



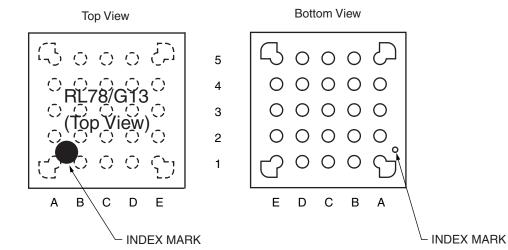

Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Discontinued at Digi-Key                                                        |
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 32MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, LINbus, UART/USART                                       |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                         |
| Number of I/O              | 34                                                                              |
| Program Memory Size        | 192KB (192K x 8)                                                                |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | 8K x 8                                                                          |
| RAM Size                   | 16K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 2.4V ~ 5.5V                                                                     |
| Data Converters            | A/D 10x8/10b                                                                    |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 48-LQFP                                                                         |
| Supplier Device Package    | 48-LFQFP (7x7)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100ghgfb-v0 |


Email: info@E-XFL.COM

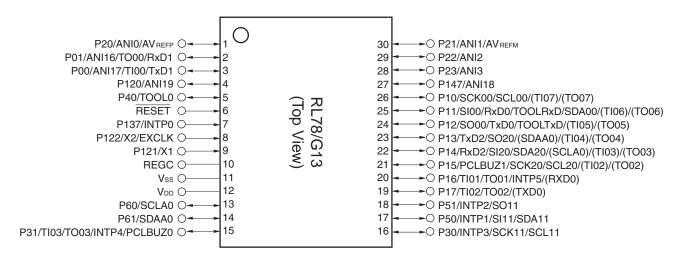
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 1.3.3 25-pin products

<R>

• 25-pin plastic WFLGA (3 × 3 mm, 0.50 mm pitch)




|   | Α                 | В               | С                                   | D                               | E                                       |   |
|---|-------------------|-----------------|-------------------------------------|---------------------------------|-----------------------------------------|---|
| 5 | P40/TOOL0         | RESET           | P01/ANI16/<br>TO00/RxD1             | P22/ANI2                        | P147/ANI18                              | 5 |
| 4 | P122/X2/<br>EXCLK | P137/INTP0      | P00/ANI17/<br>TI00/TxD1             | P21/ANI1/<br>AV <sub>REFM</sub> | P10/SCK00/<br>SCL00                     | 4 |
| 3 | P121/X1           | V <sub>DD</sub> | P20/ANI0/<br>AV <sub>REFP</sub>     | P12/SO00/<br>TxD0/<br>TOOLTxD   | P11/SI00/<br>RxD0/<br>TOOLRxD/<br>SDA00 | 3 |
| 2 | REGC              | Vss             | P30/INTP3/<br>SCK11/SCL11           | P17/TI02/<br>TO02/SO11          | P50/INTP1/<br>SI11/SDA11                | 2 |
| 1 | P60/SCLA0         | P61/SDAA0       | P31/TI03/<br>TO03/INTP4/<br>PCLBUZ0 | P16/TI01/<br>TO01/INTP5         | P130                                    | 1 |
|   | A                 | В               | С                                   | D                               | E                                       |   |

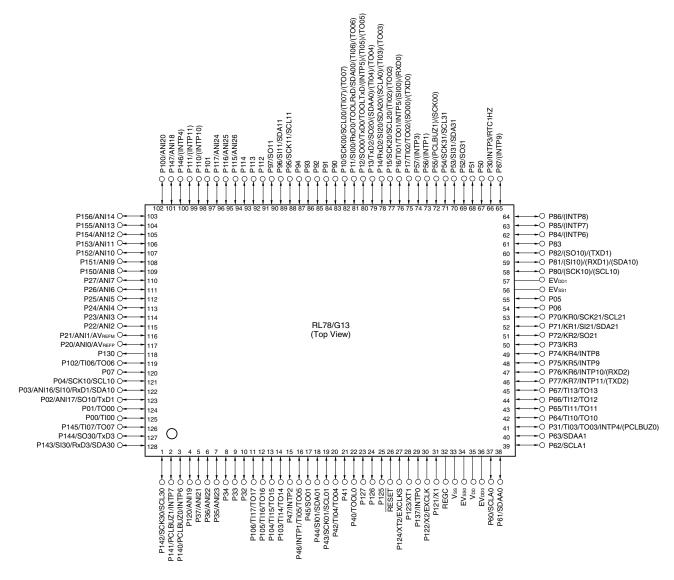
Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F).

**Remark** For pin identification, see **1.4 Pin Identification**.

### 1.3.4 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)




Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

### 1.3.14 128-pin products

• 128-pin plastic LFQFP (14 × 20 mm, 0.5 mm pitch)



Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin.

- 2. Make VDD pin the potential that is higher than EVDDD, EVDDD pins (EVDDD = EVDDD).
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V<sub>DD</sub>, EV<sub>DD0</sub> and EV<sub>DD1</sub> pins and connect the Vss, EVsso and EVss1 pins to separate ground lines.
- 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

#### 1.6 Outline of Functions

[20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(1/2)

|                                                                                                                                                                                                                                                                                                                                  |                                           |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |           |                                     |              |                                     |                                                |                     |                                               |          | (1/2                                        | )        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------|--------------|-------------------------------------|------------------------------------------------|---------------------|-----------------------------------------------|----------|---------------------------------------------|----------|
|                                                                                                                                                                                                                                                                                                                                  | Item                                      | 20-                                                                                                                                                                                                                                                     | pin                                                                                                                                                                                                                                                                                                                                                 | 24-       | pin                                 | 25           | -pin                                | 30-                                            | pin                 | 32-                                           | pin      | 36-                                         | pin      |
|                                                                                                                                                                                                                                                                                                                                  |                                           | R5F1006x                                                                                                                                                                                                                                                | R5F1016x                                                                                                                                                                                                                                                                                                                                            | R5F1007x  | R5F1017x                            | R5F1008x     | R5F1018x                            | R5F100Ax                                       | R5F101Ax            | R5F100Bx                                      | R5F101Bx | R5F100Cx                                    | R5F101Cx |
| Code flash me                                                                                                                                                                                                                                                                                                                    | emory (KB)                                | 16 to                                                                                                                                                                                                                                                   | o 64                                                                                                                                                                                                                                                                                                                                                | 16 t      | o 64                                | 16 t         | o 64                                | 16 to                                          | 128                 | 16 to                                         | 128      | 16 to                                       | 128      |
| Data flash me                                                                                                                                                                                                                                                                                                                    | mory (KB)                                 | 4                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                   | 4         | -                                   | 4            | =                                   | 4 to 8                                         | =                   | 4 to 8                                        | -        | 4 to 8                                      | =        |
| RAM (KB)                                                                                                                                                                                                                                                                                                                         |                                           | 2 to                                                                                                                                                                                                                                                    | 2 to 4 <sup>Note1</sup> 2 to 4 <sup>Note1</sup> 2 to 4 <sup>Note1</sup> 2 to 12 <sup>Note1</sup> 2 to 12 <sup>Note1</sup> 2 to 1                                                                                                                                                                                                                    |           |                                     |              |                                     |                                                |                     | 2 <sup>Note1</sup>                            |          |                                             |          |
| Address space                                                                                                                                                                                                                                                                                                                    | е                                         | 1 MB                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                     |           |                                     |              |                                     |                                                |                     |                                               |          |                                             |          |
| Main system clock                                                                                                                                                                                                                                                                                                                | High-speed system clock                   | HS (Hig<br>HS (Hig<br>LS (Lov                                                                                                                                                                                                                           | X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode: 1 to 20 MHz ( $V_{DD} = 2.7$ to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz ( $V_{DD} = 2.4$ to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz ( $V_{DD} = 1.8$ to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz ( $V_{DD} = 1.6$ to 5.5 V) |           |                                     |              |                                     |                                                |                     |                                               |          |                                             |          |
| High-speed on-chip oscillator  HS (High-speed main) mode: 1 to 32 MHz (V <sub>DD</sub> = 2.7 to 5.5 V)  HS (High-speed main) mode: 1 to 16 MHz (V <sub>DD</sub> = 2.4 to 5.5 V)  LS (Low-speed main) mode: 1 to 8 MHz (V <sub>DD</sub> = 1.8 to 5.5 V),  LV (Low-voltage main) mode: 1 to 4 MHz (V <sub>DD</sub> = 1.6 to 5.5 V) |                                           |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |           |                                     | 5 V),<br>V), |                                     |                                                |                     |                                               |          |                                             |          |
| Subsystem clo                                                                                                                                                                                                                                                                                                                    | ock                                       |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |           |                                     |              |                                     |                                                |                     |                                               |          |                                             |          |
| Low-speed on                                                                                                                                                                                                                                                                                                                     | n-chip oscillator                         | 15 kHz (TYP.)                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                     |           |                                     |              |                                     |                                                |                     |                                               |          |                                             |          |
| General-purpo                                                                                                                                                                                                                                                                                                                    | ose registers                             | (8-bit re                                                                                                                                                                                                                                               | gister ×                                                                                                                                                                                                                                                                                                                                            | 8) × 4 ba | nks                                 |              |                                     |                                                |                     |                                               |          |                                             |          |
| Minimum instr                                                                                                                                                                                                                                                                                                                    | ruction execution time                    | 0.03125 µs (High-speed on-chip oscillator: f <sub>IH</sub> = 32 MHz operation)                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                     |           |                                     |              |                                     |                                                |                     |                                               |          |                                             |          |
|                                                                                                                                                                                                                                                                                                                                  |                                           | 0.05 μs (High-speed system clock: f <sub>MX</sub> = 20 MHz operation)                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                     |           |                                     |              |                                     |                                                |                     |                                               |          |                                             |          |
| Instruction set                                                                                                                                                                                                                                                                                                                  | t                                         | <ul> <li>Data transfer (8/16 bits)</li> <li>Adder and subtractor/logical operation (8/16 bits)</li> <li>Multiplication (8 bits × 8 bits)</li> <li>Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                     |           |                                     |              |                                     |                                                |                     |                                               |          |                                             |          |
| I/O port                                                                                                                                                                                                                                                                                                                         | Total                                     | 1                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                   | 2         | 0                                   | 2            | 21                                  | 2                                              | 6                   | 2                                             | 8        | 3                                           | 2        |
|                                                                                                                                                                                                                                                                                                                                  | CMOS I/O                                  | 1<br>(N-ch C<br>[Vpp wit<br>voltag                                                                                                                                                                                                                      | D.D. I/O<br>thstand                                                                                                                                                                                                                                                                                                                                 | (N-ch C   | 5<br>D.D. I/O<br>thstand<br>ge]: 6) | (N-ch (      | 5<br>D.D. I/O<br>thstand<br>ge]: 6) | 2<br>(N-ch C<br>[V <sub>DD</sub> wit<br>voltag | D.D. I/O<br>thstand | 2<br>(N-ch (<br>[V <sub>DD</sub> wi<br>voltag | thstand  | (N-ch C<br>[V <sub>DD</sub> with<br>voltage | thstand  |
|                                                                                                                                                                                                                                                                                                                                  | CMOS input                                | 3                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                   | ;         | 3                                   | ;            | 3                                   | 3                                              | 3                   | ;                                             | 3        | 3                                           | 3        |
|                                                                                                                                                                                                                                                                                                                                  | CMOS output                               | -                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                   | -         | -                                   |              | 1                                   | _                                              | -                   | -                                             | -        | -                                           | -        |
|                                                                                                                                                                                                                                                                                                                                  | N-ch O.D. I/O<br>(withstand voltage: 6 V) | =                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                   | 2         | 2                                   | :            | 2                                   | 2                                              | 2                   | (                                             | 3        | 3                                           | 3        |
| Timer                                                                                                                                                                                                                                                                                                                            | 16-bit timer                              |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |           |                                     |              | 8 cha                               | nnels                                          |                     |                                               |          |                                             |          |
|                                                                                                                                                                                                                                                                                                                                  | Watchdog timer                            |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |           |                                     |              | 1 cha                               | annel                                          |                     |                                               |          |                                             |          |
|                                                                                                                                                                                                                                                                                                                                  | Real-time clock (RTC)                     | 1 channel Note 2                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                     |           |                                     |              |                                     |                                                |                     |                                               |          |                                             |          |
|                                                                                                                                                                                                                                                                                                                                  | 12-bit interval timer (IT)                | 1 channel                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                     |           |                                     |              |                                     |                                                |                     |                                               |          |                                             |          |
|                                                                                                                                                                                                                                                                                                                                  | Timer output                              | 3 channels (PWM outputs: 3 Note 3) (PWM outputs: 3 Note 3) 4 channels (PWM outputs: 3 Note 3), 8 channels (PWM outputs: 7 Note 3) Note 4                                                                                                                |                                                                                                                                                                                                                                                                                                                                                     |           |                                     |              |                                     |                                                |                     |                                               |          |                                             |          |
|                                                                                                                                                                                                                                                                                                                                  | RTC output                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |           |                                     |              | =                                   | =                                              |                     |                                               |          |                                             |          |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                            |                                           |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |           |                                     |              |                                     |                                                |                     |                                               |          |                                             |          |

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = 6 to 8, A to C): Start address FF300H R5F100xE, R5F101xE (x = 6 to 8, A to C): Start address FEF00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

2. Only the constant-period interrupt function when the low-speed on-chip oscillator clock (fill) is selected

**3.** The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see **6.9.3 Operation as multiple PWM output function** in the RL78/G13 User's Manual).

4. When setting to PIOR = 1

| 1 | $^{\circ}$ | n   | ١ |
|---|------------|-----|---|
| ( | 2          | ' _ | ı |

| Ite                  | m             | 20-                                                                                                                                                                                                                                                                           | pin                                                                                                                                                                         | 24-                                                             | pin                                               | 25-                              | pin      | 30-       | -pin      | 32       | -pin     | 36       | pin      |
|----------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|----------------------------------|----------|-----------|-----------|----------|----------|----------|----------|
|                      |               | R5F1006x                                                                                                                                                                                                                                                                      | R5F1016x                                                                                                                                                                    | R5F1007x                                                        | R5F1017x                                          | R5F1008x                         | R5F1018x | R5F100Ax  | R5F101Ax  | R5F100Bx | R5F101Bx | R5F100Cx | R5F101Cx |
| Clock output/buzze   | er output     |                                                                                                                                                                                                                                                                               | _                                                                                                                                                                           |                                                                 | 1                                                 |                                  | 1        |           | 2         |          | 2        |          | 2        |
|                      |               |                                                                                                                                                                                                                                                                               |                                                                                                                                                                             | 88 kHz, 9<br>n clock: f                                         |                                                   |                                  |          | ИHz, 5 N  | IHz, 10 N | МНz      |          | •        |          |
| 8/10-bit resolution  | A/D converter | 6 chanr                                                                                                                                                                                                                                                                       | nels                                                                                                                                                                        | 6 chanı                                                         | nels                                              | 6 chanı                          | nels     | 8 chan    | nels      | 8 chan   | nels     | 8 chan   | nels     |
| Serial interface     |               | [20-pin, 24-pin, 25-pin products]                                                                                                                                                                                                                                             |                                                                                                                                                                             |                                                                 |                                                   |                                  |          |           |           |          |          |          |          |
|                      |               | • CSI:                                                                                                                                                                                                                                                                        | 1 chann                                                                                                                                                                     | el/simpli                                                       | fied I <sup>2</sup> C:                            | 1 channe                         | el/UART  | : 1 chanı | nel       |          |          |          |          |
|                      |               | CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel                                                                                                                                                                                                                      |                                                                                                                                                                             |                                                                 |                                                   |                                  |          |           |           |          |          |          |          |
|                      |               | [30-pin, 32-pin products]                                                                                                                                                                                                                                                     |                                                                                                                                                                             |                                                                 |                                                   |                                  |          |           |           |          |          |          |          |
|                      |               | <ul> <li>CSI: 1 channel/simplified l<sup>2</sup>C: 1 channel/UART: 1 channel</li> <li>CSI: 1 channel/simplified l<sup>2</sup>C: 1 channel/UART: 1 channel</li> <li>CSI: 1 channel/simplified l<sup>2</sup>C: 1 channel/UART (UART supporting LIN-bus): 1 channel</li> </ul>   |                                                                                                                                                                             |                                                                 |                                                   |                                  |          |           |           |          |          |          |          |
|                      |               | [36-pin products]                                                                                                                                                                                                                                                             |                                                                                                                                                                             |                                                                 |                                                   |                                  |          |           |           |          |          |          |          |
|                      |               | <ul> <li>CSI: 1 channel/simplified l<sup>2</sup>C: 1 channel/UART: 1 channel</li> <li>CSI: 1 channel/simplified l<sup>2</sup>C: 1 channel/UART: 1 channel</li> <li>CSI: 2 channels/simplified l<sup>2</sup>C: 2 channels/UART (UART supporting LIN-bus): 1 channel</li> </ul> |                                                                                                                                                                             |                                                                 |                                                   |                                  |          |           |           |          |          |          |          |
|                      |               |                                                                                                                                                                                                                                                                               | 1 chanı                                                                                                                                                                     |                                                                 | 1 chanı                                           |                                  | 1 chan   |           | 1 chan    |          | 1 chan   | nel      |          |
| Multiplier and divid | der/multiply- | <ul> <li>16 bits × 16 bits = 32 bits (Unsigned or signed)</li> <li>32 bits ÷ 32 bits = 32 bits (Unsigned)</li> <li>16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)</li> </ul>                                                                                      |                                                                                                                                                                             |                                                                 |                                                   |                                  |          |           |           |          |          |          |          |
| DMA controller       |               | 2 chanr                                                                                                                                                                                                                                                                       | nels                                                                                                                                                                        |                                                                 |                                                   |                                  |          |           |           |          |          |          |          |
| Vectored interrupt   | Internal      | 2                                                                                                                                                                                                                                                                             | 23                                                                                                                                                                          | 2                                                               | 24                                                | 2                                | 24       | 2         | 27        | 2        | 27       | 2        | 27       |
| sources              | External      | ;                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                           |                                                                 | 5                                                 |                                  | 5        |           | 6         |          | 6        |          | 6        |
| Key interrupt        |               |                                                                                                                                                                                                                                                                               |                                                                                                                                                                             | •                                                               |                                                   |                                  |          | _         |           |          |          |          |          |
| Reset                |               | <ul><li>Interr</li><li>Interr</li><li>Interr</li><li>Interr</li><li>Interr</li></ul>                                                                                                                                                                                          | nal reset<br>nal reset<br>nal reset<br>nal reset                                                                                                                            | SET pin by watc by power by volta by illega by illega by illega | er-on-res<br>ge detec<br>al instruc<br>I parity e | set<br>ctor<br>tion exec<br>rror |          | e         |           |          |          |          |          |
| Power-on-reset cir   | cuit          |                                                                                                                                                                                                                                                                               | er-on-res<br>er-down-                                                                                                                                                       | set: 1                                                          | I.51 V (T<br>I.50 V (T                            | ,                                |          |           |           |          |          |          |          |
| Voltage detector     |               | <ul> <li>Rising edge: 1.67 V to 4.06 V (14 stages)</li> <li>Falling edge: 1.63 V to 3.98 V (14 stages)</li> </ul>                                                                                                                                                             |                                                                                                                                                                             |                                                                 |                                                   |                                  |          |           |           |          |          |          |          |
| On-chip debug fun    | ection        | Provide                                                                                                                                                                                                                                                                       | ed                                                                                                                                                                          |                                                                 |                                                   |                                  |          |           |           |          |          |          |          |
| Power supply volta   | age           | V <sub>DD</sub> = 1                                                                                                                                                                                                                                                           | .6 to 5.5                                                                                                                                                                   | V (T <sub>A</sub> =                                             | -40 to +8                                         | 35°C)                            |          |           |           |          |          |          |          |
|                      |               | $V_{DD} = 2$                                                                                                                                                                                                                                                                  | 4 to 5.5                                                                                                                                                                    | V (T <sub>A</sub> = -                                           | 40 to +1                                          | 05°C)                            |          |           |           |          |          |          |          |
| Operating ambient    | t temperature |                                                                                                                                                                                                                                                                               | $T_A = 40 \text{ to } +85^{\circ}\text{C}$ (A: Consumer applications, D: Industrial applications ) $T_A = 40 \text{ to } +105^{\circ}\text{C}$ (G: Industrial applications) |                                                                 |                                                   |                                  |          |           |           |          |          |          |          |
|                      |               | 14 - 40                                                                                                                                                                                                                                                                       | 10 T 100                                                                                                                                                                    | . o (a. 11                                                      | idudilidi                                         | αργιισατι                        | 0110)    |           |           |          |          |          |          |

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (4/5)$ 

| Items                   | Symbol           | Conditions                                                                     |                                                                                                                                                   | MIN.                    | TYP. | MAX. | Unit |
|-------------------------|------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|------|------|
| Output voltage,<br>high | V <sub>OH1</sub> | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64                | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -10.0 mA                                                                     | EV <sub>DD0</sub> –     |      |      | V    |
|                         |                  | to P67, P70 to P77, P80 to P87,<br>P90 to P97, P100 to P106, P110 to           | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = $-3.0 \text{ mA}$                                                            | EV <sub>DD0</sub> – 0.7 |      |      | V    |
|                         |                  | P117, P120, P125 to P127, P130,<br>P140 to P147                                | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -2.0 mA                                                                      | EV <sub>DD0</sub> – 0.6 |      |      | V    |
|                         |                  |                                                                                | $\label{eq:loss_loss} \begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$                   | EV <sub>DD0</sub> – 0.5 |      |      | ٧    |
|                         |                  |                                                                                | $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ $I_{\text{OH1}} = -1.0 \text{ mA}$                                                    | EV <sub>DD0</sub> – 0.5 |      |      | V    |
|                         | V <sub>OH2</sub> | P20 to P27, P150 to P156                                                       | 1.6 V $\leq$ V <sub>DD</sub> $\leq$ 5.5 V,<br>Іон2 = $-100~\mu$ A                                                                                 | V <sub>DD</sub> - 0.5   |      |      | V    |
| Output voltage, low     | V <sub>OL1</sub> | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64                | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 20~mA$                                                                                               |                         |      | 1.3  | ٧    |
|                         |                  | P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 | $\label{eq:loss_loss} \begin{cases} 4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ \\ \text{Iol1} = 8.5 \text{ mA} \end{cases}$ |                         |      | 0.7  | >    |
|                         |                  |                                                                                | $2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$ $I_{\text{OL1}} = 3.0~\text{mA}$                                                                         |                         |      | 0.6  | >    |
|                         |                  |                                                                                | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$                                                                                              |                         |      | 0.4  | V    |
|                         |                  |                                                                                | $\label{eq:loss_state} \begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ \\ I_{\text{OL1}} = 0.6 \ mA \end{array}$                   |                         |      | 0.4  | V    |
|                         |                  |                                                                                | $1.6~V \leq EV_{DD0} < 5.5~V,$ $I_{OL1} = 0.3~mA$                                                                                                 |                         |      | 0.4  | V    |
|                         | V <sub>OL2</sub> | P20 to P27, P150 to P156                                                       | 1.6 V $\leq$ VDD $\leq$ 5.5 V, lol2 = 400 $\mu$ A                                                                                                 |                         |      | 0.4  | V    |
|                         | Vol3             | P60 to P63                                                                     | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 15.0~mA$                                                                                             |                         |      | 2.0  | ٧    |
|                         |                  |                                                                                | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 5.0~mA$                                                                                              |                         |      | 0.4  | V    |
|                         |                  |                                                                                | $2.7~\textrm{V} \leq \textrm{EV}_\textrm{DD0} \leq 5.5~\textrm{V},$ $\textrm{Iol3} = 3.0~\textrm{mA}$                                             |                         |      | 0.4  | V    |
|                         |                  | 1.                                                                             | $1.8~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 2.0~mA$                                                                                              |                         |      | 0.4  | V    |
|                         |                  |                                                                                | $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ $\text{Iol3} = 1.0 \text{ mA}$                                                       |                         |      | 0.4  | V    |

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

## (2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ 

| Parameter                                      | Symbol        | (                                 | Conditions F                                                 |      | Conditions I |                 | h-speed<br>Mode | LS (low-speed main) Mode |      | LV (low-voltage main) Mode |  | Unit |
|------------------------------------------------|---------------|-----------------------------------|--------------------------------------------------------------|------|--------------|-----------------|-----------------|--------------------------|------|----------------------------|--|------|
|                                                |               |                                   |                                                              | MIN. | MAX.         | MIN.            | MAX.            | MIN.                     | MAX. |                            |  |      |
| SCKp cycle time                                | <b>t</b> KCY1 | tkcy1 ≥ 2/fclk                    | $4.0~V \leq EV_{DD0} \leq 5.5~V$                             | 62.5 |              | 250             |                 | 500                      |      | ns                         |  |      |
|                                                |               |                                   | $2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$ |      |              | 250             |                 | 500                      |      | ns                         |  |      |
| SCKp high-/low-level width                     | tкн1,<br>tкL1 | 4.0 V ≤ EV <sub>DI</sub>          | $4.0 \text{ V} \le \text{EV}_{\text{DDO}} \le 5.5 \text{ V}$ |      |              | tксү1/2 –<br>50 |                 | tксү1/2 —<br>50          |      | ns                         |  |      |
|                                                |               | 2.7 V ≤ EV <sub>DI</sub>          | 2.7 V ≤ EV <sub>DD0</sub> ≤ 5.5 V                            |      |              | tксү1/2 —<br>50 |                 | tксү1/2 —<br>50          |      | ns                         |  |      |
| SIp setup time (to SCKp↑)                      | tsıĸı         | 4.0 V ≤ EV <sub>DI</sub>          | 00 ≤ 5.5 V                                                   | 23   |              | 110             |                 | 110                      |      | ns                         |  |      |
| Note 1                                         |               | 2.7 V ≤ EV <sub>DI</sub>          | 00 ≤ 5.5 V                                                   | 33   |              | 110             |                 | 110                      |      | ns                         |  |      |
| SIp hold time (from SCKp <sup>↑</sup> ) Note 2 | tksı1         | 2.7 V ≤ EV <sub>DD0</sub> ≤ 5.5 V |                                                              | 10   |              | 10              |                 | 10                       |      | ns                         |  |      |
| Delay time from SCKp↓ to SOp output Note 3     | tkso1         | C = 20 pF No                      | te 4                                                         |      | 10           |                 | 10              |                          | 10   | ns                         |  |      |

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- Remarks 1. This value is valid only when CSI00's peripheral I/O redirect function is not used.
  - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),g: PIM and POM numbers (g = 1)
  - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00))

#### (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ 

| Parameter     | Symbol |                | Conditions                                                                                                                 |                                                                   | Conditions HS (high-<br>speed main<br>Mode |                        | l main) | LS (low-speed<br>main) Mode |      | voltage              | low-<br>e main)<br>ode | Unit |
|---------------|--------|----------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------|------------------------|---------|-----------------------------|------|----------------------|------------------------|------|
|               |        |                |                                                                                                                            |                                                                   | MIN.                                       | MAX.                   | MIN.    | MAX.                        | MIN. | MAX.                 |                        |      |
| Transfer rate |        | Recep-<br>tion | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$<br>$2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$ |                                                                   |                                            | fMCK/6<br>Note 1       |         | fMCK/6<br>Note 1            |      | fMCK/6<br>Note 1     | bps                    |      |
|               |        |                |                                                                                                                            | Theoretical value of the maximum transfer rate fmck = fclk Note 4 |                                            | 5.3                    |         | 1.3                         |      | 0.6                  | Mbps                   |      |
|               |        |                | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$<br>$2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$   |                                                                   |                                            | fMCK/6<br>Note 1       |         | fMCK/6<br>Note 1            |      | fMCK/6<br>Note 1     | bps                    |      |
|               |        |                |                                                                                                                            | Theoretical value of the maximum transfer rate folk Note 4        |                                            | 5.3                    |         | 1.3                         |      | 0.6                  | Mbps                   |      |
|               |        |                | $1.8 \ V \le EV_{DD0} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V$                                                            |                                                                   |                                            | fMCK/6<br>Notes 1 to 3 |         | fMCK/6<br>Notes 1, 2        |      | fMCK/6<br>Notes 1, 2 | bps                    |      |
|               |        |                |                                                                                                                            | Theoretical value of the maximum transfer rate fmck = fclk Note 4 |                                            | 5.3                    |         | 1.3                         |      | 0.6                  | Mbps                   |      |

**Notes 1.** Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. Use it with EVDD0≥Vb.
- 3. The following conditions are required for low voltage interface when  $E_{VDDO} < V_{DD}$ .

 $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V} : \text{MAX. } 2.6 \text{ Mbps}$  $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.4 \text{ V} : \text{MAX. } 1.3 \text{ Mbps}$ 

4. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 32 MHz (2.7 V  $\leq$  VDD  $\leq$  5.5 V)

16 MHz (2.4 V  $\leq$  V<sub>DD</sub>  $\leq$  5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V  $\leq$  V<sub>DD</sub>  $\leq$  5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V  $\leq$  V<sub>DD</sub>  $\leq$  5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

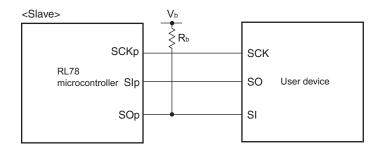
**Remarks 1.**  $V_b[V]$ : Communication line voltage

- 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
- 3. fmcκ: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13)
- **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only) (2/2)

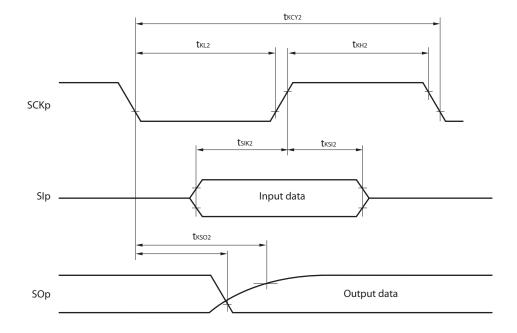
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ 

| Parameter                            | Symbol | Conditions                                                           |      | h-speed<br>Mode | ,    | v-speed<br>Mode | •    | -voltage<br>Mode | Unit |
|--------------------------------------|--------|----------------------------------------------------------------------|------|-----------------|------|-----------------|------|------------------|------|
|                                      |        |                                                                      | MIN. | MAX.            | MIN. | MAX.            | MIN. | MAX.             |      |
| SIp setup time<br>(to SCKp↓) Note 2  | tsıkı  | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $2.7~V \leq V_b \leq 4.0~V,$       | 23   |                 | 110  |                 | 110  |                  | ns   |
|                                      |        | $C_b = 20 \text{ pF}, R_b = 1.4 \text{ k}\Omega$                     |      |                 |      |                 |      |                  |      |
|                                      |        | $ 2.7 \ V \le EV_{DD0} < 4.0 \ V, $ $ 2.3 \ V \le V_b \le 2.7 \ V, $ | 33   |                 | 110  |                 | 110  |                  | ns   |
|                                      |        | $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$                     |      |                 |      |                 |      |                  |      |
| SIp hold time<br>(from SCKp↓) Note 2 | tksi1  | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $2.7~V \leq V_b \leq 4.0~V,$       | 10   |                 | 10   |                 | 10   |                  | ns   |
|                                      |        | $C_b = 20 \text{ pF}, R_b = 1.4 \text{ k}\Omega$                     |      |                 |      |                 |      |                  |      |
|                                      |        | $2.7 \ V \leq EV_{DD0} < 4.0 \ V,$ $2.3 \ V \leq V_b \leq 2.7 \ V,$  | 10   |                 | 10   |                 | 10   |                  | ns   |
|                                      |        | $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$                     |      |                 |      |                 |      |                  |      |
| Delay time from SCKp↑ to             | tkso1  | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $2.7~V \leq V_b \leq 4.0~V,$       |      | 10              |      | 10              |      | 10               | ns   |
| SOp output Note 2                    |        | $C_b = 20 \text{ pF}, R_b = 1.4 \text{ k}\Omega$                     |      |                 |      |                 |      |                  |      |
|                                      |        | $2.7 \ V \leq EV_{DD0} < 4.0 \ V,$ $2.3 \ V \leq V_b \leq 2.7 \ V,$  |      | 10              |      | 10              |      | 10               | ns   |
|                                      |        | $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$                     |      |                 |      |                 |      |                  |      |

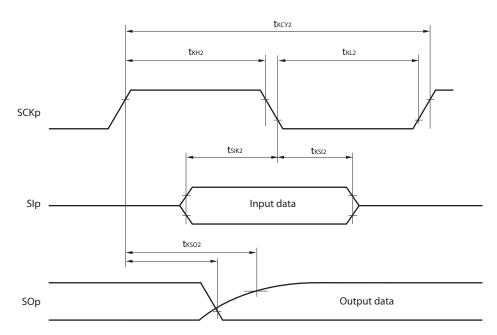

**Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


- **Remarks 1.**  $R_b[\Omega]$ :Communication line (SCKp, SOp) pull-up resistance,  $C_b[F]$ : Communication line (SCKp, SOp) load capacitance,  $V_b[V]$ : Communication line voltage
  - 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),g: PIM and POM number (g = 1)
  - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00))
  - 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.

### CSI mode connection diagram (during communication at different potential)




- Remarks 1.  $R_b[\Omega]$ :Communication line (SOp) pull-up resistance,  $C_b[F]$ : Communication line (SOp) load capacitance,  $V_b[V]$ : Communication line voltage
  - **2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
  - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
  - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

# CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)



## CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)



**Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

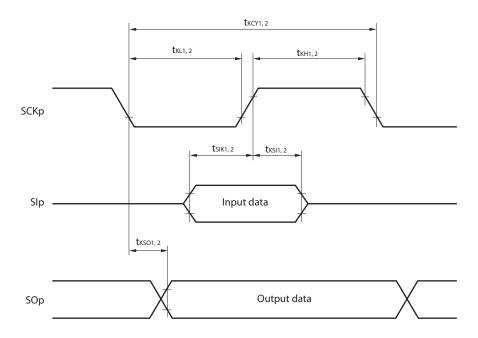
2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$  (4/5)

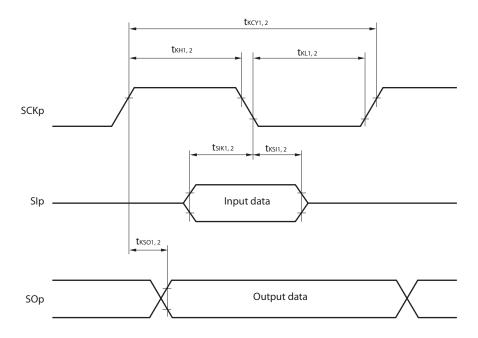
| Items                   | Symbol           | Conditions                                                                                              |                                                                                                    | MIN.                    | TYP. | MAX. | Unit |
|-------------------------|------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------|------|------|------|
| Output voltage,<br>high | V <sub>OH1</sub> | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64                                         | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = $-3.0 \text{ mA}$             | EV <sub>DD0</sub> – 0.7 |      |      | V    |
|                         |                  | to P67, P70 to P77, P80 to P87,<br>P90 to P97, P100 to P106, P110 to<br>P117, P120, P125 to P127, P130, | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -2.0 \text{ mA}$ | EV <sub>DD0</sub> – 0.6 |      |      | ٧    |
|                         |                  | P140 to P147                                                                                            | $2.4 \ V \leq EV_{DD0} \leq 5.5 \ V,$ Iон1 = $-1.5 \ mA$                                           | EV <sub>DD0</sub> – 0.5 |      |      | V    |
|                         | V <sub>OH2</sub> | P20 to P27, P150 to P156                                                                                | $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ Iон2 = $-100 \ \mu \text{ A}$                 | V <sub>DD</sub> – 0.5   |      |      | V    |
| Output voltage, low     | V <sub>OL1</sub> | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64                                         | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 8.5~mA$                                               |                         |      | 0.7  | V    |
|                         |                  | P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147                          | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 3.0~mA$                                               |                         |      | 0.6  | V    |
|                         |                  |                                                                                                         | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$                                               |                         |      | 0.4  | V    |
|                         |                  |                                                                                                         | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 0.6~mA$                                               |                         |      | 0.4  | V    |
|                         | V <sub>OL2</sub> | P20 to P27, P150 to P156                                                                                | $2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$ $\text{Iol2} = 400 \ \mu \text{ A}$         |                         |      | 0.4  | V    |
|                         | Volз             | P60 to P63                                                                                              | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 15.0~mA$                                              |                         |      | 2.0  | V    |
|                         |                  |                                                                                                         | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 5.0~mA$                                               |                         |      | 0.4  | V    |
|                         |                  | 2                                                                                                       | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $\text{Iol3} = 3.0 \text{ mA}$     |                         |      | 0.4  | V    |
|                         |                  | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 2.0~mA$                                                    |                                                                                                    |                         | 0.4  | V    |      |

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.


## 3.3.2 Supply current characteristics

# (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (Ta = -40 to +105°C, 2.4 V $\leq$ EVDD0 $\leq$ VDD $\leq$ 5.5 V, Vss = EVss0 = 0 V) (1/2)


| Parameter      | Symbol           |                                     |                            | Conditions                                 |                          |                         | MIN.                 | TYP. | MAX. | Unit |
|----------------|------------------|-------------------------------------|----------------------------|--------------------------------------------|--------------------------|-------------------------|----------------------|------|------|------|
| Supply current | I <sub>DD1</sub> | Operating mode                      | HS (high-<br>speed main)   | fih = 32 MHz <sup>Note 3</sup>             | Basic operatio           | V <sub>DD</sub> = 5.0 V |                      | 2.1  |      | mA   |
| Note 1         |                  | mode                                | mode Note 5                |                                            | n                        | V <sub>DD</sub> = 3.0 V |                      | 2.1  |      | mA   |
|                |                  |                                     |                            |                                            | Normal                   | V <sub>DD</sub> = 5.0 V |                      | 4.6  | 7.5  | mA   |
|                |                  |                                     |                            |                                            | operatio<br>n            | V <sub>DD</sub> = 3.0 V |                      | 4.6  | 7.5  | mA   |
|                |                  |                                     |                            | fin = 24 MHz Note 3                        | Normal                   | V <sub>DD</sub> = 5.0 V |                      | 3.7  | 5.8  | mA   |
|                |                  |                                     |                            |                                            | operatio<br>n            | V <sub>DD</sub> = 3.0 V |                      | 3.7  | 5.8  | mA   |
|                |                  |                                     |                            | fih = 16 MHz <sup>Note 3</sup>             | Normal                   | V <sub>DD</sub> = 5.0 V |                      | 2.7  | 4.2  | mA   |
|                |                  |                                     |                            |                                            | operatio<br>n            | V <sub>DD</sub> = 3.0 V |                      | 2.7  | 4.2  | mA   |
|                |                  |                                     | HS (high-                  | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ | Normal                   | Square wave input       |                      | 3.0  | 4.9  | mA   |
|                |                  |                                     | speed main)<br>mode Note 5 | $V_{DD} = 5.0 \text{ V}$                   | operatio<br>n            | Resonator connection    |                      | 3.2  | 5.0  | mA   |
|                |                  |                                     |                            | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ | Normal                   | Square wave input       |                      | 3.0  | 4.9  | mA   |
|                |                  |                                     |                            | $V_{DD} = 3.0 \text{ V}$                   | operatio<br>n            | Resonator connection    |                      | 3.2  | 5.0  | mA   |
|                |                  | $f_{MX} = 10 \text{ MHz}^{Note 2},$ | Normal                     | Square wave input                          |                          | 1.9                     | 2.9                  | mA   |      |      |
|                |                  |                                     |                            | $V_{DD} = 5.0 \text{ V}$                   | operatio<br>n            | Resonator connection    |                      | 1.9  | 2.9  | mA   |
|                |                  |                                     | Subsystem                  | $f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ | Normal                   | Square wave input       |                      | 1.9  | 2.9  | mA   |
|                |                  |                                     |                            |                                            | $V_{DD} = 3.0 \text{ V}$ | operatio<br>n           | Resonator connection |      | 1.9  | 2.9  |
|                |                  |                                     |                            | fsuв = 32.768 kHz                          | Normal                   | Square wave input       |                      | 4.1  | 4.9  | μΑ   |
|                |                  |                                     | clock<br>operation         |                                            | operatio<br>n            | Resonator connection    |                      | 4.2  | 5.0  | μΑ   |
|                |                  |                                     |                            | fsub = 32.768 kHz                          | Normal                   | Square wave input       |                      | 4.1  | 4.9  | μΑ   |
|                |                  |                                     |                            | T <sub>A</sub> = +25°C                     | operatio<br>n            | Resonator connection    |                      | 4.2  | 5.0  | μΑ   |
|                |                  |                                     |                            | fsuв = 32.768 kHz                          | Normal                   | Square wave input       |                      | 4.2  | 5.5  | μΑ   |
|                |                  |                                     |                            | Note 4 $T_A = +50^{\circ}C$                | operatio<br>n            | Resonator connection    |                      | 4.3  | 5.6  | μΑ   |
|                |                  |                                     |                            | fsuв = 32.768 kHz                          | Normal                   | Square wave input       |                      | 4.3  | 6.3  | μΑ   |
|                |                  |                                     |                            | Note 4 $T_A = +70^{\circ}C$                | operatio<br>n            | Resonator connection    |                      | 4.4  | 6.4  | μА   |
|                |                  |                                     |                            | fsuB = 32.768 kHz                          | Normal                   | Square wave input       |                      | 4.6  | 7.7  | μΑ   |
|                |                  |                                     | Note                       | Note 4 $T_A = +85^{\circ}C$                | operation                | Resonator connection    |                      | 4.7  | 7.8  | μА   |
|                |                  |                                     |                            | fsus = 32.768 kHz                          | Normal                   | Square wave input       |                      | 6.9  | 19.7 | μΑ   |
|                |                  |                                     | No                         | Note 4 $T_{A} = +105^{\circ}C$             | operation                | Resonator connection    |                      | 7.0  | 19.8 | μΑ   |

(Notes and Remarks are listed on the next page.)

# CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)



# CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)



**Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31)

2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

### (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ 

| Parameter     | Symbol |           | Conditions                                                   |                                                                           |      | speed main)<br>ode   | Unit |
|---------------|--------|-----------|--------------------------------------------------------------|---------------------------------------------------------------------------|------|----------------------|------|
|               |        |           |                                                              |                                                                           | MIN. | MAX.                 |      |
| Transfer rate |        | Reception | $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$         |                                                                           |      | fмск/12 Note 1       | bps  |
|               |        |           | $V$ , $2.7 \ V \le V_b \le 4.0 \ V$                          | Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk |      | 2.6                  | Mbps |
|               |        |           | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0$            | $1.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0$                         |      | fmck/12 Note 1       | bps  |
|               |        |           | $V,$ $2.3~V \leq V_b \leq 2.7~V$                             | Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk |      | 2.6                  | Mbps |
|               |        |           | $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ |                                                                           |      | fMCK/12<br>Notes 1,2 | bps  |
|               |        |           | $1.6~V \leq V_b \leq 2.0~V$                                  | Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk |      | 2.6                  | Mbps |

- Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
  - 2. The following conditions are required for low voltage interface when EVDDO < VDD.

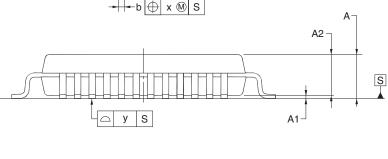
 $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$ : MAX. 1.3 Mbps

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- Remarks 1. V<sub>b</sub>[V]: Communication line voltage
  - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
  - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13)
  - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

### 4.9 48-pin Products

R5F100GAAFB, R5F100GCAFB, R5F100GDAFB, R5F100GEAFB, R5F100GFAFB, R5F100GAFB, R5F100GHAFB, R5F100GJAFB, R5F100GKAFB, R5F100GLAFB


R5F101GAAFB, R5F101GCAFB, R5F101GDAFB, R5F101GEAFB, R5F101GFAFB, R5F101GHAFB, R5F101GJAFB, R5F101GKAFB, R5F101GLAFB

R5F100GADFB, R5F100GCDFB, R5F100GDDFB, R5F100GEDFB, R5F100GFDFB, R5F100GHDFB, R5F100GHDFB, R5F100GHDFB, R5F100GHDFB, R5F100GHDFB

R5F101GADFB, R5F101GCDFB, R5F101GDDFB, R5F101GEDFB, R5F101GFDFB, R5F101GHDFB, R5F101GJDFB, R5F101GKDFB, R5F101GKDFB, R5F101GKDFB, R5F101GKDFB

R5F100GAGFB, R5F100GCGFB, R5F100GDGFB, R5F100GEGFB, R5F100GFGFB, R5F100GHGFB, R5F10

| JEITA Package Code                     | RENESAS Code | Previous Code  | MASS (TYP.)  | [g]                    |
|----------------------------------------|--------------|----------------|--------------|------------------------|
| P-LFQFP48-7x7-0.50                     | PLQP0048KF-A | P48GA-50-8EU-1 | 0.16         |                        |
| HD———————————————————————————————————— | 25 24        | E HE           | detail of le | CL                     |
| 48                                     | 13           |                |              | (UNIT:mn               |
| . 1                                    | 12.          | ↓              | <u>ITEM</u>  | DIMENSIONS             |
|                                        |              | <u> </u>       | E            | 7.00±0.20<br>7.00±0.20 |
|                                        |              | ↓              | <br>HD       | 9.00±0.20              |
|                                        | '            | <u> </u>       | HE           | 9.00±0.20<br>9.00±0.20 |
| -ZD                                    | → e          |                | A            | 1.60 MAX.              |
|                                        |              |                | A1           | 0.10±0.05              |
| <del>-   -</del> b  ⊕  >               | x (M) S      | Δ.             | A1 A2        | 1.40±0.05              |
|                                        |              | A              | A2           | 0.25                   |
|                                        |              | A2 ¬           | b            | 0.25<br>0.22±0.05      |
|                                        |              |                |              | J.LL_0.00              |



Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

© 2012 Renesas Electronics Corporation. All rights reserved.

0.145 <sup>+0.055</sup> -0.045 0.50

0.60±0.15

1.00±0.20 3°+5° 0.50 0.08 0.08

0.75

0.75

Lp

ZD

ZE



### 4.11 64-pin Products

R5F100LCAFA, R5F100LDAFA, R5F100LEAFA, R5F100LFAFA, R5F100LGAFA, R5F100LHAFA, R5F100LJAFA, R5F100LKAFA, R5F100LLAFA

R5F101LCAFA, R5F101LDAFA, R5F101LEAFA, R5F101LFAFA, R5F101LGAFA, R5F101LHAFA, R5F101LJAFA, R5F101LKAFA, R5F101LLAFA

R5F100LCDFA, R5F100LDDFA, R5F100LEDFA, R5F100LFDFA, R5F100LGDFA, R5F100LHDFA, R5F100LJDFA, R5F100LKDFA, R5F100LLDFA

R5F101LCDFA, R5F101LDDFA, R5F101LEDFA, R5F101LFDFA, R5F101LGDFA, R5F101LHDFA, R5F101LJDFA, R5F101LKDFA, R5F101LLDFA

Previous Code

MASS (TYP.) [g]

R5F100LCGFA, R5F100LDGFA, R5F100LEGFA, R5F100LFGFA, R5F100LGGFA, R5F100LHGFA, R5F100LJGFA

RENESAS Code

JEITA Package Code



R5F100LCAFB, R5F100LDAFB, R5F100LEAFB, R5F100LFAFB, R5F100LGAFB, R5F100LHAFB, R5F100LJAFB, R5F100LKAFB, R5F100LLAFB

R5F101LCAFB, R5F101LDAFB, R5F101LEAFB, R5F101LFAFB, R5F101LGAFB, R5F101LHAFB,

R5F101LJAFB, R5F101LKAFB, R5F101LLAFB

R5F100LCDFB, R5F100LDDFB, R5F100LEDFB, R5F100LFDFB, R5F100LGDFB, R5F100LHDFB, R5F100LDFB, R5F100LKDFB, R5F100LKDFB

R5F101LCDFB, R5F101LDDFB, R5F101LEDFB, R5F101LFDFB, R5F101LGDFB, R5F101LHDFB,

R5F101LJDFB, R5F101LKDFB, R5F101LLDFB

R5F100LCGFB, R5F100LDGFB, R5F100LEGFB, R5F100LFGFB, R5F100LGGFB, R5F100LHGFB, R5F100LJGFB

|          | JEITA Package Code   | RENESAS Code | Previous Code  | MASS (TYP.)       | ) [g]                                                                               |
|----------|----------------------|--------------|----------------|-------------------|-------------------------------------------------------------------------------------|
|          | P-LFQFP64-10x10-0.50 | PLQP0064KF-A | P64GB-50-UEU-2 | 0.35              |                                                                                     |
|          | HD — D — 48 49       | 33           | T E HE         | detail of         | lead end  C  A3  C  L  Lp                                                           |
| E -      | 64 1<br>1 -ZD        | 17 16 e      |                | ITEM D E HD HE A  | (UNIT:mm) DIMENSIONS 10.00±0.20 10.00±0.20 12.00±0.20 12.00±0.20 160 MAX. 0.10±0.05 |
| Œ        | - b                  | x (M) S      | A2 ¬           | A2 A3 b c L Lp    | 1.40±0.05<br>0.25<br>0.22±0.05<br>0.145 +0.055<br>0.50<br>0.60±0.15                 |
| <u> </u> | Lays                 |              | A1             | L1<br>θ<br>e<br>x | 1.00±0.20<br>3°+5°<br>0.50<br>0.08                                                  |
|          |                      |              |                |                   |                                                                                     |

©2012 Renesas Electronics Corporation. All rights reserved.

0.08

1.25

ZD

ZΕ

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

|      |              | Description |                                                                                                                                                     |  |  |
|------|--------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Rev. | Date         | Page        | Summary                                                                                                                                             |  |  |
| 3.00 | Aug 02, 2013 | 163         | Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I <sup>2</sup> C mode) (1/2)                      |  |  |
|      |              | 164, 165    | Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I <sup>2</sup> C mode) (2/2) |  |  |
|      |              | 166         | Modification of table in 3.5.2 Serial interface IICA                                                                                                |  |  |
|      |              | 166         | Modification of IICA serial transfer timing                                                                                                         |  |  |
|      |              | 167         | Addition of table in 3.6.1 A/D converter characteristics                                                                                            |  |  |
|      |              | 167, 168    | Modification of table and notes 3 and 4 in 3.6.1 (1)                                                                                                |  |  |
|      |              | 169         | Modification of description in 3.6.1 (2)                                                                                                            |  |  |
|      |              | 170         | Modification of description and note 3 in 3.6.1 (3)                                                                                                 |  |  |
|      |              | 171         | Modification of description and notes 3 and 4 in 3.6.1 (4)                                                                                          |  |  |
|      |              | 172         | Modification of table and note in 3.6.3 POR circuit characteristics                                                                                 |  |  |
|      |              | 173         | Modification of table of LVD Detection Voltage of Interrupt & Reset Mode                                                                            |  |  |
|      |              | 173         | Modification from Supply Voltage Rise Time to 3.6.5 Power supply voltage rising slope characteristics                                               |  |  |
|      |              | 174         | Modification of 3.9 Dedicated Flash Memory Programmer Communication (UART)                                                                          |  |  |
|      |              | 175         | Modification of table, figure, and remark in 3.10 Timing Specs for Switching Flash Memory Programming Modes                                         |  |  |
| 3.10 | Nov 15, 2013 | 123         | Caution 4 added.                                                                                                                                    |  |  |
|      |              | 125         | Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted.                                                                     |  |  |
| 3.30 | Mar 31, 2016 |             | Modification of the position of the index mark in 25-pin plastic WFLGA (3 $\times$ 3 mm, 0.50 mm pitch) of 1.3.3 25-pin products                    |  |  |
|      |              |             | Modification of power supply voltage in 1.6 Outline of Functions [20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products]                          |  |  |
|      |              |             | Modification of power supply voltage in 1.6 Outline of Functions [40-pin, 44-pin, 48-pin, 52-pin, 64-pin products]                                  |  |  |
|      |              |             | Modification of power supply voltage in 1.6 Outline of Functions [80-pin, 100-pin, 128-pin products]                                                |  |  |
|      |              |             | ACK corrected to ACK                                                                                                                                |  |  |
|      |              |             | ACK corrected to ACK                                                                                                                                |  |  |

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

#### NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.