ECANA#U0, R5F100ECANA#U0, R5F100ECANA#U0, R5F100ECANA#U0, R5F100ECANA#U0, R5F100ECANA#W0, R5F100ECANA#U0, R5F100ECANA#W0, R5F100ECANA#W0, R5F100ECANA#W0, R5F100ECANA#W0, R5F100ECAN
Mome Mounted A R5F100CALA#U0, R5F100CCALA#U0, R5F100CCALA#U0, R5F100CCALA#V0, R5F100CCALA#V0, R5F100CCALA#U0, R5F100CCALA#V0, R5F100CCALA#V0, R5F100CCALA#V0, R5F100CCALA#V0, R5F100CCALA#V0, R5F100CCALA#V0, R5F100CCALA#V0, R5F100CCGLA#U0, R5F100CCGLA#U0, R5F100CCGLA#V0, R5F100CCGLA#V0, R5F100CCGLA#V0, R5F100CCGLA#V0, R5F100CCGLA#V0, R5F100CCGLA#V0, R5F100CCGLA#V0, R5F100CCGLA#V0, R5F100CCGLA#V0, R5F100CCGLA#V0, R5F100CCGLA#V0, R5F100CCGLA#V0, R5F100CCGLA#V0, R5F100CCGLA#V0, R5F100CCGLA#V0, R5F100CCGLA#V0, R5F100CCGLA#V0, R5F100CCGLA#V0, R5F100CCGLA#V0, R5F101CCALA#U0, R5F101CCALA#V0, R5F101CALA#V0, R5F101CCALA#V0, R5F101CCALA#V0, R5F101CALA#V0, R5F101CCALA#V0, R5F101CCALA#V0, R5F101CCALA#V0, R5F101CCALA#V0, R5F101CCALA#V0, R5F100EANA#V0, R5F101CCALA#V0, R5F100ECANA#V0, R5F100EANA#V0, R5F100ECANA#V0, R5F100ECANA#V0, R5F100EANA#V0, R5F100ECDNA#V0, R5F100ECDNA#V0, R5F100EANA#V0, R5F100ECDNA#V0, R5F100ECDNA#V0, R5F100EDNA#V0, R5F100ECDNA#V0, R5F100ECDNA#V0, R5F100EDNA#V0, R5F100ECDNA#V0, R5F100ECDNA#V0, R5F100EDNA#V0, R5F100ECDNA#V0, R5F100ECDNA#V0, R5F100ECDNA#V0, R5F100ECDNA#V0, R5F100ECDNA#V0, R5F100ECDNA#V0, R5F100ECDNA#V0, R5F100ECDNA#V0, R5F100EC
36 pins 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch) Mounted A RSF100CALA#U0, RSF100CCALA#U0, RSF100CCALA#U0, RSF100CCALA#U0, RSF100CCALA#U0, RSF100CCALA#U0, RSF100CCALA#U0, RSF100CCALA#U0, RSF100CCALA#U0, RSF100CCALA#U0, RSF100CCGLA#U0, RSF100CCGALA#U0, RSF100CCGLA#U0, RSF100CCGLA#U0, RSF100CCGLA#U0, RSF100CCGLA#U0, RSF100CCGLA#U0, RSF100CCGLA#U0, RSF100CCGLA#U0, RSF100CCGLA#U0, RSF100CCGLA#U0, RSF100CCGLA#U0, RSF100CCGLA#U0, RSF100CCGLA#U0, RSF100CCGLA#U0, RSF100CCGLA#U0, RSF100CCGLA#U0, RSF100CCGLA#U0, RSF101CCALA#U0, RSF101CCALA#U0, RSF101CCALA#U0, RSF101CCALA#U0, RSF101CCALA#U0, RSF101CCALA#U0, RSF101CCALA#U0, RSF101CCALA#U0, RSF101CCALA#U0, RSF101CCALA#U0, RSF101CCALA#W0, RSF101CCALA#U0, RSF101CCALA#W0, RSF101CCALA#U0, RSF101CCALA#W0, RSF100CCANA#U0, RSF100CCANA#U0, RSF100CCANA#U0, RSF
(4 × 4 mm, 0.5 mm pitch) R5F100CEALA#U0, R5F100CFALA#U0, R5F100CGALA#U0 R5F100CCALA#W0, R5F100CGALA#W0, R5F100CGALA#W0 R5F100CGALA#W0, R5F100CGALA#W0, R5F100CGALA#W0 R5F100CGALA#U0, R5F100CGALA#U0, R5F100CGALA#U0, R5F100CGALA#W0, R5F100CGALA#U0, R5F100CGALA#U0, R5F100CGALA#W0, R5F100CGALA#U0, R5F100CGALA#U0, R5F100CGALA#W0, R5F100CGALA#U0, R5F100CGALA#U0, R5F100CGALA#W0, R5F100CGALA#U0, R5F100CGALA#U0, R5F101CCALA#W0, R5F101CCALA#U0, R5F101CDALA#U0, R5F101CCALA#U0, R5F101CGALA#U0, R5F101CCALA#W0, R5F101CGALA#U0, R5F101CGALA#W0, R5F101CGALA#U0, R5F101CGALA#W0, R5F101CGALA#U0, R5F101CGALA#W0, R5F101CGALA#U0, R5F101CGALA#W0, R5F100EGANA#U0, R5F100EGANA#U0, R5F100EGANA#U0, R5F100EANA#U0, R5F100EGANA#U0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EGANA#U0, R5F100EDANA#W0, R5F100ECANA#W0, R5F100EGANA#U0, R5F100EDANA#W0, R5F100ECANA#W0, R5F100EGANA#U0, R5F100EDANA#W0, R5F100ECANA#W0, R5F100EGANA#U0, R5F100EDANA#W0, R5F100ECANA#W0, R5F100EGANA#W0, R5F100EDANA#W0, R5F100ECANA#W0, R5F100EGANA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EGANA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EGANA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EGANA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EGANA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EGANA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EGANA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EGANA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EGANA#W0, R5F100EGNA#W0, R5F100ECDNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA
pitch) R5F100CAALA#W0, R5F100CCALA#W0, R5F100CDALA#W0, R5F100CDALA#W0, R5F100CCALA#W0, R5F100CDGLA#U0, R5F101CDALA#U0, R5F100EDANA#U0,
40 pins 40-pin plastic HWQFN Mounted A R5F100CACLA#W0, R5F100CGLA#W0, R5F100CGLA#W0, R5F100CAGLA#U0, R5F100CCGLA#U0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F100CCGLA#W0, R5F101CAALA#U0, R5F101CCALA#U0, R5F101CAALA#U0, R5F101CCALA#U0, R5F101CAALA#W0, R5F101CCALA#U0, R5F101CAALA#W0, R5F101CCALA#U0, R5F101CAALA#W0, R5F101CCALA#U0, R5F101CAALA#W0, R5F101CCALA#U0, R5F101CAALA#W0, R5F101CCALA#W0, R5F100EANA#W0, R5F100EANA#W0, R5F100ECANA#U0, R5F100EANA#W0, R5F100ECANA#U0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EANA#W0, R5F100EANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EANA#W0, R5F100EANA#W0, R5F100EANA#W0, R5F100EANA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100ECANA#U0, R5F100ECANA#U0, R5F100ECANA#U0, R5F100EDNA#W0, R5F100ECANA#U0, R5F100ECA
G R5F100CAGLA#U0, R5F100CCGLA#U0, R5F100CCGLA#U0, R5F100CEGLA#U0, R5F100CCGLA#U0, R5F100CCGLA#U0, R5F100CCGLA#U0, R5F100CCGLA#U0, R5F100CCGLA#U0, R5F100CCGLA#W0, R5F100CCGLA#U0, R5F100CCGLA#U0, R5F101CCALA#U0, R5F101CCALA#U0, R5F101CCALA#U0, R5F101CALA#U0, R5F101CCALA#U0, R5F101CCALA#U0, R5F101CALA#W0, R5F101CCALA#U0, R5F101CCALA#U0, R5F101CALA#W0, R5F101CCALA#U0, R5F101CCALA#W0, R5F101CALA#W0, R5F101CCALA#U0, R5F101CCALA#W0, R5F101CALA#W0, R5F101CCALA#W0, R5F100ECANA#U0, R5F101CALA#W0, R5F100ECANA#W0, R5F100ECANA#W0, R5F100EAANA#U0, R5F100ECANA#U0, R5F100ECANA#U0, R5F100EAANA#U0, R5F100ECANA#W0, R5F100ECANA#W0, R5F100EAANA#W0, R5F100ECANA#W0, R5F100ECANA#W0, R5F100EADNA#W0, R5F100ECDNA#W0, R5F100ECDNA#W0, R5F100EADNA#W0, R5F100ECDNA#W0, R5F100ECDNA#W0, R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100EGGNA#W0, R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F100ECGNA#W0, R5F101ECANA#U0, R5F101ECANA#U0, R5F101EANA#U0, R5F101ECANA#U0, R5F
40 pins 40-pin plastic HWQFN Mounted A R5F100CEGLA#U0, R5F100CGLA#U0, R5F100CGGLA#U0 40 pins 40-pin plastic HWQFN Mounted A R5F101CAALA#U0, R5F101CCALA#U0, R5F101CDALA#U0 40 pins 40-pin plastic HWQFN Mounted A R5F100EEALA#U0, R5F101CCALA#U0, R5F101CDALA#U0 40 pins 40-pin plastic HWQFN Mounted A R5F101CEALA#U0, R5F101CCALA#W0, R5F101CDALA#U0 40 pins 40-pin plastic HWQFN Mounted A R5F100EEANA#U0, R5F101CCALA#W0, R5F101CDALA#W0, R5F100EGANA#U0, R5F100ECANA#U0, R5F100ECANA#U0, R5F100ECANA#U0, R5F100ECANA#U0, R5F100EGANA#U0, R5F100EGANA#U0, R5F100EGANA#U0, R5F100EGANA#U0, R5F100EGANA#U0, R5F100EGANA#U0, R5F100EGANA#W0, R5F100ECDNA#U0, R5F100ECDNA#U0, R5F100ECDNA#U0, R5F100ECDNA#U0, R5F100ECDNA#U0, R5F100ECDNA#U0, R5F100ECDNA#U0, R5F100ECDNA#U0, R5F100ECDNA#W0, R5F100EGANA#W0, R5F100ECGANA#W0, R5F100ECGANA#W0, R5F100ECGANA#W0, R5F100ECGANA#W0, R5F100EGANA#W0, R5F100ECGANA#W0, R5F100ECGANA#W0, R5F100ECGANA#W0, R5F100ECGANA#W
40 pins 40-pin plastic HWQFN Mounted A R5F100CEGLA#W0, R5F100CCGLA#W0, R5F101CDALA#U0, R5F101CAALA#U0, R5F101CCALA#U0, R5F101CDALA#U0, R5F101CAALA#U0, R5F101CCALA#U0, R5F101CDALA#U0, R5F101CAALA#W0, R5F101CCALA#W0, R5F101CDALA#W0, R5F101CAALA#W0, R5F101CCALA#W0, R5F101CDALA#W0, R5F101CAALA#W0, R5F101CCALA#W0, R5F101CDALA#W0, R5F101CAALA#W0, R5F101CCALA#W0, R5F100EDANA#U0, R5F100EANA#U0, R5F100ECANA#U0, R5F100EDANA#U0, R5F100EANA#U0, R5F100ECANA#U0, R5F100EDANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100EANA#W0, R5F100ECDNA#W0, R5F100EDANA#W0, R5F100EANA#W0, R5F100ECDNA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDNA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDNA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDNA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDNA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDNA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDANA#W0, R5F100EDA
All RSF100CEGLA#W0, RSF100CCGLA#W0, RSF1010CGALA#U0, RSF1010CGALA#U0, RSF1010CGALA#U0, RSF1010CGALA#U0, RSF1010CGALA#U0, RSF1010CGALA#U0, RSF1010CGALA#W0, RSF100EGANA#U0, RSF100EGANA#W0, RSF100EGANA#U0, RSF100EGANA#W0, RSF100EGANA#W0, RSF100EGANA#U0, RSF100EGANA#U0, RSF100EGANA#W0, RSF100EGAA#W0, RSF100EGAA#W0
A R5F101CALA#U0, R5F101CCALA#U0, R5F101CGALA#U0, Mounted mounted R5F101CAALA#U0, R5F101CGALA#U0, A0 pins 40-pin plastic HWQFN Mounted A R5F101CAALA#U0, R5F101CCALA#W0, R5F101CGALA#W0, A0 pins 40-pin plastic HWQFN Mounted A R5F101CEALA#W0, R5F101CCALA#W0, R5F100EGANA#U0, R5F100ECANA#U0, R5F100ECANA#U0, R5F100EGANA#U0, R5F100ECANA#U0, R5F100EGANA#U0, R5F100EGANA#U0, pitch) R5F100ECANA#W0, R5F100ECANA#W0, R5F100EGANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EGANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EANA#W0, R5F100EGANA#W0, R5F100EANA#W0, R5F100EGANA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100ECDNA#W0, R5F100ECDNA#W0, R5F100EEGNA#W0,
Mounted R5F101CEALA#U0, R5F101CEALA#U0, R5F101CGALA#U0, R5F101CGALA#U0, R5F101CGALA#U0, R5F101CGALA#U0, R5F101CGALA#U0, R5F101CGALA#W0, R5F101CGALA#W0, R5F101CGALA#W0, R5F101CGALA#W0, R5F101CGALA#W0, R5F100EGANA#U0, R5F100EGANA#U0, R5F100EGANA#U0, R5F100EGANA#U0, R5F100EGANA#U0, R5F100EGANA#U0, R5F100EGANA#U0, R5F100EGANA#U0, R5F100EGANA#W0, R5F100EGDNA#U0, R5F100EGDNA#U0, R5F100EGDNA#U0, R5F100EGDNA#W0, R5F100EG
40 pins 40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch) Mounted A R5F101CEALA#W0, R5F101CEALA#W0, R5F100ECANA#U0, R5F100ECANA#U0, R5F100ECANA#U0, R5F100ECANA#U0, R5F100EEANA#U0, R5F100ECANA#U0, R5F100EGANA#U0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EGANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EGANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EGANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EGANA#W0, R5F100EANA#W0, R5F100ECDNA#W0, R5F100EGANA#W0, R5F100EANA#W0, R5F100ECDNA#U0, R5F100EGANA#W0, R5F100EDNA#U0, R5F100ECDNA#U0, R5F100EGDNA#U0, R5F100EDNA#U0, R5F100ECDNA#U0, R5F100EGDNA#U0, R5F100EDNA#U0, R5F100ECDNA#W0, R5F100EGDNA#U0, R5F100EDNA#U0, R5F100ECDNA#W0, R5F100EGDNA#U0, R5F100EDNA#U0, R5F100ECDNA#W0, R5F100EGDNA#U0, R5F100EGDNA#W0, R5F100ECDNA#W0, R5F100EGDNA#U0, R5F100EGDNA#W0, R5F100ECDNA#W0, R5F100EGDNA#U0, R5F100EGDNA#W0, R5F100ECDNA#W0, R5F100EGDNA#U0, R5F100EGDNA#W0, R5F100ECDNA#W0, R5F100EGDNA#W0, R5F100EGDNA#W0, R5F100ECDNA#W0, R5F100EGDNA#W0, R5F100EGDNA#W0, R5F100ECDNA#W0, R5F100EGNA#W0, R5F100EGDNA#W0, R5F100ECGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100ECGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F101EGANA#W0
40 pins 40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch) Mounted A R5F101CEALA#W0, R5F100ECANA#U0, R5F100EDANA#U0, R5F100EEANA#U0, R5F100EGANA#U0, R5F100EGANA#U0, R5F100EEANA#W0, R5F100EGANA#W0, R5F100EGANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EGANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EGANA#W0, R5F100EANA#W0, R5F100ECDNA#U0, R5F100EGANA#U0, R5F100EANA#U0, R5F100ECDNA#U0, R5F100EDDNA#U0, R5F100EDNA#U0, R5F100ECDNA#U0, R5F100EGDNA#U0, R5F100EDNA#W0, R5F100ECDNA#U0, R5F100EGDNA#U0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EGNA#W0, R5F100ECDNA#W0, R5F100EGNA#W0, R5F100ECDNA#W0, R5F100EGNA#W0, R5F100ECGNA#W0, R5F100EGNA#U0, R5F100ECGNA#W0, R5F100EGNA#U0, R5F100ECGNA#U0, R5F100EGNA#U0, R5F100ECGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0,
40 pins 40-pin plastic HWQFN Mounted A R5F100EAANA#U0, R5F100ECANA#U0, R5F100EDANA#U0, (6 × 6 mm, 0.5 mm pitch) R5F100EANA#U0, R5F100ECANA#U0, R5F100EGANA#U0, R5F100EANA#U0, R5F100ECANA#W0, R5F100EGANA#W0, NSF100EANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EGANA#W0, R5F100EANA#W0, R5F100ECANA#W0, R5F100EGANA#W0, D R5F100EANA#W0, R5F100ECANA#W0, R5F100EGDNA#U0, R5F100EDANA#U0, R5F100ECDNA#U0, R5F100EGDNA#U0, R5F100EDANA#U0, R5F100EDDNA#U0, R5F100EDDNA#U0, R5F100EDNA#U0, R5F100ECDNA#U0, R5F100EGDNA#U0, R5F100EDDNA#U0, R5F100EDDNA#U0, R5F100EDDNA#U0, R5F100ECDNA#W0, R5F100EDDNA#W0, R5F100ECDNA#W0, R5F100EDDNA#W0, R5F100EDDNA#W0, R5F100ECDNA#W0, R5F100EDDNA#W0, R5F100EGDNA#U0, R5F100EGDNA#W0, R5F100EGDNA#U0, R5F100EGNA#W0, R5F100EGDNA#U0, R5F100EGNA#U0, R5F100EGDNA#U0, R5F100EGNA#U0, R5F100EGNA#U0, R5F100EGNA#U0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0,
(6 × 6 mm, 0.5 mm R5F100EEANA#U0, R5F100EFANA#U0, R5F100EGANA#U0, pitch) R5F100EHANA#U0 Pitch) R5F100EAANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100EAANA#W0, R5F100ECANA#W0, R5F100EGANA#W0, R5F100EAANA#W0, R5F100ECANA#W0, R5F100EGANA#W0, R5F100EADNA#U0, R5F100ECDNA#U0, R5F100EDDNA#U0, R5F100EDNA#U0, R5F100ECDNA#U0, R5F100EGDNA#U0, R5F100EDNA#U0, R5F100EDNA#U0, R5F100ECDNA#U0, R5F100EDNA#U0, R5F100ECDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EGDNA#W0, R5F100ECGNA#W0, G R5F100EGNA#U0, R5F100ECGNA#W0, R5F100EGNA#U0, R5F100EGNA#W0, R5F100EGNA#U0, R5F100EGNA#U0, R5F100ECGNA#W0, R5F100EGNA#U0, R5F100EGNA#W0, R5F100ECGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F100EGNA#W0, R5F101EGANA#W0, R5
pitch) pitch) R5F100EHANA#U0 R5F100EAANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100EEANA#W0, R5F100ECDNA#U0, R5F100EGANA#W0, R5F100EHANA#W0 D R5F100EANA#U0, R5F100ECDNA#U0, R5F100EDDNA#U0, R5F100EDNA#U0, R5F100ECDNA#U0, R5F100EGDNA#U0, R5F100EDNA#U0, R5F100ECDNA#U0, R5F100EGDNA#U0, R5F100EDNA#U0 R5F100EDNA#U0 R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EDNA#U0 R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EDNA#W0, R5F100ECDNA#W0, R5F100EGDNA#W0, R5F100ECGNA#W0, R5F100EGNA#U0, R5F100ECGNA#U0, R5F100EGNA#U0 R5F100EGNA#W0, R5F100EGNA#W0, <td< td=""></td<>
R5F100EAANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100EEANA#W0, R5F100EFANA#W0, R5F100EGANA#W0, R5F100EANA#W0, R5F100ECDNA#U0, R5F100EDDNA#U0, R5F100EDNA#U0, R5F100EDDNA#U0, R5F100EDNA#U0, R5F100EDNA#U0, R5F100EDNA#U0, R5F100EDNA#U0, R5F100EDNA#U0, R5F100EDNA#U0, R5F100EDNA#U0, R5F100EDNA#U0, R5F100EDNA#U0, R5F100EDNA#U0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EGDNA#W0, R5F100EGNA#W0, R5F100EGNA#U0, R5F100EGNA#U0, R5F100EGNA#U0, R5F100EGNA#W0,
R5F100EEANA#W0, R5F100EFANA#W0, R5F100EGANA#W0, R5F100EHANA#W0 D R5F100EADNA#U0, R5F100ECDNA#U0, R5F100EDDNA#U0, R5F100EEDNA#U0, R5F100EFDNA#U0, R5F100EGDNA#U0, R5F100EHDNA#U0, R5F100ECDNA#W0, R5F100EADNA#W0, R5F100ECGNA#W0, R5F100EAGNA#U0, R5F100ECGNA#U0, R5F100EDGNA#U0, R5F100EAGNA#U0, R5F100ECGNA#U0, R5F100EGGNA#U0, R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100EAGNA#W0, R5F100EEGNA#W0, R5F100EAGNA#W0, R5F100EEGNA#W0, R5F100EAGNA#W0, R5F100EEGNA#W0, R5F100EAGNA#W0, R5F101ECANA#U0, R5F101EANA#U0, R5F101ECANA#U0, Not
R5F100EHANA#W0DR5F100EADNA#U0, R5F100ECDNA#U0, R5F100EDDNA#U0, R5F100EEDNA#U0, R5F100EFDNA#U0, R5F100EGDNA#U0, R5F100EHDNA#U0R5F100EADNA#W0, R5F100ECDNA#W0, R5F100EGDNA#W0, R5F100EDDNA#W0, R5F100EEDNA#W0, R5F100EFDNA#W0, R5F100EGDNA#W0, R5F100EHDNA#W0GR5F100EADNA#W0, R5F100ECDNA#W0, R5F100EGDNA#U0, R5F100EGNA#U0, R5F100EGDNA#U0, R5F100EFGNA#U0, R5F100EGNA#U0, R5F100EEGNA#U0, R5F100EFGNA#U0, R5F100EGGNA#U0, R5F100EAGNA#U0, R5F100EFGNA#U0, R5F100EGGNA#U0, R5F100EAGNA#W0, R5F100EGGNA#W0, R5F100EAGNA#W0, R5F100EGGNA#W0, R5F100EAGNA#W0, R5F100EGGNA#W0, R5F100EAGNA#W0, R5F100EGGNA#W0, R5F100EAGNA#W0, R5F100EGGNA#W0, R5F100EGGNA#W0, R5F100EGGNA#W0, R5F100EFGNA#W0, R5F100EGGNA#W0, R5F100EFGNA#W0, R5F100EGGNA#W0, R5F100EFGNA#W0, R5F100EAGNA#W0, R5F100EAGNA#W0, R5F100EAGNA#U0, R5F100EAGNA#U0, R5F101EAANA#U0, R5F101EAANA#U0, R5F101EAANA#U0, R5F101EAANA#U0, R5F101EAANA#U0, R5F101EAANA#U0, R5F101EAANA#U0, R5F101EAANA#U0, R5F101EAANA#U0, R5F101EAANA#U0, R5F101EAANA#U0, R5F101EAAAA#U0, R5F101EAANA#U0, R5F101EAAAA#U0, R5F101EAAAA#U0, R5F101EAAAA#U0, R5F101EA
D R5F100EADNA#U0, R5F100ECDNA#U0, R5F100EDDNA#U0, R5F100EEDNA#U0, R5F100EFDNA#U0, R5F100EGDNA#U0, R5F100EADNA#U0, R5F100ECDNA#W0, R5F100EADNA#W0, R5F100ECDNA#W0, R5F100EADNA#W0, R5F100ECDNA#W0, R5F100EADNA#W0, R5F100EDNA#W0, R5F100EADNA#W0, R5F100ECDNA#W0, R5F100EADNA#W0, R5F100EDNA#W0, R5F100EADNA#W0, R5F100ECDNA#W0, R5F100EADNA#W0, R5F100ECGNA#W0, R5F100EGDNA#W0, R5F100EAGNA#U0, R5F100ECGNA#U0, R5F100EAGNA#U0, R5F100EAGNA#U0, R5F100ECGNA#U0, R5F100EAGNA#U0, R5F100EAGNA#U0, R5F100EAGNA#U0, R5F100EAGNA#W0, R5F100EAGNA#W0, R5F100EAGNA#W0,
R5F100EEDNA#U0, R5F100EFDNA#U0, R5F100EGDNA#U0, R5F100EHDNA#U0R5F100EADNA#W0, R5F100ECDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EDNA#W0, R5F100EGDNA#W0, R5F100EHDNA#W0GR5F100EADNA#W0, R5F100ECGNA#W0, R5F100EGDNA#U0, R5F100EGNA#U0, R5F100EGNA#U0, R5F100EGNA#U0, R5F100EGNA#U0, R5F100EGNA#U0, R5F100EHGNA#U0NotANotAR5F101EANA#U0, R5F101EANA#U
R5F100EHDNA#U0 R5F100EADNA#W0, R5F100ECDNA#W0, R5F100EDDNA#W0, R5F100EEDNA#W0, R5F100EDDNA#W0, R5F100EEDNA#W0, R5F100EGDNA#W0, R5F100EEDNA#W0, R5F100EGDNA#W0, R5F100ECGNA#U0, R5F100EEGNA#U0, R5F100ECGNA#U0, R5F100EEGNA#U0, R5F100EFGNA#U0, R5F100EHGNA#U0, R5F100EHGNA#U0, R5F100EHGNA#U0, R5F100EHGNA#U0, R5F100EHGNA#U0, R5F100EHGNA#U0, R5F100EHGNA#W0, R5F1
R5F100EADNA#W0, R5F100ECDNA#W0, R5F100EDDNA#W0, R5F100EEDNA#W0, R5F100EGDNA#W0, R5F100EEDNA#W0, R5F100EGDNA#W0, R5F100EHDNA#W0 G R5F100EAGNA#U0, R5F100ECGNA#U0, R5F100EDGNA#U0, R5F100EEGNA#U0, R5F100EFGNA#U0, R5F100EGGNA#U0, R5F100EHGNA#U0 R5F100EHGNA#U0 R5F100EHGNA#U0 R5F100EHGNA#U0 R5F100EHGNA#U0 R5F100EHGNA#U0 R5F100EHGNA#U0 R5F100EHGNA#U0 R5F100EHGNA#W0, R5F100ECGNA#W0, R5F100EHGNA#W0, R5F100ECGNA#W0, R5F100EHGNA#W0, R5F100EEGNA#W0, R5F100EHGNA#W0, R5F100EEGNA#W0, R5F100EFGNA#W0, R5F100EGGNA#W0, R5F100EFGNA#W0, R5F101EGANA#U0, Not A Mounted R5F101EEANA#U0, R5F101EEANA#U0, R5F101EFANA#U0,
R5F100EDDNA#W0, R5F100EEDNA#W0, R5F100EFDNA#W0, R5F100EGDNA#W0, R5F100EHDNA#W0 G R5F100EGDNA#W0, R5F100EHDNA#W0 R5F100EAGNA#U0, R5F100ECGNA#U0, R5F100EDGNA#U0, R5F100EEGNA#U0, R5F100EFGNA#U0, R5F100EGGNA#U0, R5F100EHGNA#U0 R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100EFGNA#W0, R5F100ECGNA#W0, R5F100EFGNA#W0, R5F100ECGNA#W0, R5F100EFGNA#W0, R5F100ECGNA#W0, R5F100EFGNA#W0, R5F100ECGNA#W0, R5F100EFGNA#W0, R5F100EGGNA#W0, Not A R5F101EEANA#U0, R5F101ECANA#U0, Not A R5F101EEANA#U0, R5F101EGANA#U0,
R5F100EGDNA#W0, R5F100EHDNA#W0 G R5F100EAGNA#U0, R5F100ECGNA#U0, R5F100EDGNA#U0, R5F100EEGNA#U0, R5F100EFGNA#U0, R5F100EGGNA#U0, R5F100EHGNA#U0 R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100EFGNA#W0, R5F100EGGNA#W0, R5F100EFGNA#W0, R5F101ECANA#U0, R5F101EEANA#U0, R5F101EFANA#U0,
G R5F100EAGNA#U0, R5F100ECGNA#U0, R5F100EDGNA#U0, R5F100EEGNA#U0, R5F100EFGNA#U0, R5F100EGGNA#U0, R5F100EHGNA#U0 R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100EDGNA#W0, R5F100EEGNA#W0, R5F100EFGNA#W0, R5F100EGGNA#W0, R5F100EHGNA#W0 Not A R5F101EANA#U0, R5F101ECANA#U0, R5F101EDANA#U0, mounted R5F101EEANA#U0, R5F101EFANA#U0, R5F101EGANA#U0
Not A R5F101EGNA#U0, R5F101EGNA#U0, R5F101EGANA#U0, R5F101EGANA#U0, R5F101ECANA#U0, R5F100ECANA#U0, R5F100ECANA#U
Not A R5F101EAANA#U0, R5F101ECGNA#W0, R5F101ECGNA#W0, R5F101EDANA#U0, R5F101ECANA#U0, R5F101EDANA#U0, R5F101ECANA#U0, R5F101EDANA#U0, R5F101EDANA#U0, R5F101ECANA#U0, R5F101EDANA#U0, R5F101ECANA#U0, R5F100ECANA#U0, R5F100ECANA
R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100EDGNA#W0, R5F100EEGNA#W0, R5F100EFGNA#W0, R5F100EGGNA#W0, R5F100EHGNA#W0 Not A R5F101EANA#U0, R5F101ECANA#U0, R5F101EDANA#U0, mounted R5F101EEANA#U0, R5F101EFANA#U0, R5F101EGANA#U0
Not A R5F101EANA#W0, R5F101ECANA#W0, R5F101EDANA#W0, R5F101EDANA#U0, R5F100EDANA#U0, R5F100EDANA#
R5F100EFGNA#W0, R5F100EGGNA#W0, R5F100EHGNA#W0 Not A R5F101EAANA#U0, R5F101ECANA#U0, R5F101EDANA#U0, mounted R5F101EEANA#U0, R5F101EFANA#U0, R5F101EGANA#U0
NotAR5F101EAANA#U0, R5F101ECANA#U0, R5F101EDANA#U0,mountedR5F101EEANA#U0, R5F101EFANA#U0, R5F101FGANA#U0
mounted R5F101EEANA#U0. R5F101EFANA#U0. R5F101FGANA#U0
R5F101EHANA#U0
R5F101EAANA#W0, R5F101ECANA#W0, R5F101EDANA#W0.
R5F101EEANA#W0. R5F101EFANA#W0. R5F101EGANA#W0.
R5F101EHANA#W0
D R5F101EADNA#U0, R5F101ECDNA#U0, R5F101EDDNA#U0.
R5F101EEDNA#U0. R5F101EFDNA#U0. R5F101EGDNA#U0.
R5F101EHDNA#U0
R5F101EADNA#W0. R5F101ECDNA#W0.
R5F101EDDNA#W0. R5F101EEDNA#W0. R5F101FFDNA#W0
R5F101EGDNA#W0.

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

				(6/12)
Pin count	Package	Data flash	Fields of	Ordering Part Number
			Application	
			Note	
48 pins	48-pin plastic	Mounted	А	R5F100GAANA#U0, R5F100GCANA#U0, R5F100GDANA#U0,
	HWQFN (7 \times 7 mm,			R5F100GEANA#U0, R5F100GFANA#U0, R5F100GGANA#U0,
	0.5 mm pitch)			R5F100GHANA#U0, R5F100GJANA#U0, R5F100GKANA#U0,
				R5F100GLANA#U0
				R5F100GAANA#W0, R5F100GCANA#W0,
				R5F100GDANA#W0, R5F100GEANA#W0,
				R5F100GFANA#W0, R5F100GGANA#W0,
				R5F100GHANA#W0, R5F100GJANA#W0,
				R5F100GKANA#W0, R5F100GLANA#W0
			D	R5F100GADNA#U0, R5F100GCDNA#U0, R5F100GDDNA#U0,
				R5F100GEDNA#U0, R5F100GFDNA#U0, R5F100GGDNA#U0,
				R5F100GHDNA#U0, R5F100GJDNA#U0, R5F100GKDNA#U0,
				R5F100GLDNA#U0
				R5F100GADNA#W0, R5F100GCDNA#W0,
				R5F100GDDNA#W0, R5F100GEDNA#W0,
				R5F100GFDNA#W0, R5F100GGDNA#W0,
				R5F100GHDNA#W0, R5F100GJDNA#W0,
				R5F100GKDNA#W0, R5F100GLDNA#W0
			G	R5F100GAGNA#U0, R5F100GCGNA#U0, R5F100GDGNA#U0,
				R5F100GEGNA#U0, R5F100GFGNA#U0, R5F100GGGNA#U0,
				R5F100GHGNA#U0, R5F100GJGNA#U0
				R5F100GAGNA#W0, R5F100GCGNA#W0,
				R5F100GDGNA#W0, R5F100GEGNA#W0,
				R5F100GFGNA#W0, R5F100GGGNA#W0,
				R5F100GHGNA#W0, R5F100GJGNA#W0
		Not	А	R5F101GAANA#U0, R5F101GCANA#U0, R5F101GDANA#U0,
		mounted		R5F101GEANA#U0, R5F101GFANA#U0, R5F101GGANA#U0,
				R5F101GHANA#U0, R5F101GJANA#U0, R5F101GKANA#U0,
				R5F101GLANA#U0
				R5F101GAANA#W0, R5F101GCANA#W0,
				R5F101GDANA#W0, R5F101GEANA#W0,
				R5F101GFANA#W0, R5F101GGANA#W0,
				R5F101GHANA#W0, R5F101GJANA#W0,
			5	R5F101GKANA#W0, R5F101GLANA#W0
			ט	K5F101GADNA#U0, K5F101GCDNA#U0, K5F101GDDNA#U0,
				KƏF IU IGHUNA#UU, KƏF IU IGJUNA#UU, KƏF IU IGKUNA#UU,
				R5E101GKDNA#W0, R5E101GLDNA#W0,
	1		1	

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3 Pin Configuration (Top View)

1.3.1 20-pin products

• 20-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark For pin identification, see 1.4 Pin Identification.

2.1 Absolute Maximum Ratings

|--|

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V_{DD} +0.3 $^{\text{Note 1}}$	V
Input voltage	VI1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87,	–0.3 to EV _{DD0} +0.3 and –0.3 to V _{DD} +0.3 ^{№te 2}	V
		P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
REGC pin input voltage	Vı3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to VDD +0.3 ^{Note 2}	V
Output voltage	Voi	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-0.3 to EV_DD0 +0.3 and -0.3 to V_DD +0.3 $^{\text{Note 2}}$	V
	V _{O2}	P20 to P27, P150 to P156	-0.3 to V_DD +0.3 $^{\text{Note 2}}$	V
Analog input voltage	Val1	ANI16 to ANI26	-0.3 to EV _{DD0} +0.3 and -0.3 to AV _{REF} (+) +0.3 ^{Notes 2, 3}	V
	Vai2	ANI0 to ANI14	-0.3 to VDD +0.3 and -0.3 to AVREF(+) +0.3 $^{\text{Notes 2, 3}}$	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - **3.** Do not exceed $AV_{REF}(+) + 0.3 V$ in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 3}$	Basic	$V_{DD} = 5.0 V$		2.3		mA
Current Note 1		mode	speed main)		operation	$V_{DD} = 3.0 V$		2.3		mA
			mode		Normal	V _{DD} = 5.0 V		5.2	8.5	mA
					operation	V _{DD} = 3.0 V		5.2	8.5	mA
				fin = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		4.1	6.6	mA
					operation	V _{DD} = 3.0 V		4.1	6.6	mA
				fін = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.0	4.7	mA
					operation	V _{DD} = 3.0 V		3.0	4.7	mA
			LS (low-	fi⊢ = 8 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.3	2.1	mA
			speed main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.3	2.1	mA
			LV (low-	$f_{IH} = 4 \text{ MHz}^{Note 3}$	Normal	V _{DD} = 3.0 V		1.3	1.8	mA
			voltage main) mode Note 5		operation	V _{DD} = 2.0 V		1.3	1.8	mA
			HS (high-	fмx = 20 MHz ^{Note 2} ,	Normal operation	Square wave input		3.4	5.5	mA
			speed main)	$V_{DD} = 5.0 V$		Resonator connection		3.6	5.7	mA
			mode	$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal operation	Square wave input		3.4	5.5	mA
				$V_{DD} = 3.0 V$		Resonator connection		3.6	5.7	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal operation Normal operation	Square wave input		2.1	3.2	mA
				$V_{DD} = 5.0 V$		Resonator connection		2.1	3.2	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		2.1	3.2	mA
				$V_{DD} = 3.0 V$		Resonator connection		2.1	3.2	mA
			LS (low- speed main) mode ^{Note 5}	$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.2	2.0	mA
				V _{DD} = 3.0 V	operation Normal	Resonator connection		1.2	2.0	mA
				$f_{MX} = 8 \text{ MHz}^{Note 2},$		Square wave input		1.2	2.0	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.2	2.0	mA
				fsub = 32.768 kHz	Normal operation	Square wave input		4.8	5.9	μA
			operation	$T_A = -40^{\circ}C$		Resonator connection		4.9	6.0	μA
				fsub = 32.768 kHz	Normal	Square wave input		4.9	5.9	μA
				T _A = +25°C	operation	Resonator connection		5.0	6.0	μA
				fsue = 32.768 kHz	Normal	Square wave input		5.0	7.6	μA
				$T_A = +50^{\circ}C$	operation	Resonator connection		5.1	7.7	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.2	9.3	μA
				Note 4	operation	Resonator connection		5.3	9.4	μA
				T _A = +70°C						
				fsub = 32.768 kHz	Normal operation	Square wave input		5.7	13.3	μA
			T _A = +85°C				5.0	13.4	μΑ	

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V~$ @1 MHz to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions		Conditions		HS (hig main)	h-speed Mode	LS (low main)	/-speed Mode	LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1		
SCKp cycle time	tkCY2	$4.0~V \leq EV_{\text{DD0}} \leq 5.5$	20 MHz < fмск	8/fмск				_		ns		
Note 5		V	fмск ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns		
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5$	16 MHz < fмск	8/fмск				_		ns		
		V	fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns		
		$2.4~V \leq EV_{DD0} \leq 5.5~V$		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns		
		$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$	6/fмск and 750		6/fмск and 750		6/fмск and 750		ns			
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns			
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 5.5$	_		6/fмск and 1500		6/fмск and 1500		ns			
SCKp high-/low- level width	tкн2, tкL2	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 7		tксү2/2 - 7		tксү2/2 - 7		ns		
		$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$ $1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$		tксү2/2 – 8		tксү2/2 - 8		tксү2/2 - 8		ns		
				tксү2/2 – 18		tксү2/2 – 18		tксү2/2 – 18		ns		
		$1.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	tксү2/2 – 66		tксү2/2 - 66		tксү2/2 - 66		ns			
		$1.6 V \le EV_{DD0} \le 5.5$			tксү2/2 - 66		tксү2/2 - 66		ns			

(Notes, Caution, and Remarks are listed on the next page.)

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Parameter	Symbol	-	Conditions		HS (speed Mc	high- main) ode	LS (speed Mo	low- main) ode	LV (volt main)	low- age Mode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmission	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$			Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, \text{ R}_b =$ 1.4 k Ω , V _b = 2.7 V		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps	
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V},$			Note		Note		Note	bps
			2.3 V ≤ Vb ≤ 2.7 V	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b =$ $2.7 \text{ k}\Omega, V_b = 2.3$ V		1.2 Note 4		1.2 Note 4		1.2 Note 4	Mbps
			$1.8 V \le EV_{DD0} < 3.3 V,$			Notes 5.6		Notes 5.6		Notes 5.6	bps
			1.6 V ≤ Vb ≤ 2.0 V	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b =$ $5.5 \text{ k}\Omega, V_b = 1.6$ V		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) (T_A = -40 to +85°C. 1.8 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V. Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV $_{DD0} \leq$ 5.5 V and 2.7 V \leq V $_{b} \leq$ 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{|\text{Transfer rate}|}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

3. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{|\text{Transfer rate}|}) \times \text{Number of transferred bits}} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- $\textbf{5.} \quad \textbf{Use it with } EV_{DD0} \geq V_{b}.$
- 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vbb tolerance (When 20- to 52-pin products)/EVbb tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

- **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
- **3.** fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))
- **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Сог	nditions	HS (high- speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tксү2	$4.0 V \le EV_{DD0} \le 5.5 V$, 27 V < Vb < 4.0 V	24 MHz < fмск	14/ fмск						ns
			20 MHz < fмск ≤ 24 MHz	12/ fмск						ns
			8 MHz < fмск ≤ 20 MHz	10/ fмск		_				ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/ fмск				ns
			fмск ≤4 MHz	6/fмск		10/ fмск		10/ fмск		ns
		$2.7 V \le EV_{DD0} < 4.0 V$, $2.3 V \le V_b \le 2.7 V$	24 MHz < fмск	20/ fмск						ns
			20 MHz < fмск ≤ 24 MHz	16/ fмск		—		_		ns
			16 MHz < fмск ≤ 20 MHz	14/ fмск						ns
			8 MHz < fмск ≤ 16 MHz	12/ fмск						ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/ fмск				ns
			fмск ≤4 MHz	6/fмск		10/ fмск		10/ fмск		ns
		$\label{eq:VDD0} \begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note}} \end{split}$	24 MHz < fмск	48/ fмск		—				ns
		2	20 MHz < fмск ≤ 24 MHz	36/ fмск						ns
			16 MHz < fмск ≤ 20 MHz	32/ fмск						ns
			8 MHz < fмск ≤ 16 MHz	26/ fмск		_		_		ns
			4 MHz < fмск ≤ 8 MHz	16/ fмск		16/ fмск				ns
			fмск ≤4 MHz	10/ fмск		10/ fмск		10/ fмск		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

$(T_A = -40 \text{ to } +85^\circ C)$, 1.8 V ≤ EVDD0 =	$=$ EVDD1 \leq VDD \leq 5.5 V, V	Vss = EVsso = EVss1 = 0 V) (2/2)
---------------------------------------	-------------------	--------------------------------------	---------------------------	---------

Parameter	Symbol	Conditions	HS (speed Mo	HS (high- speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp high-/low-level width	tкн2, tкL2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$	tксү2/2 – 12		tксү2/2 - 50		tксү2/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns
		$\label{eq:Volume} \begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{split}$	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{№ote 3}	tsık2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 2.7 \ V \leq E V_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{array}$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{№te 4}	tksi2		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output Note 5	tkso2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \\ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$		2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
		$\label{eq:V} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \\ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$ \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

(2) I²C fast mode

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode:	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	400	0	400	0	400	kHz
		fc∟κ≥ 3.5 MHz	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	400	0	400	0	400	kHz
Setup time of restart	tsu:sta	$2.7 V \le EV_{DD0} \le 5.3$	5 V	0.6		0.6		0.6		μS
condition		$1.8 V \le EV_{DD0} \le 5.3$	5 V	0.6		0.6		0.6		μs
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$ $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μS
				0.6		0.6		0.6		μS
Hold time when SCLA0 = "L"	t∟ow	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		1.3		1.3		1.3		μS
		$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		1.3		1.3		1.3		μs
Hold time when SCLA0 =	tніgн	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		0.6		0.6		0.6		μS
"H"		$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		0.6		0.6		0.6		μs
Data setup time	tsu:dat	$2.7 V \le EV_{DD0} \le 5.3$	5 V	100		100		100		μs
(reception)		$1.8~V \le EV_{\text{DD0}} \le 5.5~V$		100		100		100		μS
Data hold time	thd:dat	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$		0	0.9	0	0.9	0	0.9	μs
(transmission) ^{Note 2}		$1.8~V \le EV_{\text{DD0}} \le 5.3$	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		0.9	0	0.9	0	0.9	μs
Setup time of stop	tsu:sto	$2.7 V \le EV_{DD0} \le 5.3$	5 V	0.6		0.6		0.6		μS
condition		$1.8 V \le EV_{DD0} \le 5.8$	5 V	0.6		0.6		0.6		μs
Bus-free time	t BUF	$2.7 V \le EV_{DD0} \le 5.1$	5 V	1.3		1.3		1.3		μs
		$1.8 V \le EV_{DD0} \le 5.8$	5 V	1.3		1.3		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26

 $(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{BGR}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V}^{\text{Note 4}}, \text{HS (high-speed main) mode)}$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		$V_{\text{BGR}}{}^{\text{Note 3}}$	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

Parameter	Symbol	mbol Conditions HS (high-spec		HS (high-speed ma	in) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 5	SCKp cycle time ^{Note 5} tKCY2 4.0		20 MHz < fмск	16/f мск		ns
		V	fмск ≤ 20 MHz	12/fмск		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5$	16 MHz < fмск	16/f мск		ns
		V	fмск ≤ 16 MHz	12/fмск		ns
		$2.4~V \leq EV_{DD0} \leq 5.5~V$		16/fмск		ns
				12/fмск and 1000		ns
SCKp high-/low-level	tкн2,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 14		ns
width	tĸ∟2	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	V	tксү2/2 – 16		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 36		ns
SIp setup time	tsik2	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	V	1/fмск+40		ns
(to SCKp↑) ^{Note 1}		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~$	V	1/fмск+60		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2	$2.4~V \leq EV_{\text{DD0}} \leq 5.5~$	$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$			ns
Delay time from tκso SCKp↓ to SOp output		C = 30 pF Note 4	$\begin{array}{c} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+66	ns
Note 3			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+113	ns

(3)	During communication at same potential (CSI mode) (slave mode, SCKp external clock input)
	$(T_A = -40 \text{ to } \pm 105^{\circ}\text{C} = 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}$ Vec = EVeca = EVeca = 0.V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), p: Changel number (n = 0, ta 2) an EMA number (n = 0, 1, 4, 5, 0, 14)
 - n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)
 - 2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode connection diagram (during communication at same potential)

Parameter	Symbol	Conditions	HS (high-sj Mo	peed main) de	Unit
			MIN.	MAX.	
SCLr clock frequency	fsc∟	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$		400 ^{Note1}	kHz
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$		100 ^{Note1}	kHz
		$C_b = 100 \text{ pF}, \text{R}_b = 3 \text{k}\Omega$			
Hold time when SCLr = "L"	t∟ow	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	1200		ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, \text{ R}_b = 3 \text{ k}\Omega$			
Hold time when SCLr = "H"	tніgн	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	1200		ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Data setup time (reception)	tsu:dat	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	1/fмск + 220		ns
		$C_b = 50 \text{ pF}, \text{R}_b = 2.7 \text{ k}\Omega$	Note2		
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V,$	1/fмск + 580		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	Note2		
Data hold time (transmission)	thd:dat	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	0	770	ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$	0	1420	ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			

(4) During communication at same potential (simplified I²C mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

- 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the normal input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(**Remarks** are listed on the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
 h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m

= 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq EVpp0 = EVpp1 \leq Vpp \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	HS (high-s	peed main) ode	Unit
			MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{split} & 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ & 2.7 \; V \leq V_b \leq 4.0 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$		400 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$		400 ^{Note 1}	kHz
				100 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$		100 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	t∟ow	$ \begin{split} & 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ & 2.7 \; V \leq V_b \leq 4.0 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split} $	1200		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1200		ns
			4600		ns
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	4600		ns
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	4650		ns
Hold time when SCLr = "H"	tніgн	$ \begin{split} & 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ & 2.7 \; V \leq V_b \leq 4.0 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split} $	620		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	500		ns
			2700		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	2400		ns
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	1830		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

3.10 Timing of Entry to Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{su:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

