Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---------------------------------------------------------------------------------| | | | | Product Status | Active | | Core Processor | RL78 | | Core Size | 16-Bit | | Speed | 32MHz | | Connectivity | CSI, I <sup>2</sup> C, LINbus, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 34 | | Program Memory Size | 256KB (256K x 8) | | Program Memory Type | FLASH | | EEPROM Size | 8K x 8 | | RAM Size | 20K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V | | Data Converters | A/D 10x8/10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 48-LQFP | | Supplier Device Package | 48-LFQFP (7x7) | | Purchase URL | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100gjafb-30 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Table 1-1. List of Ordering Part Numbers (11/12) | Pin count | Package | Data flash | Fields of<br>Application | Ordering Part Number | |-----------|--------------------------------------------------------|------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------| | 100 pins | 100-pin plastic<br>LFQFP (14 × 14<br>mm, 0.5 mm pitch) | Mounted | А | R5F100PFAFB#V0, R5F100PGAFB#V0, R5F100PHAFB#V0, R5F100PJAFB#V0, R5F100PKAFB#V0, R5F100PLAFB#V0 R5F100PFAFB#X0, R5F100PGAFB#X0, R5F100PHAFB#X0, | | | min, 0.5 min pitch) | | | R5F100PJAFB#X0, R5F100PKAFB#X0, R5F100PLAFB#X0 | | | | | D | R5F100PFDFB#V0, R5F100PGDFB#V0, R5F100PHDFB#V0, | | | | | | R5F100PJDFB#V0, R5F100PKDFB#V0, R5F100PLDFB#V0 | | | | | | R5F100PFDFB#X0, R5F100PGDFB#X0, R5F100PHDFB#X0, | | | | | | R5F100PJDFB#X0, R5F100PKDFB#X0, R5F100PLDFB#X0 | | | | | G | R5F100PFGFB#V0, R5F100PGGFB#V0, R5F100PHGFB#V0, | | | | | | R5F100PJGFB#V0 | | | | | | R5F100PFGFB#X0, R5F100PGGFB#X0, R5F100PHGFB#X0, | | | | | | R5F100PJGFB#X0 | | | | Not | Α | R5F101PFAFB#V0, R5F101PGAFB#V0, R5F101PHAFB#V0, | | | | mounted | | R5F101PJAFB#V0, R5F101PKAFB#V0, R5F101PLAFB#V0 | | | | | | R5F101PFAFB#X0, R5F101PGAFB#X0, R5F101PHAFB#X0, | | | | | | R5F101PJAFB#X0, R5F101PKAFB#X0, R5F101PLAFB#X0 | | | | | D | R5F101PFDFB#V0, R5F101PGDFB#V0, R5F101PHDFB#V0, | | | | | | R5F101PJDFB#V0, R5F101PKDFB#V0, R5F101PLDFB#V0 | | | | | | R5F101PFDFB#X0, R5F101PGDFB#X0, R5F101PHDFB#X0, | | | | | | R5F101PJDFB#X0, R5F101PKDFB#X0, R5F101PLDFB#X0 | | | 100-pin plastic | Mounted | Α | R5F100PFAFA#V0, R5F100PGAFA#V0, R5F100PHAFA#V0, | | | LQFP (14 × 20 mm, | | | R5F100PJAFA#V0, R5F100PKAFA#V0, R5F100PLAFA#V0 | | | 0.65 mm pitch) | | | R5F100PFAFA#X0, R5F100PGAFA#X0, R5F100PHAFA#X0, | | | | | | R5F100PJAFA#X0, R5F100PKAFA#X0, R5F100PLAFA#X0 | | | | | D | R5F100PFDFA#V0, R5F100PGDFA#V0, R5F100PHDFA#V0, | | | | | | R5F100PJDFA#V0, R5F100PKDFA#V0, R5F100PLDFA#V0 | | | | | | R5F100PFDFA#X0, R5F100PGDFA#X0, R5F100PHDFA#X0, | | | | | | R5F100PJDFA#X0, R5F100PKDFA#X0, R5F100PLDFA#X0 | | | | | G | R5F100PFGFA#V0, R5F100PGGFA#V0, R5F100PHGFA#V0, | | | | | | R5F100PJGFA#V0 | | | | | | R5F100PFGFA#X0, R5F100PGGFA#X0, R5F100PHGFA#X0, | | | | | | R5F100PJGFA#X0 | | | | Not | Α | R5F101PFAFA#V0, R5F101PGAFA#V0, R5F101PHAFA#V0, | | | | mounted | | R5F101PJAFA#V0, R5F101PKAFA#V0, R5F101PLAFA#V0 | | | | | | R5F101PFAFA#X0, R5F101PGAFA#X0, R5F101PHAFA#X0, | | | | | | R5F101PJAFA#X0, R5F101PKAFA#X0, R5F101PLAFA#X0 | | | | | D | R5F101PFDFA#V0, R5F101PGDFA#V0, R5F101PHDFA#V0, | | | | | | R5F101PJDFA#V0, R5F101PKDFA#V0, R5F101PLDFA#V0 | | | | | | R5F101PFDFA#X0, R5F101PGDFA#X0, R5F101PHDFA#X0, | | | | | | R5F101PJDFA#X0, R5F101PKDFA#X0, R5F101PLDFA#X0 | Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. ## 1.3.4 30-pin products • 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 $\mu$ F). Remarks 1. For pin identification, see 1.4 Pin Identification. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. ## 1.3.6 36-pin products • 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch) | | Α | В | С | D | E | F | | |---|---------------------------|--------------------------------|---------------------------------------------------|-------------------------------------------------------|---------------------------------|---------------------|---| | 6 | P60/SCLA0 | V <sub>DD</sub> | P121/X1 | P122/X2/EXCLK | P137/INTP0 | P40/TOOL0 | 6 | | Ü | | | | | | | ] | | 5 | P62 | P61/SDAA0 | Vss | REGC | RESET | P120/ANI19 | 5 | | | | | | | | | | | 4 | P72/SO21 | P71/SI21/<br>SDA21 | P14/RxD2/SI20/<br>SDA20/(SCLA0)<br>/(TI03)/(TO03) | P31/TI03/TO03/<br>INTP4/<br>PCLBUZ0 | P00/Tl00/TxD1 | P01/T000/RxD1 | 4 | | 3 | P50/INTP1/<br>SI11/SDA11 | P70/SCK21/<br>SCL21 | P15/PCLBUZ1/<br>SCK20/SCL20/<br>(TI02)/(TO02) | P22/ANI2 | P20/ANI0/<br>AV <sub>REFP</sub> | P21/ANI1/<br>AVREFM | 3 | | 2 | P30/INTP3/<br>SCK11/SCL11 | P16/TI01/TO01/<br>INTP5/(RxD0) | P12/SO00/<br>TxD0/TOOLTxD<br>/(TI05)/(TO05) | P11/SI00/RxD0/<br>TOOLRxD/<br>SDA00/(TI06)/<br>(TO06) | P24/ANI4 | P23/ANI3 | 2 | | 1 | P51/INTP2/<br>SO11 | P17/Tl02/TO02/<br>(TxD0) | P13/TxD2/<br>SO20/(SDAA0)/<br>(TI04)/(TO04) | P10/SCK00/<br>SCL00/(TI07)/<br>(TO07) | P147/ANI18 | P25/ANI5 | 1 | | | Α | В | С | D | E | F | - | Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 $\mu$ F). Remarks 1. For pin identification, see 1.4 Pin Identification. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. ## 1.3.10 52-pin products • 52-pin plastic LQFP (10 × 10 mm, 0.65 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 $\mu$ F). Remarks 1. For pin identification, see 1.4 Pin Identification. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. # 1.5.7 40-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. ### 1.6 Outline of Functions [20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products] Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H. (1/2) | | | | | | | | | | | | | (1/2 | | | |-------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------|------------------------------------------------------------|---------------------|--------------------------------------------|---------------------|--| | | Item | 20- | pin | 24- | -pin | 25 | -pin | 30- | pin | 32- | pin | 36- | pin | | | | | R5F1006x | R5F1016x | R5F1007x | R5F1017x | R5F1008x | R5F1018x | R5F100Ax | R5F101Ax | R5F100Bx | R5F101Bx | R5F100Cx | R5F101Cx | | | Code flash me | emory (KB) | 16 to 64 | | 16 t | o 64 | 16 t | o 64 | 16 to | 128 | 16 to | 128 | 16 to | 128 | | | Data flash me | mory (KB) | 4 | = | 4 | _ | 4 | - | 4 to 8 | = | 4 to 8 | - | 4 to 8 | = | | | RAM (KB) | | 2 to | 4 <sup>Note1</sup> | 2 to | 4 <sup>Note1</sup> | 2 to | 4 <sup>Note1</sup> | 2 to 1 | 12 <sup>Note1</sup> | 2 to 1 | 12 <sup>Note1</sup> | 2 to 1 | 2 <sup>Note1</sup> | | | Address space | e | 1 MB | | | | | | | | | | - | | | | Main system clock | High-speed system clock | HS (Hig<br>HS (Hig<br>LS (Low | h-speed<br>h-speed<br>v-speed | l main) m<br>I main) m<br>main) m | node: 1 t<br>node: 1 t<br>ode: 1 to | o 20 M⊢<br>o 16 M⊢<br>o 8 MHz | main sys<br>Iz (V <sub>DD</sub> =<br>Iz (V <sub>DD</sub> =<br>(V <sub>DD</sub> = 1.<br>z (V <sub>DD</sub> = 1 | 2.7 to 5.<br>2.4 to 5.<br>8 to 5.5 | 5 V),<br>5 V),<br>V), | EXCLK) | | | | | | | High-speed on-chip oscillator | HS (Hig<br>LS (Lov | h-speed<br>v-speed | l main) m<br>main) m | node: 1 t<br>ode: 1 t | :o 16 MH<br>:o 8 MHz | dz (Vdd =<br>dz (Vdd =<br>z (Vdd = 1<br>z (Vdd = 1 | 2.4 to 5.5 | .5 V),<br>5 V), | | | | | | | Subsystem clo | clock – | | | | | | | | | | | | | | | Low-speed on | -chip oscillator | 15 kHz | (TYP.) | | | | | | | | | | | | | General-purpo | ose registers | (8-bit re | gister× | 8) × 4 ba | anks | | | | | | | | | | | Minimum instr | ruction execution time | 0.03125 | μs (Hig | h-speed | on-chip | oscillato | or: fін = 32 | 2 MHz o <sub>l</sub> | peration | ) | | | | | | | | 0.05 <i>μ</i> s | (High-sp | peed sys | tem cloc | :k: fмx = | 20 MHz | operation | า) | | | | | | | Instruction set | | <ul> <li>Data transfer (8/16 bits)</li> <li>Adder and subtractor/logical operation (8/16 bits)</li> <li>Multiplication (8 bits × 8 bits)</li> <li>Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.</li> </ul> | | | | | | | | | | | | | | I/O port | Total | 1 | 6 | 2 | .0 | 2 | 21 | 2 | 6 | 2 | 8 | 3 | 2 | | | | CMOS I/O | (N-ch C<br>(V <sub>DD</sub> wit<br>voltag | D.D. I/O<br>hstand | (N-ch C | 5<br>D.D. I/O<br>thstand<br>ge]: 6) | (N-ch ( | D.D. I/O<br>thstand<br>ge]: 6) | (N-ch C<br>[V <sub>DD</sub> with<br>voltage | D.D. I/O<br>thstand | 2<br>(N-ch C<br>[V <sub>DD</sub> wi <sup>-</sup><br>voltag | thstand | (N-ch C<br>[V <sub>DD</sub> wit<br>voltage | D.D. I/O<br>thstand | | | | CMOS input | 3 | 3 | ( | 3 | ; | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | CMOS output | = | - | - | = | | 1 | = | = | = | = | = | = | | | | N-ch O.D. I/O<br>(withstand voltage: 6 V) | - | - | 2 | 2 | : | 2 | 2 | 2 | 3 | 3 | 3 | 3 | | | Timer | 16-bit timer | | | | | | 8 cha | nnels | | | | | | | | | Watchdog timer | | | | | | 1 cha | ınnel | | | | | | | | | Real-time clock (RTC) | | | | | | 1 chanı | nel Note 2 | | | | | | | | | 12-bit interval timer (IT) | | | | | | 1 cha | ınnel | | | | | | | | | Timer output | | 3 channels 4 channels 4 channels (PWM outputs: 3 Note 3), (PWM outputs: 17 Note 3) Note 3 Not | | | | | | | | | | | | | | RTC output | | | | | | _ | - | | | | | | | Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below. R5F100xD, R5F101xD (x = 6 to 8, A to C): Start address FF300H R5F100xE, R5F101xE (x = 6 to 8, A to C): Start address FEF00H For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944). 2. Only the constant-period interrupt function when the low-speed on-chip oscillator clock (fill) is selected ### (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | | Conditions | | | high-<br>I main)<br>ode | | /-speed<br>Mode | voltage | low-<br>e main)<br>ode | Unit | |---------------|-------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----|------|-------------------------|------|----------------------|---------|------------------------|------| | | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | Transfer rate | | | | | | fMCK/6<br>Note 1 | | fMCK/6<br>Note 1 | | fMCK/6<br>Note 1 | bps | | | | | Theoretical value of the maximum transfer rate fmck = fclk Note 4 | | 5.3 | | 1.3 | | 0.6 | Mbps | | | | | | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$<br>$2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$ | | | fMCK/6<br>Note 1 | | fMCK/6<br>Note 1 | | fMCK/6<br>Note 1 | bps | | | 2.5 v \(\times\) v \(\times\) | Theoretical value of the maximum transfer rate folk Note 4 | | 5.3 | | 1.3 | | 0.6 | Mbps | | | | | | | $1.8 \ V \le EV_{DD0} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V$ | | | fMCK/6<br>Notes 1 to 3 | | fMCK/6<br>Notes 1, 2 | | fMCK/6<br>Notes 1, 2 | bps | | | | | Theoretical value of the maximum transfer rate fmck = fclk Note 4 | | 5.3 | | 1.3 | | 0.6 | Mbps | | **Notes 1.** Transfer rate in the SNOOZE mode is 4800 bps only. - 2. Use it with EVDD0≥Vb. - 3. The following conditions are required for low voltage interface when $E_{VDDO} < V_{DD}$ . $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$ : MAX. 2.6 Mbps $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.4 \text{ V}$ : MAX. 1.3 Mbps 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are: HS (high-speed main) mode: 32 MHz (2.7 V $\leq$ V<sub>DD</sub> $\leq$ 5.5 V) 16 MHz (2.4 V $\leq$ V<sub>DD</sub> $\leq$ 5.5 V) LS (low-speed main) mode: 8 MHz (1.8 V $\leq$ V<sub>DD</sub> $\leq$ 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V $\leq$ V<sub>DD</sub> $\leq$ 5.5 V) Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vpd tolerance (When 20- to 52-pin products)/EVpd tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For ViH and ViL, see the DC characteristics with TTL input buffer selected. **Remarks 1.** $V_b[V]$ : Communication line voltage - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14) - 3. fmcκ: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13) - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1. # (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/2)$ | Parameter | Symbol | ĺ | ≤ VDD ≤ 5.5 V, Vss = | HS ( | high-<br>main)<br>ode | LS (low | | | -voltage<br>Mode | Unit | |------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|-----------------------|-------------|------|-------------|------------------|------| | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SCKp cycle time Note 1 | | $4.0 \text{ V} \le \text{EV}_{DD0} \le 5.5 \text{ V},$<br>$2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}$ | 24 MHz < fмск | 14/<br>fмск | | _ | | _ | | ns | | | | | 20 MHz < fмcκ ≤ 24 MHz | 12/<br>fмск | | | | | | ns | | | | | 8 MHz < fмcк ≤ 20 MHz | 10/<br>fмск | | _ | | _ | | ns | | | | | 4 MHz < fмcк ≤ 8 MHz | 8/fмск | | 16/<br>fмск | | _ | | ns | | | | | fmck ≤ 4 MHz | 6/fмск | | 10/<br>fмск | | 10/<br>fмск | | ns | | | | $2.7 \text{ V} \le \text{EV}_{DD0} < 4.0 \text{ V},$<br>$2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ | 24 MHz < fмск | 20/<br>fмск | | _ | | _ | | ns | | | | | 20 MHz < fмcк ≤ 24 MHz | 16/<br>fмск | | _ | | _ | | ns | | | | | 16 MHz < fмcк ≤ 20 MHz | 14/<br>fмск | | _ | | _ | | ns | | | | | 8 MHz < fмcк ≤ 16 MHz | 12/<br>fмск | | _ | | _ | | ns | | | | | 4 MHz < fмcк ≤ 8 MHz | 8/fмск | | 16/<br>fмск | | _ | | ns | | | | | fмск ≤ 4 MHz | 6/ƒмск | | 10/<br>fмск | | 10/<br>fмск | | ns | | | | $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}^{\text{Note}}$ | 24 MHz < fмск | 48/<br>fмск | | _ | | _ | | ns | | | | 2 | 20 MHz < fмcк ≤ 24 MHz | 36/<br>fмск | | _ | | _ | | ns | | | | | 16 MHz < fмcк ≤ 20 MHz | 32/<br>fмск | | _ | | _ | | ns | | | | 8 MHz < f <sub>MCK</sub> ≤ 16 MHz | 26/<br>fмск | | | | | | ns | | | | | 4 MHz < f <sub>MCK</sub> ≤ 8 MHz | 16/<br>fмск | | 16/<br>fмск | | _ | | ns | | | | | | fмcк ≤ 4 MHz | 10/<br>fмск | | 10/<br>fмск | | 10/<br>fмск | | ns | (Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.) # CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) # CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. # 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C) This chapter describes the following electrical specifications. Target products G: Industrial applications $T_A = -40$ to +105°C R5F100xxGxx - Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used. - 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS. - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product. - 4. Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to $+105^{\circ}C$ . Derating is the systematic reduction of load for the sake of improved reliability. Remark When RL78/G13 is used in the range of $T_A = -40$ to +85°C, see CHAPTER 2 ELECTRICAL SPECIFICATIONS ( $T_A = -40$ to +85°C). There are following differences between the products "G: Industrial applications ( $T_A = -40$ to $+105^{\circ}$ C)" and the products "A: Consumer applications, and D: Industrial applications". | Parameter | Ар | plication | |----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | A: Consumer applications, D: Industrial applications | G: Industrial applications | | Operating ambient temperature | T <sub>A</sub> = -40 to +85°C | T <sub>A</sub> = -40 to +105°C | | Operating mode Operating voltage range | HS (high-speed main) mode: $2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0} 1 \text{ MHz to } 32 \text{ MHz}$ $2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0} 1 \text{ MHz to } 16 \text{ MHz}$ $LS \text{ (low-speed main) mode:}$ $1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0} 1 \text{ MHz to } 8 \text{ MHz}$ $LV \text{ (low-voltage main) mode:}$ $1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0} 1 \text{ MHz to } 4 \text{ MHz}$ | HS (high-speed main) mode only: $2.7~V \le V_{DD} \le 5.5~V @ 1~MHz~to~32~MHz$ $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz~to~16~MHz$ | | High-speed on-chip oscillator clock accuracy | 1.8 V $\leq$ V <sub>DD</sub> $\leq$ 5.5 V<br>$\pm$ 1.0%@ TA = -20 to +85°C<br>$\pm$ 1.5%@ TA = -40 to -20°C<br>1.6 V $\leq$ V <sub>DD</sub> $<$ 1.8 V<br>$\pm$ 5.0%@ TA = -20 to +85°C<br>$\pm$ 5.5%@ TA = -40 to -20°C | $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$<br>$\pm 2.0\%@ \text{ T}_{A} = +85 \text{ to } +105^{\circ}\text{C}$<br>$\pm 1.0\%@ \text{ T}_{A} = -20 \text{ to } +85^{\circ}\text{C}$<br>$\pm 1.5\%@ \text{ T}_{A} = -40 \text{ to } -20^{\circ}\text{C}$ | | Serial array unit | UART CSI: fclk/2 (supporting 16 Mbps), fclk/4 Simplified I <sup>2</sup> C communication | UART CSI: fclk/4 Simplified I <sup>2</sup> C communication | | IICA | Normal mode Fast mode Fast mode plus | Normal mode<br>Fast mode | | Voltage detector | Rise detection voltage: 1.67 V to 4.06 V (14 levels) Fall detection voltage: 1.63 V to 3.98 V (14 levels) | Rise detection voltage: 2.61 V to 4.06 V (8 levels) Fall detection voltage: 2.55 V to 3.98 V (8 levels) | (Remark is listed on the next page.) ### 3.3 DC Characteristics ### 3.3.1 Pin characteristics $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/5)$ | Items | Symbol | Conditions | | MIN. | TYP. | MAX. | Unit | |-------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------|------|------------------------|------| | Output current,<br>high <sup>Note 1</sup> | Іон1 | Per pin for P00 to P07, P10 to P17,<br>P30 to P37, P40 to P47, P50 to P57, P64<br>to P67, P70 to P77, P80 to P87, P90 to<br>P97, P100 to P106,<br>P110 to P117, P120, P125 to P127,<br>P130, P140 to P147 | $2.4~V \leq EV_{DD0} \leq 5.5~V$ | | | -3.0 Note 2 | mA | | | | Total of P00 to P04, P07, P32 to P37, | $4.0~V \leq EV_{DD0} \leq 5.5~V$ | | | -30.0 | mA | | | | P125 to P127, P130, P140 to P145 | $2.7~V \leq EV_{DD0} < 4.0~V$ | | | -10.0 | mA | | | | | $2.4~V \le EV_{DD0} < 2.7~V$ | | | -5.0 | mA | | | | Total of P05, P06, P10 to P17, P30, P31, | | | | -30.0 | mA | | | | P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to | $2.7~V \leq EV_{DD0} < 4.0~V$ | | | -19.0 | mA | | | | P117, P146, P147<br>(When duty ≤ 70% Note 3) | 2.4 V ≤ EVDD0 < 2.7 V | | | -10.0 | mA | | | | Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$ ) | $2.4~V \leq EV_{DD0} \leq 5.5~V$ | | | -60.0 | mA | | | <b>І</b> ОН2 | Per pin for P20 to P27, P150 to P156 | $2,4~V \leq V_{DD} \leq 5.5~V$ | | | -0.1 <sup>Note 2</sup> | mA | | | | Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$ ) | $2.4~V \leq V_{DD} \leq 5.5~V$ | | | -1.5 | mA | - **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV<sub>DD0</sub>, EV<sub>DD1</sub>, V<sub>DD</sub> pins to an output pin. - 2. Do not exceed the total current value. - **3.** Specification under conditions where the duty factor $\leq 70\%$ . The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%). • Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and $I_{OH} = -10.0$ mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin. Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode. **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. $(T_A = -40 \text{ to } +105^{\circ}\text{C}. 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}. \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (4/5) | Items | Symbol | Conditions | | MIN. | TYP. | MAX. | Unit | |-------------------------|------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|------|------| | Output voltage,<br>high | V <sub>OH1</sub> | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = $-3.0 \text{ mA}$ | EV <sub>DD0</sub> – 0.7 | | | V | | | | to P67, P70 to P77, P80 to P87,<br>P90 to P97, P100 to P106, P110 to | $\label{eq:loss_problem} \begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$ | EV <sub>DD0</sub> – 0.6 | | | V | | | | P117, P120, P125 to P127, P130,<br>P140 to P147 | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OH1} = -1.5~mA$ | EV <sub>DD0</sub> – 0.5 | | | V | | | V <sub>OH2</sub> | P20 to P27, P150 to P156 | 2.4 V $\leq$ V <sub>DD</sub> $\leq$ 5.5 V, I <sub>OH2</sub> = $-100~\mu$ A | V <sub>DD</sub> – 0.5 | | | V | | Output voltage, Vo | V <sub>OL1</sub> | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 8.5~mA$ | | | 0.7 | V | | | | P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 3.0~mA$ | | | 0.6 | V | | | | | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$ | | | 0.4 | V | | | | | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 0.6~mA$ | | | 0.4 | V | | | V <sub>OL2</sub> | P20 to P27, P150 to P156 | 2.4 V $\leq$ V <sub>DD</sub> $\leq$ 5.5 V, I <sub>DL2</sub> = 400 $\mu$ A | | | 0.4 | V | | | Vоьз | P60 to P63 | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 15.0~mA$ | | | 2.0 | V | | | | | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 5.0~mA$ | | | 0.4 | V | | | | | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 3.0~mA$ | | | 0.4 | V | | | | | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 2.0~mA$ | | | 0.4 | V | Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode. **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. - Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. During HALT instruction execution by flash memory. - 3. When high-speed on-chip oscillator and subsystem clock are stopped. - 4. When high-speed system clock and subsystem clock are stopped. - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer. - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. - **8.** Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode. - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fin: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$ ### UART mode bit width (during communication at different potential) (reference) - $\begin{array}{lll} \textbf{Remarks 1.} & R_b[\Omega]: Communication line (TxDq) \ pull-up \ resistance, \\ & C_b[F]: \ Communication \ line \ (TxDq) \ load \ capacitance, \ V_b[V]: \ Communication \ line \ voltage \\ \end{array}$ - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14) - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)) - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1. # (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | Conditions | HS (high-spe | eed main) Mode | Unit | |----------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------|--------------|----------------|------| | | | | MIN. | MAX. | | | SIp setup time | tsıĸı | $4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$ | 88 | | ns | | (to SCKp↓) Note | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ | 88 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | $2.4 \ V \le EV_{DD0} < 3.3 \ V, \ 1.6 \ V \le V_b \le 2.0 \ V,$ | 220 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$ | | | | | SIp hold time (from SCKp $\downarrow$ ) Note | tksi1 | $4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$ | 38 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | $2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V,$ | 38 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | $2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,$ | 38 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$ | | | | | Delay time from SCKp↑ to | tkso1 | $4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$ | | 50 | ns | | SOp output Note | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | $2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V,$ | | 50 | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$ | | 50 | ns | | | | $C_b=30~pF,~R_b=5.5~k\Omega$ | | | | **Note** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V<sub>DD</sub> tolerance (for the 20- to 52-pin products)/EV<sub>DD</sub> tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V<sub>IH</sub> and V<sub>IL</sub>, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the next page.) - Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VIL, see the DC characteristics with TTL input buffer selected. ### CSI mode connection diagram (during communication at different potential) - **Remarks 1.** R<sub>b</sub>[Ω]:Communication line (SOp) pull-up resistance, C<sub>b</sub>[F]: Communication line (SOp) load capacitance, V<sub>b</sub>[V]: Communication line voltage - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 00, 01, 02, - 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13)) - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. ## 3.10 Timing of Entry to Flash Memory Programming Modes $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------|------|------|------|------| | Time to complete the communication for the initial setting after the external reset is released | tsuinit | POR and LVD reset must be released before the external reset is released. | | | 100 | ms | | Time to release the external reset after the TOOL0 pin is set to the low level | tsu | POR and LVD reset must be released before the external reset is released. | 10 | | | μS | | Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory) | | POR and LVD reset must be released before the external reset is released. | 1 | | | ms | - <1> The low level is input to the TOOL0 pin. - <2> The external reset is released (POR and LVD reset must be released before the external reset is released.). - <3> The TOOL0 pin is set to the high level. - <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting. **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period. tsu: Time to release the external reset after the TOOL0 pin is set to the low level thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory) ## 4.5 32-pin Products R5F100BAANA, R5F100BCANA, R5F100BDANA, R5F100BEANA, R5F100BFANA, R5F100BGANA R5F101BAANA, R5F101BCANA, R5F101BDANA, R5F101BEANA, R5F101BFANA, R5F101BGANA R5F100BADNA, R5F100BCDNA, R5F100BDDNA, R5F100BEDNA, R5F100BFDNA, R5F100BGDNA R5F101BADNA, R5F101BCDNA, R5F101BDDNA, R5F101BEDNA, R5F100BGGNA, R5F100BGNA, R5F100BGN | JEITA Package code | RENESAS code | Previous code | MASS (TYP.)[g] | |--------------------|--------------|----------------|----------------| | P-HWQFN32-5x5-0.50 | PWQN0032KB-A | P32K8-50-3B4-5 | 0.06 | | Referance | Dimension in Millimeters | | | | |----------------|--------------------------|------|------|--| | Symbol | Min | Nom | Max | | | D | 4.95 | 5.00 | 5.05 | | | E | 4.95 | 5.00 | 5.05 | | | Α | | | 0.80 | | | A <sub>1</sub> | 0.00 | | | | | b | 0.18 | 0.25 | 0.30 | | | е | | 0.50 | | | | Lp | 0.30 | 0.40 | 0.50 | | | х | | | 0.05 | | | у | | | 0.05 | | | Z <sub>D</sub> | | 0.75 | | | | Z <sub>E</sub> | | 0.75 | | | | C <sub>2</sub> | 0.15 | 0.20 | 0.25 | | | D <sub>2</sub> | | 3.50 | _ | | | E <sub>2</sub> | | 3.50 | | | $\bigcirc$ 2013 Renesas Electronics Corporation. All rights reserved. R5F100MFAFB, R5F100MGAFB, R5F100MHAFB, R5F100MJAFB, R5F100MKAFB, R5F100MLAFB R5F101MFAFB, R5F101MGAFB, R5F101MHAFB, R5F101MJAFB, R5F101MKAFB, R5F101MLAFB R5F100MFDFB, R5F100MGDFB, R5F100MHDFB, R5F100MJDFB, R5F100MKDFB, R5F100MLDFB R5F101MFDFB, R5F101MGDFB, R5F101MHDFB, R5F101MJDFB, R5F101MKDFB, R5F101MLDFB R5F100MFGFB, R5F100MGGFB, R5F100MHGFB, R5F100MJGFB | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |----------------------|--------------|----------------|-----------------| | P-LFQFP80-12x12-0.50 | PLQP0080KE-A | P80GK-50-8EU-2 | 0.53 | #### NOTE Each lead centerline is located within 0.08 mm of its true position at maximum material condition. ©2012 Renesas Electronics Corporation. All rights reserved. | | | Description | | |------|--------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------| | Rev. | Date | Page | Summary | | 3.00 | Aug 02, 2013 | 163 | Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I <sup>2</sup> C mode) (1/2) | | | | 164, 165 | Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I <sup>2</sup> C mode) (2/2) | | | | 166 | Modification of table in 3.5.2 Serial interface IICA | | | | 166 | Modification of IICA serial transfer timing | | | | 167 | Addition of table in 3.6.1 A/D converter characteristics | | | | 167, 168 | Modification of table and notes 3 and 4 in 3.6.1 (1) | | | | 169 | Modification of description in 3.6.1 (2) | | | | 170 | Modification of description and note 3 in 3.6.1 (3) | | | | 171 | Modification of description and notes 3 and 4 in 3.6.1 (4) | | | | 172 | Modification of table and note in 3.6.3 POR circuit characteristics | | | | 173 | Modification of table of LVD Detection Voltage of Interrupt & Reset Mode | | | | 173 | Modification from Supply Voltage Rise Time to 3.6.5 Power supply voltage rising slope characteristics | | | | 174 | Modification of 3.9 Dedicated Flash Memory Programmer Communication (UART) | | | | 175 | Modification of table, figure, and remark in 3.10 Timing Specs for Switching Flash Memory Programming Modes | | 3.10 | Nov 15, 2013 | 123 | Caution 4 added. | | | | 125 | Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted. | | 3.30 | Mar 31, 2016 | | Modification of the position of the index mark in 25-pin plastic WFLGA (3 $\times$ 3 mm, 0.50 mm pitch) of 1.3.3 25-pin products | | | | | Modification of power supply voltage in 1.6 Outline of Functions [20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products] | | | | | Modification of power supply voltage in 1.6 Outline of Functions [40-pin, 44-pin, 48-pin, 52-pin, 64-pin products] | | | | | Modification of power supply voltage in 1.6 Outline of Functions [80-pin, 100-pin, 128-pin products] | | | | | ACK corrected to ACK | | | | | ACK corrected to ACK | All trademarks and registered trademarks are the property of their respective owners. SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan. Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.