

Welcome to E-XFL.COM

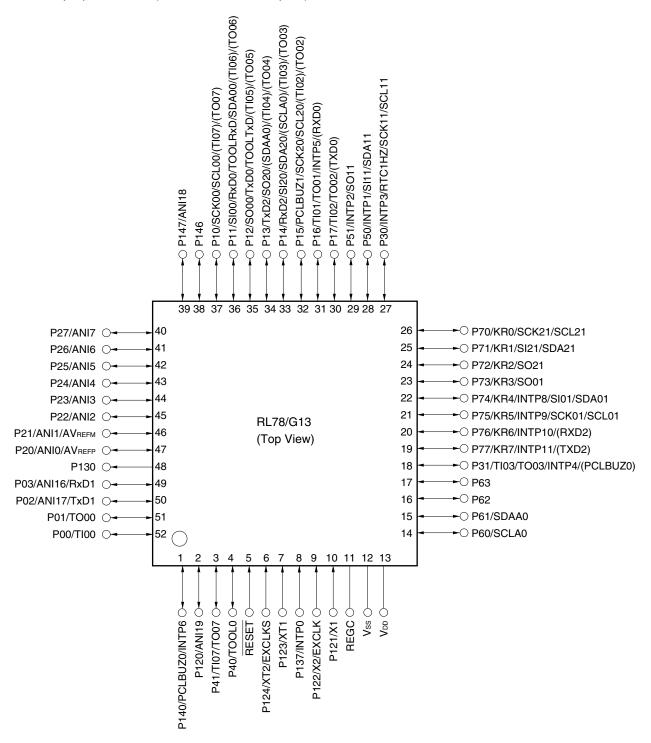
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI


Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100ghdfb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.10 52-pin products

• 52-pin plastic LQFP (10 × 10 mm, 0.65 mm pitch)

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.6 Outline of Functions

[20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

	Item	20-p	oin	24-	pin	25	-pin	30-	pin	32-	pin	(1/2 36-	pin
		, ד	Ъ	Я	גר	д	גר	Ъ	דג	Ъ	ភ្ល	Ъ	
		5F1	5F1	5F10	5F10	5F10	5F10	5F10	5F10	5F10	5F10	5F10	5F1(
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	R5F101Cx
Code flash me	emory (KB)	16 to	64	16 t	o 64	161	o 64	16 to	128		128	16 to	128
Data flash memory (KB)		4	_	4	_	4	_	4 to 8	_	4 to 8	_	4 to 8	-
RAM (KB)	2 to 4	Note1	2 to	4 ^{Note1}	2 to	4 ^{Note1}	2 to ⁻	12 ^{Note1}	2 to 1	2 ^{Note1}	2 to ⁻	2 ^{Note1}	
Address spac	e	1 MB											
Main system clock	High-speed system clock	X1 (crys HS (High HS (High LS (Low LV (Low	n-speed n-speed -speed	l main) m l main) m main) m	node: 1 t node: 1 t ode: 1 to	o 20 MH o 16 MH o 8 MHz	Iz (V _{DD} = Iz (V _{DD} = (V _{DD} = 1.	2.7 to 5. 2.4 to 5. 8 to 5.5	.5 V), .5 V), V),	EXCLK)			
	High-speed on-chip oscillator	HS (High-speed main) mode: 1 to 32 MHz ($V_{DD} = 2.7$ to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz ($V_{DD} = 2.4$ to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz ($V_{DD} = 1.8$ to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz ($V_{DD} = 1.6$ to 5.5 V)											
Subsystem cl	ock												
Low-speed or	n-chip oscillator	15 kHz (TYP.)										
General-purp	ose registers	(8-bit register × 8) × 4 banks											
Minimum instruction execution time		0.03125 μ s (High-speed on-chip oscillator: f _{IH} = 32 MHz operation)											
		0.05 μ s (High-speed system clock: f _{MX} = 20 MHz operation)											
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 											
I/O port	Total	16	;	2	0	2	21	2	6	2	8	3	2
	CMOS I/O	13 (N-ch O [V₀₀ with voltage	.D. I/O nstand	(N-ch C	thstand	(N-ch ([V _{DD} w	5 D.D. I/O thstand ge]: 6)	2 (N-ch C [V⊳⊳ wi voltag	D.D. I/O thstand	2 (N-ch C [V _{DD} wi [*] voltag	D.D. I/O thstand	2 (N-ch C [V _{DD} wi voltag	D.D. I/C
	CMOS input	3		:	3		3	:	3	3	3	3	3
	CMOS output	-		-	-		1	-	-	-	-	-	-
	N-ch O.D. I/O (withstand voltage: 6 V)	-		2	2		2	2	2	3	3	3	3
Timer	16-bit timer						8 cha	nnels					
	Watchdog timer						1 cha	nnel					
	Real-time clock (RTC)						1 chan	nel Note 2					
	12-bit interval timer (IT)						1 cha	nnel					
	Timer output	3 channels 4 channels (PWM outputs: (PWM outputs: 3 ^{Note 3})							``	M output M output	,		
	RTC output			•				-					
Notes 1.	The flash library us The target products R5F100xD, R5F R5F100xE, R5F For the RAM areas for RL78 Family (I Only the constant	s and sta 101xD (: 101xE () used by R20UT29	$\begin{array}{l} \text{rt addr} \\ x = 6 \ \text{to} \\ x = 6 \ \text{to} \\ \text{the flat} \\ \textbf{944}. \end{array}$	ress of t o 8, A to o 8, A to ash libra	he RAN o C): S o C): S ury, see	A areas Start add Start add Start add Self R	used by dress Ff dress Ff AM list	y the fla F300H EF00H of Flas	sh libra h Self-	ry are s Progra i	hown b mming	Library	

^{2.} Only the constant-period interrupt function when the low-speed on-chip oscillator clock (fiL) is selected

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		16.0	MHz
		$1.8~V \leq V_{\text{DD}} < 2.4~V$	1.0		8.0	MHz
		$1.6~V \leq V_{\text{DD}} < 1.8~V$	1.0		4.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

- **Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to **5.4 System Clock Oscillator**.

2.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Oscillators	Parameters	Conditions			TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		32	MHz
High-speed on-chip oscillator		–20 to +85 °C	$1.8~V \le V_{\text{DD}} \le 5.5~V$	-1.0		+1.0	%
clock frequency accuracy			$1.6~V \leq V_{\text{DD}} < 1.8~V$	-5.0		+5.0	%
		–40 to –20 °C	$1.8~V \le V_{\text{DD}} \le 5.5~V$	-1.5		+1.5	%
			$1.6~V \leq V_{\text{DD}} < 1.8~V$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		0.8EVDD0		EVDDO	V
	VIH2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	2.2		EVDDO	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EVDDO	V
			TTL input buffer $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}$	1.5		EVDDO	V
	VIH3	P20 to P27, P150 to P156		0.7V _{DD}		VDD	V
	VIH4	P60 to P63	0.7EVDD0		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EXCL	0.8Vdd		VDD	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		0		0.2EV _{DD0}	V
	VIL2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V \leq EV _{DD0} \leq 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V \leq EV _{DD0} $<$ 4.0 V	0		0.5	V
			TTL input buffer $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}$	0		0.32	V
	VIL3	P20 to P27, P150 to P156	0		0.3Vdd	V	
	VIL4	P60 to P63		0		0.3EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EXCL	0		0.2VDD	V	

- Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	4.0 V \leq EV _{DD0} \leq 5.5 V, I _{OH1} = -10.0 mA	EV _{DD0} - 1.5			V
		to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ \text{mA} \end{array}$	EV _{DD0} - 0.7			V
		P140 to P147	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -2.0 \text{ mA}$	EV _{DD0} - 0.6			V
,			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -1.5 \text{ mA}$	EV _{DD0} - 0.5			V
			$eq:logical_lo$	EV _{DD0} – 0.5			V
	Vон2	P20 to P27, P150 to P156	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh2 = -100 μ A	V _{DD} - 0.5			V
Output voltage, low	Vol1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 20 \ mA \end{array}$			1.3	V
		P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:DD1}$			0.7	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:DD1}$			0.6	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \end{array} \label{eq:DD1}$			0.4	V
			$eq:local_$			0.4	V
			$eq:local_$			0.4	V
	Vol2	P20 to P27, P150 to P156	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $\text{Iol2} = 400 \ \mu \text{ A}$			0.4	V
	Vol3	P60 to P63	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 15.0 \ \text{mA} \end{array}$			2.0	V
			$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 5.0 \ mA \end{array} \end{array} \label{eq:DD1}$			0.4	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 3.0 \ mA \end{array}$			0.4	V
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 2.0 \ mA \end{array}$			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ lol3 = 1.0 mA			0.4	V

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V @\,1~\text{MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}) (1/2)$

Parameter	Symbol			Conditions	-		MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 3}$	Basic	V _{DD} = 5.0 V		2.6		mA
current Note 1		mode	speed main) mode ^{Note 5}		operation	$V_{DD} = 3.0 V$		2.6		mA
					Normal	$V_{DD} = 5.0 V$		6.1	9.5	mA
					operation	$V_{DD} = 3.0 V$		6.1	9.5	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 V$		4.8	7.4	mA
					operation	$V_{DD} = 3.0 V$		4.8	7.4	mA
				$f_{IH} = 16 \ MHz^{Note \ 3}$	Normal	$V_{DD} = 5.0 V$		3.5	5.3	mA
					operation	V _{DD} = 3.0 V		3.5	5.3	mA
			LS (low-	$f_{IH} = 8 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 3.0 V$		1.5	2.3	mA
			speed main) mode ^{Note 5}		operation	$V_{DD} = 2.0 V$		1.5	2.3	mA
			LV (low-	$f_{IH} = 4 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 3.0 V$		1.5	2.0	mA
		voltage main) mode Note 5		operation	V _{DD} = 2.0 V		1.5	2.0	mA	
			HS (high- speed main) mode ^{Note 5}	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.9	6.1	mA
				V _{DD} = 5.0 V	operation	Resonator connection		4.1	6.3	mA
				f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.9	6.1	mA
			VBB - 0.0 V	operation	Resonator connection		4.1	6.3	mA	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.5	3.7	mA
			$V_{DD} = 5.0 V$	operation	Resonator connection		2.5	3.7	mA	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.5	3.7	mA
			LS (low- speed main) mode ^{Note 5}	$V_{DD} = 3.0 V$	operation	Resonator connection		2.5	3.7	mA
					Square wave input		1.4	2.2	mA	
					operation	Resonator connection		1.4	2.2	mA
				$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.4	2.2	mA
				$V_{DD} = 2.0 V$	operation	Resonator connection		1.4	2.2	mA
			Subsystem	fsub = 32.768 kHz	Normal	Square wave input		5.4	6.5	μA
			clock operation	$T_A = -40^{\circ}C$	operation	Resonator connection		5.5	6.6	μA
				fsub = 32.768 kHz	Normal	Square wave input		5.5	6.5	μA
				$T_A = +25^{\circ}C$	operation	Resonator connection		5.6	6.6	μA
				fsub = 32.768 kHz	Normal	Square wave input		5.6	9.4	μA
			$T_{A} = +50^{\circ}C$	operation	Resonator connection		5.7	9.5	μA	
				fsuв = 32.768 kHz	Normal	Square wave input		5.9	12.0	μA
			Note 4 $T_A = +70^{\circ}C$	operation	Resonator connection		6.0	12.1	μA	
			fsuв = 32.768 kHz	Normal	Square wave input		6.6	16.3	μA	
			Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		6.7	16.4	μA	

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V~$ @ 1 MHz to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2) ($T_A = -40$ to $+85^{\circ}$ C, 1.6 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V)

Parameter	Symbol	ol Conditions			h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY2	$4.0~V \leq EV_{DD0} \leq 5.5$	20 MHz < fмск	8/fмск		_		_		ns
Note 5		V	fмск \leq 20 MHz	6/fмск		6/fмск		6/fмск		ns
		$\begin{array}{c} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	16 MHz < fмск	8/fмск		_		_		ns
			fмск \leq 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ $1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
				6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns	
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$	V	—		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/low- level width	tкн2, tкL2	$4.0~V \le EV_{DD0} \le 5.5~V$		tксү2/2 – 7		tксү2/2 - 7		tксү2/2 - 7		ns
		$2.7~V \leq EV_{DD0} \leq 5.5~V$	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$			tксү2/2 - 8		tксү2/2 - 8		ns
		$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 18		tксү2/2 – 18		tксү2/2 – 18		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	$1.7~V \leq EV_{\text{DD0}} \leq 5.5~V$			tксү2/2 - 66		tксү2/2 - 66		ns
		$1.6~V \le EV_{\text{DD0}} \le 5.5$	_		tксү2/2 - 66		tксү2/2 - 66		ns	

(Notes, Caution, and Remarks are listed on the next page.)

Parameter	Symbol	Conditions	、 U	HS (high-speed main) Mode		/-speed Mode	`	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\label{eq:constraint} \begin{array}{l} 2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,\\ C_{\text{b}} = 50~pF,~R_{\text{b}} = 2.7~k\Omega \end{array}$	1/fмск + 85 _{Note2}		1/fмск + 145 _{Note2}		1/fмск + 145 _{Note2}		ns
		$\label{eq:linear} \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} \leq 5.5 \ V, \\ C_{\text{b}} &= 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{split}$	1/fмск + 145 _{Note2}		1/fмск + 145 _{Note2}		1/fмск + 145 _{Note2}		ns
		$\label{eq:linear} \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 2.7 \ V, \\ C_{\text{b}} &= 100 \ \text{pF}, \ R_{\text{b}} = 5 \ \text{k}\Omega \end{split}$	1/fмск + 230 _{Note2}		1/f _{MCK} + 230 _{Note2}		1/fмск + 230 _{Note2}		ns
		$\label{eq:linear} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 \mbox{ k}\Omega \end{array}$	1/fмск + 290 _{Note2}		1/f _{MCK} + 290 _{Note2}		1/fмск + 290 _{Note2}		ns
		$\label{eq:linear} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 5 k\Omega \end{array}$	—		1/f _{MCK} + 290 _{Note2}		1/fмск + 290 _{Note2}		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	305	0	305	0	305	ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 5.5 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 3 k\Omega \end{array}$	0	355	0	355	0	355	ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 5 k\Omega \end{array}$	0	405	0	405	0	405	ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$	0	405	0	405	0	405	ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$	_	_	0	405	0	405	ns

(5)	During communication at same potential (simplified I ² C mode) (2/2)
	$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(**Remarks** are listed on the next page.)

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Conc	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDA0	VPOC2,	$V_{POC1}, V_{POC0} = 0, 0, 0$, falling reset voltage	1.60	1.63	1.66	V
mode	VLVDA1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	Vlvda3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB0	VPOC2,	VPOC1, VPOC0 = 0, 0, 1	, falling reset voltage	1.80	1.84	1.87	V
	VLVDB1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2,	VPOC1, VPOC0 = 0, 1, 0	, falling reset voltage	2.40	2.45	2.50	V
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2,	VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, V _{IH1} high		P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	·	0.8EV _{DD0}		EVDDO	V
	VIH2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	2.2		EVDD0	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EVDD0	V
			TTL input buffer $2.4 \text{ V} \leq EV_{\text{DD0}} < 3.3 \text{ V}$	1.5		EVDDO	V
	VIH3	P20 to P27, P150 to P156		0.7V _{DD}		VDD	V
	VIH4	P60 to P63		0.7EVDD0		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCL	(S, RESET	0.8Vdd		VDD	V
Input voltage, Iow	VIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		0		0.2EV _{DD0}	V
	VIL2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V \leq EV _{DD0} \leq 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V	0		0.5	V
			TTL input buffer 2.4 V \leq EV _{DD0} $<$ 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3VDD	V
	VIL4	P60 to P63		0		0.3EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	(S, RESET	0		0.2VDD	V

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (3/5)

- Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVDDO				1	μA
	Ілна	P20 to P27, P137, P150 to P156, RESET	$V_{I} = V_{DD}$				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	1.1.1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVsso				-1	μA
	Ilile	P20 to P27, P137, P150 to P156, RESET	VI = Vss				-1	μA
	Ililis	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVSSO	, In input port	10	20	100	kΩ

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

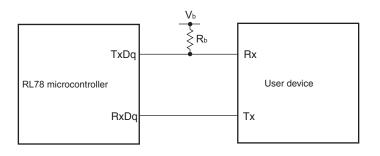
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current	rrent mode speed ma	HS (high- speed main) mode ^{Note 5}	f _{IH} = 32 MHz ^{Note 3}	Basic operatio n	V _{DD} = 5.0 V V _{DD} = 3.0 V		2.3 2.3		mA mA	
					Normal operatio	V _{DD} = 5.0 V V _{DD} = 3.0 V		5.2 5.2	9.2 9.2	mA mA
				fin = 24 MHz ^{Note 3}	n Normal operatio	V _{DD} = 5.0 V V _{DD} = 3.0 V		4.1 4.1	7.0 7.0	mA mA
				fін = 16 MHz ^{№оtе 3}	n Normal	$V_{DD} = 5.0 V$		3.0	5.0	mA
					operatio n	$V_{DD} = 3.0 V$		3.0	5.0	mA
			HS (high- speed main)	$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal operatio	Square wave input		3.4	5.9	mA
			mode ^{Note 5}	V _{DD} = 5.0 V	n	Resonator connection		3.6	6.0	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ $V_{DD} = 3.0 \text{ V}$	Normal operatio n	Square wave input Resonator		3.4 3.6	5.9 6.0	mA mA
			fмx = 10 MHz ^{Note 2} ,	Normal	connection Square wave input		2.1	3.5	mA	
			V _{DD} = 5.0 V		$V_{DD} = 5.0 V$	operatio n	Resonator connection		2.1	3.5
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.1	3.5	mA
				V _{DD} = 3.0 V	operatio n	Resonator connection		2.1	3.5	mA
			Subsystem clock	fsub = 32.768 kHz	Normal operatio	Square wave input Resonator		4.8	5.9	μA
			operation	T _A = -40°C	n	connection		4.9	6.0	μA
				fsub = 32.768 kHz Note 4	Normal operatio	Square wave input Resonator		4.9 5.0	5.9 6.0	μA μA
				$T_A = +25^{\circ}C$	n Nama l	connection		5.0	7.0	
				$f_{SUB} = 32.768 \text{ kHz}$ Note 4 $T_A = +50^{\circ}\text{C}$	Normal operatio n	Square wave input Resonator connection		5.0 5.1	7.6 7.7	μΑ μΑ
			fsuв = 32.768 k	fsub = 32.768 kHz	Normal	Square wave input		5.2	9.3	μA
				$T_A = +70^{\circ}C$	operatio n	Resonator connection		5.3	9.4	μA
				fsub = 32.768 kHz	Normal	Square wave input		5.7	13.3	μA
				T _A = +85°C	operatio n	Resonator connection		5.8	13.4	μA
				fsub = 32.768 kHz	Normal operatio	Square wave input Resonator		10.0 10.0	46.0 46.0	μA μA
				T _A = +105°C	n	connection		10.0	-0.0	μΑ

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products	
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (1/2)	

(Notes and Remarks are listed on the next page.)

5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq EVpp0 = EVpp1 \leq Vpp \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions		peed main) ode	Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{split} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		400 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$		400 ^{Note 1}	kHz
				100 ^{Note 1}	kHz
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$		100 ^{Note 1}	kHz
		$\label{eq:2.4} \begin{split} 2.4 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	t∟ow	$ \begin{split} & 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ & 2.7 \; V \leq V_b \leq 4.0 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split} $	1200		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1200		ns
		$\label{eq:loss} \begin{split} & 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ & 2.7 \ V \leq V_b \leq 4.0 \ V, \\ & C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{split}$	4600		ns
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	4600		ns
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	4650		ns
Hold time when SCLr = "H"	tніgн		620		ns
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ & C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$	500		ns
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	2700		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	2400		ns
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{\text{DD0}} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	1830		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

		Reference Voltage								
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = VBGR							
Input channel	Reference voltage (-) = AVREFM	Reference voltage (-) = Vss	Reference voltage (-) = AVREFM							
ANI0 to ANI14	Refer to 3.6.1 (1).	Refer to 3.6.1 (3) .	Refer to 3.6.1 (4).							
ANI16 to ANI26	Refer to 3.6.1 (2).									
Internal reference voltage	Refer to 3.6.1 (1) .		-							
Temperature sensor output										
voltage										

(1) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(T_A = -40 to +105°C, 2.4 V \leq AV_{REFP} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFM} = 0 V)

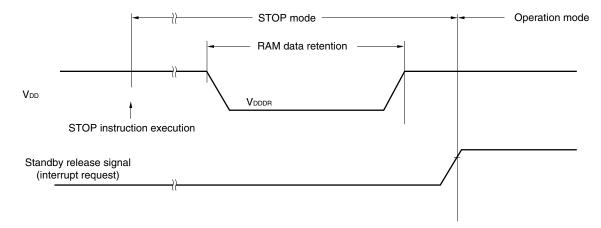
Parameter	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±3.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \le V \text{DD} \le 5.5~V$	2.125		39	μS
		Target pin: ANI2 to ANI14	$2.7~V \le V_{DD} \le 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal reference	$2.7~V \le V \text{DD} \le 5.5~V$	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \le V \text{dd} \le 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 2.4 \hspace{.1in} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 2.4 \hspace{.1cm} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Integral linearity error	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 2.4 \hspace{.1cm} V \hspace{.1cm} \leq \hspace{.1cm} AV_{\text{REFP}} \hspace{.1cm} \leq \hspace{.1cm} 5.5 \\ V \end{array}$			±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 2.4 \hspace{.1cm} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±1.5	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage output (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)			VBGR Note 4		V
		Temperature sensor output vo (2.4 V \leq VDD \leq 5.5 V, HS (high		VTMPS25 Note	4	V	

(Notes are listed on the next page.)

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

3.7 RAM Data Retention Characteristics

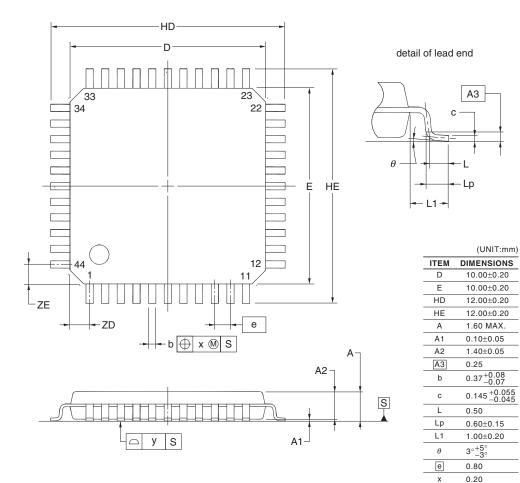
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

4.8 44-pin Products

R5F100FAAFP, R5F100FCAFP, R5F100FDAFP, R5F100FEAFP, R5F100FFAFP, R5F100FGAFP, R5F100FHAFP, R5F100FJAFP, R5F100FKAFP, R5F100FLAFP


R5F101FAAFP, R5F101FCAFP, R5F101FDAFP, R5F101FEAFP, R5F101FFAFP, R5F101FGAFP, R5F101FHAFP, R5F101FJAFP, R5F101FKAFP, R5F101FLAFP

R5F100FADFP, R5F100FCDFP, R5F100FDDFP, R5F100FEDFP, R5F100FFDFP, R5F100FGDFP, R5F100FHDFP, R5F100FJDFP, R5F100FKDFP, R5F100FLDFP

R5F101FADFP, R5F101FCDFP, R5F101FDDFP, R5F101FEDFP, R5F101FFDFP, R5F101FGDFP, R5F101FHDFP, R5F101FJDFP, R5F101FKDFP, R5F101FLDFP

R5F100FAGFP, R5F100FCGFP, R5F100FDGFP, R5F100FEGFP, R5F100FFGFP, R5F100FGGFP, R5F100FJGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP44-10x10-0.80	PLQP0044GC-A	P44GB-80-UES-2	0.36

NOTE

Each lead centerline is located within 0.20 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

0.10

1.00

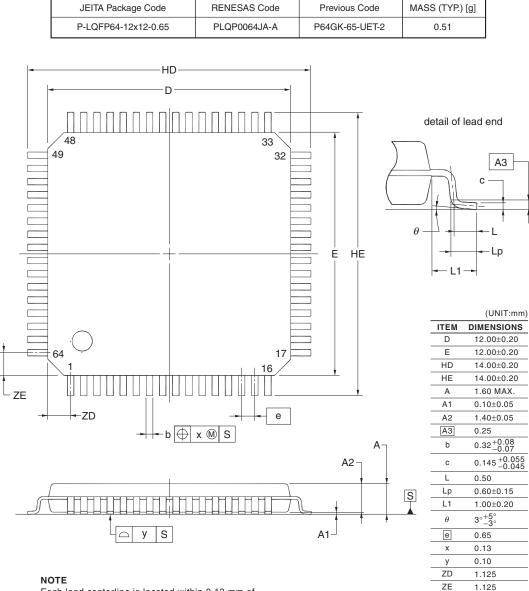
1.00

y

ZD

ZE

4.11 64-pin Products


R5F100LCAFA, R5F100LDAFA, R5F100LEAFA, R5F100LFAFA, R5F100LGAFA, R5F100LHAFA, R5F100LJAFA, R5F100LLAFA

R5F101LCAFA, R5F101LDAFA, R5F101LEAFA, R5F101LFAFA, R5F101LGAFA, R5F101LHAFA, R5F101LJAFA, R5F101LLAFA

R5F100LCDFA, R5F100LDDFA, R5F100LEDFA, R5F100LFDFA, R5F100LGDFA, R5F100LHDFA, R5F100LJDFA, R5F100LLDFA

R5F101LCDFA, R5F101LDDFA, R5F101LEDFA, R5F101LFDFA, R5F101LGDFA, R5F101LHDFA, R5F101LJDFA, R5F101LLDFA

R5F100LCGFA, R5F100LDGFA, R5F100LEGFA, R5F100LFGFA, R5F100LGGFA, R5F100LHGFA, R5F100LJGFA

Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

