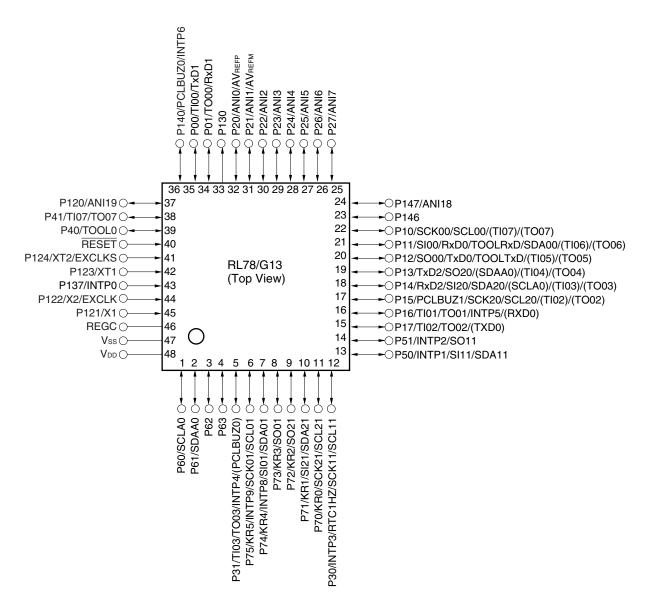


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

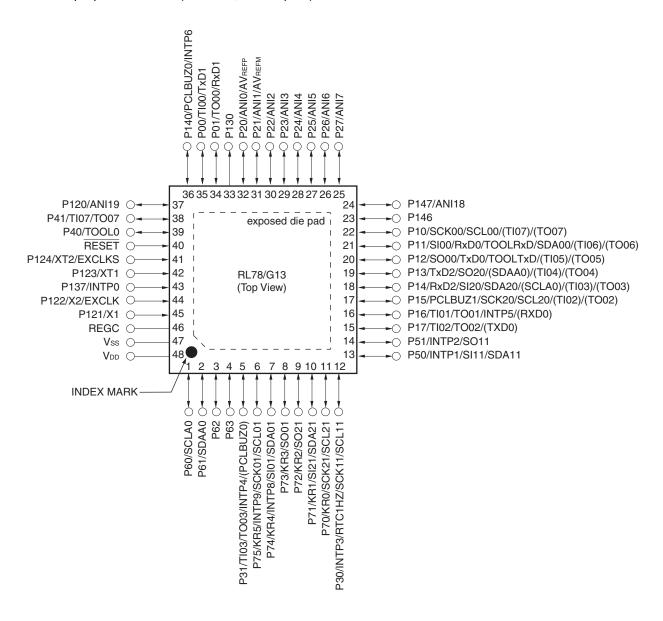

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100jfdfa-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.9 48-pin products

• 48-pin plastic LFQFP (7 x 7 mm, 0.5 mm pitch)

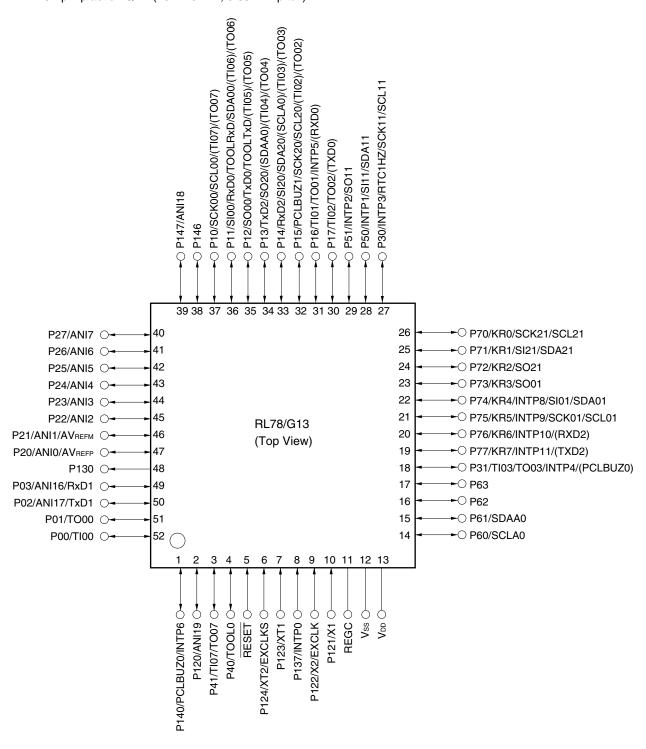


Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

• 48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch)

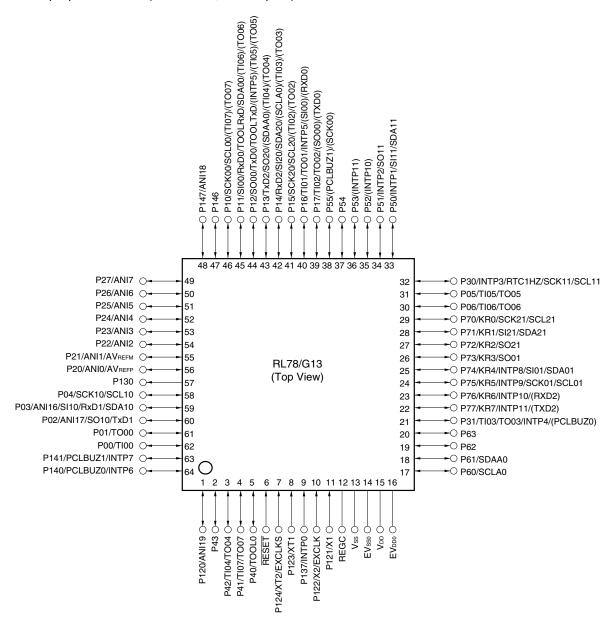

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to $V_{\rm ss.}$

1.3.10 52-pin products

• 52-pin plastic LQFP (10 × 10 mm, 0.65 mm pitch)

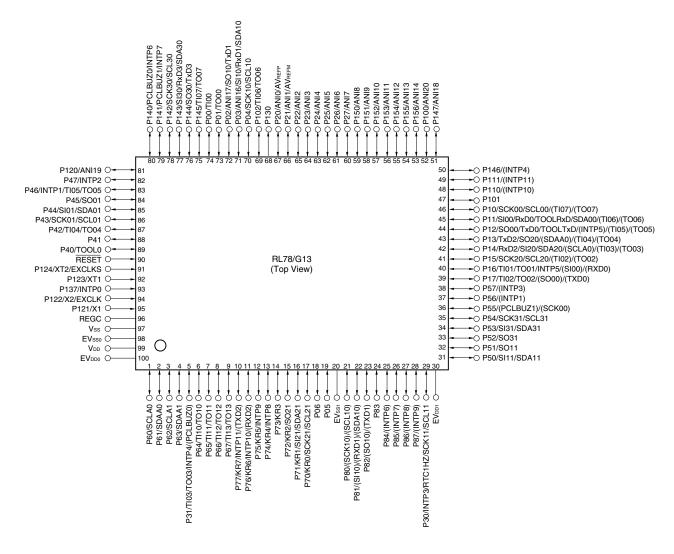

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

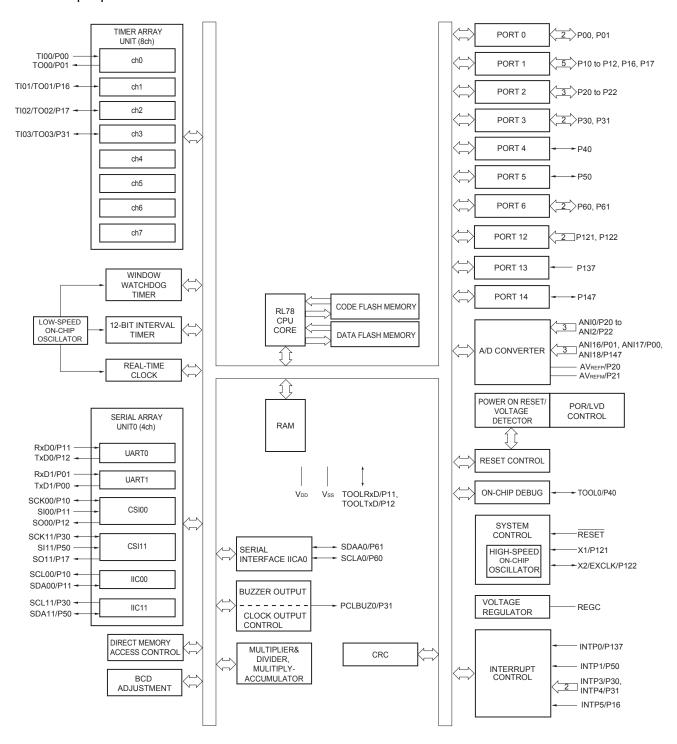
1.3.11 64-pin products

- 64-pin plastic LQFP (12 x 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch)



- Cautions 1. Make EVsso pin the same potential as Vss pin.
 - 2. Make VDD pin the potential that is higher than EVDDO pin.
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.


- 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the Vss and EV_{SS0} pins to separate ground lines.
- **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.

• 100-pin plastic LQFP (14 × 20 mm, 0.65 mm pitch)

- Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin.
 - 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1).
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD}, EV_{DD0} and EV_{DD1} pins and connect the Vss, EVsso and EVss1 pins to separate ground lines.
 - 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.2 24-pin products

2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C)

This chapter describes the following electrical specifications.

Target products A: Consumer applications $T_A = -40$ to $+85^{\circ}C$

R5F100xxAxx, R5F101xxAxx

D: Industrial applications T_A = −40 to +85°C

R5F100xxDxx, R5F101xxDxx

G: Industrial applications when $T_A = -40$ to $+105^{\circ}C$ products is used in the range of $T_A = -40$ to $+85^{\circ}C$

R5F100xxGxx

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EV_{DD0}, EV_{DD1}, EV_{SS0}, or EV_{SS1} pin, replace EV_{DD0} and EV_{DD1} with V_{DD}, or replace EV_{SS0} and EV_{SS1} with V_{SS}.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product.

2.3 DC Characteristics

2.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$1.6~V \le EV_{DD0} \le 5.5~V$			-10.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			-55.0	mA
		P125 to P127, P130, P140 to P145 (When duty ≤ 70% Note 3) Total of P05, P06, P10 to P17, P30, P31, 4	$2.7~V \leq EV_{DD0} < 4.0~V$			-10.0	mA
			$1.8~V \leq EV_{DD0} < 2.7~V$			-5.0	mA
			$1.6~V \leq EV_{DD0} < 1.8~V$			-2.5	mA
						-80.0	mA
		P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to	$2.7~V \leq EV_{DD0} < 4.0~V$			-19.0	mA
		P117, P146, P147	$1.8~V \leq EV_{DD0} < 2.7~V$			-10.0	mA
		(When duty $\leq 70\%$ Note 3)	$1.6~V \leq EV_{DD0} < 1.8~V$			-5.0	mA
		Total of all pins (When duty $\leq 70\%$ Note 3)	$1.6~V \leq EV_{DD0} \leq 5.5~V$			-135.0 Note 4	mA
Iон ₂		Per pin for P20 to P27, P150 to P156	$1.6~V \leq V_{DD} \leq 5.5~V$			-0.1 Note 2	mA
		Total of all pins (When duty ≤ 70% Note 3)	$1.6~V \leq V_{DD} \leq 5.5~V$			-1.5	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and loh = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. The applied current for the products for industrial application (R5F100xxDxx, R5F101xxDxx, R5F100xxGxx) is -100 mA.

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (high-	fin = 32 MHz Note 4	V _{DD} = 5.0 V		0.62	1.86	mA
Current Note 1	Note 2	mode	speed main) mode Note 7		V _{DD} = 3.0 V		0.62	1.86	mA
			mode	fih = 24 MHz Note 4	V _{DD} = 5.0 V		0.50	1.45	mA
					V _{DD} = 3.0 V		0.50	1.45	mA
				fin = 16 MHz Note 4	V _{DD} = 5.0 V		0.44	1.11	mA
				V _{DD} = 3.0 V		0.44	1.11	mA	
			LS (low-	fih = 8 MHz Note 4	V _{DD} = 3.0 V		290	620	μΑ
		speed main) mode Note 7		V _{DD} = 2.0 V		290	620	μΑ	
			LV (low-	fih = 4 MHz Note 4	V _{DD} = 3.0 V		440	680	μΑ
			voltage main) mode		V _{DD} = 2.0 V		440	680	μΑ
		HS (high- speed mair	` `	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA
		mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.48	1.28	mA	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.31	1.08	mA
			V _{DD} = 3.0 V	Resonator connection		0.48	1.28	mA	
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	0.63	mA
				V _{DD} = 5.0 V	Resonator connection		0.28	0.71	mA
			f _M x = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.63	mA	
			V _{DD} = 3.0 V	Resonator connection		0.28	0.71	mA	
		LS (low-	f _M x = 8 MHz ^{Note 3} ,	Square wave input		110	360	μΑ	
		speed main) mode Note 7	V _{DD} = 3.0 V	Resonator connection		160	420	μΑ	
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	360	μΑ
				V _{DD} = 2.0 V	Resonator connection		160	420	μА
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μΑ
			clock operation	T _A = -40°C	Resonator connection		0.47	0.80	μА
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μΑ
				T _A = +25°C	Resonator connection		0.53	0.80	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μΑ
				T _A = +50°C	Resonator connection		0.60	2.49	μА
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.64	4.03	μΑ
				T _A = +70°C	Resonator connection		0.83	4.22	μА
				fsub = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μΑ
				T _A = +85°C	Resonator connection		1.28	8.23	μΑ
	IDD3 ^{Note 6}	STOP	T _A = -40°C	•	•		0.19	0.52	μΑ
		mode ^{Note 8}	T _A = +25°C				0.25	0.52	μΑ
			T _A = +50°C				0.32	2.21	μΑ
			T _A = +70°C				0.55	3.94	μΑ
			T _A = +85°C				1.00	7.95	μΑ

(Notes and Remarks are listed on the next page.)

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit	
Supply	IDD2 Note 2	HALT	HS (high-	f _{IH} = 32 MHz ^{Note 4}	V _{DD} = 5.0 V		0.62	1.89	mA	
current	Note 2	mode	speed main) mode Note 7		V _{DD} = 3.0 V		0.62	1.89	mA	
			mode	fih = 24 MHz Note 4	V _{DD} = 5.0 V		0.50	1.48	mA	
					V _{DD} = 3.0 V		0.50	1.48	mA	
				fih = 16 MHz Note 4	V _{DD} = 5.0 V		0.44	1.12	mA	
					V _{DD} = 3.0 V		0.44	1.12	mA	
			LS (low-	fih = 8 MHz Note 4	V _{DD} = 3.0 V		290	620	μΑ	
			speed main) mode Note 7		V _{DD} = 2.0 V		290	620	μΑ	
			LV (low-	f _{IH} = 4 MHz Note 4	V _{DD} = 3.0 V		460	700	μΑ	
		voltage main) mode		V _{DD} = 2.0 V		460	700	μΑ		
			HS (high-	fmx = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.14	mA	
		speed ma mode ^{Note 7}		speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.48	1.34	mA
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		0.31	1.14	mA	
			V _{DD} = 3.0 V	Resonator connection		0.48	1.34	mA		
			$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	0.68	mA		
			V _{DD} = 5.0 V	Resonator connection		0.28	0.76	mA		
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	0.68	mA	
			V _{DD} = 3.0 V	Resonator connection		0.28	0.76	mA		
			LS (low-	$f_{MX} = 8 MHz^{Note 3},$	Square wave input		110	390	μΑ	
			speed main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		160	450	μΑ	
				$f_{MX} = 8 MHz^{Note 3},$	Square wave input		110	390	μΑ	
				V _{DD} = 2.0 V	Resonator connection		160	450	μΑ	
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.66	μΑ	
			clock operation	T _A = -40°C	Resonator connection		0.50	0.85	μΑ	
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.38	0.66	μΑ	
				T _A = +25°C	Resonator connection		0.57	0.85	μΑ	
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.47	3.49	μΑ	
				T _A = +50°C	Resonator connection		0.66	3.68	μΑ	
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.80	6.10	μΑ	
				T _A = +70°C	Resonator connection		0.99	6.29	μΑ	
			fsub = 32.768 kHz ^{Note 5}	Square wave input		1.52	10.46	μΑ		
				T _A = +85°C	Resonator connection		1.71	10.65	μΑ	
	IDD3 Note 6	STOP	T _A = -40°C				0.19	0.54	μΑ	
		mode ^{Note 8}	T _A = +25°C				0.26	0.54	μΑ	
			T _A = +50°C	A = +50°C			0.35	3.37	μΑ	
			T _A = +70°C				0.68	5.98	μΑ	
			T _A = +85°C				1.40	10.34	μA	

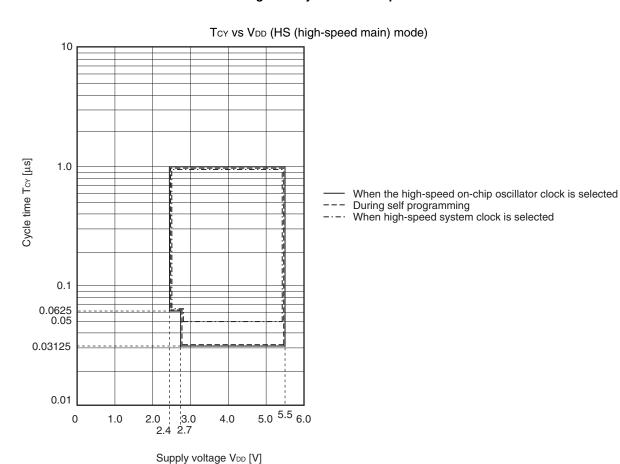
(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVSSD, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - **4.** When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$ $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 16 \text{ MHz}$ LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 8 \text{ MHz}$ LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 4 \text{ MHz}$

- **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Note The following conditions are required for low voltage interface when EVDDO < VDD


 $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V} : \text{MIN. } 125 \text{ ns}$ $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V} : \text{MIN. } 250 \text{ ns}$

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn).

m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation

(5) During communication at same potential (simplified I²C mode) (2/2)

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	Conditions HS (high-speed main) Mode		`	r-speed Mode	`	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$	1/fmck + 85 Note2		1/fmck + 145 Note2		1/f _{MCK} + 145 _{Note2}		ns
		$1.8~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 100~pF,~R_b = 3~k\Omega$	1/f _{MCK} + 145 _{Note2}		1/f _{MCK} + 145 _{Note2}		1/f _{MCK} + 145 _{Note2}		ns
		$1.8~V \leq EV_{DD0} < 2.7~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$	1/f _{MCK} + 230 _{Note2}		1/fmck + 230 Note2		1/fmck + 230 Note2		ns
		$1.7~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$	1/fmck + 290 Note2		1/fmck + 290 Note2		1/fmck + 290 Note2		ns
		$1.6~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$	_		1/fmck + 290 Note2		1/fmck + 290 Note2		ns
Data hold time (transmission)	thd:dat	$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$	0	305	0	305	0	305	ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ Rb} = 3 \text{ k}\Omega$	0	355	0	355	0	355	ns
		1.8 V \leq EV _{DD0} $<$ 2.7 V, C _b = 100 pF, R _b = 5 kΩ	0	405	0	405	0	405	ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	0	405	0	405	0	405	ns
		$1.6~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$	_	_	0	405	0	405	ns

Notes 1. The value must also be equal to or less than fmck/4.

2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (Vpb tolerance (When 20- to 52-pin products)/EVpb tolerance (When 64- to 128-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(Remarks are listed on the next page.)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/2)$

Parameter	Symbol	l .	≤ VDD ≤ 5.5 V, Vss =	HS (high- I main) ode	LS (low			-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0 \text{ V} \le \text{EV}_{DD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}$	24 MHz < fмск	14/ fмск		_		_		ns
		2.7 1 2 10 2 1.0 1	20 MHz < fмcк ≤ 24 MHz	12/ fмск		_				ns
			8 MHz < fмcк ≤ 20 MHz	10/ fмск		_		_		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/ fмск		_		ns
			fmck ≤ 4 MHz	6/ƒмск		10/ fмск		10/ fмск		ns
		$2.7 \text{ V} \le \text{EV}_{DD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$	24 MHz < fмск	20/ fмск		_		_		ns
			20 MHz < fмcк ≤ 24 MHz	16/ fмск		_		_		ns
			16 MHz < fмcк ≤ 20 MHz	14/ fмск		_		_		ns
			8 MHz < fмcк ≤ 16 MHz	12/ fмск		_		_		ns
			4 MHz < fмck ≤ 8 MHz	8/fмск		16/ fмск		_		ns
			fмcк ≤ 4 MHz	6/ƒмск		10/ fмск		10/ fмск		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}^{\text{Note}}$	24 MHz < fмск	48/ fмск		_		_		ns
		2	20 MHz < fмck ≤ 24 MHz	36/ fмск		_		_		ns
		16 MHz < fмcк ≤ 20 MHz	32/ fмск		_		_		ns	
			8 MHz < f _{MCK} ≤ 16 MHz	26/ fмск		_				ns
			4 MHz < f _{MCK} ≤ 8 MHz	16/ fмск		16/ fмск		_		ns
			fмcк ≤ 4 MHz	10/ fмск		10/ fмск		10/ fмск		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(2) I2C fast mode

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Сог	Conditions		h-speed Mode	`	/-speed Mode	`	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:	$2.7~V \le EV_{DD0} \le 5.5~V$	0	400	0	400	0	400	kHz
		fc∟κ≥ 3.5 MHz	1.8 V ≤ EV _{DD0} ≤ 5.5 V	0	400	0	400	0	400	kHz
Setup time of restart	tsu:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
condition		1.8 V ≤ EV _{DD0} ≤ 5.	5 V	0.6		0.6		0.6		μS
Hold time ^{Note 1}	thd:STA	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
		$1.8~V \leq EV_{DD0} \leq 5.5~V$		0.6		0.6		0.6		μS
Hold time when SCLA0 = "L"	tLOW	$2.7~V \leq EV_{DD0} \leq 5.5~V$		1.3		1.3		1.3		μS
		1.8 V ≤ EV _{DD0} ≤ 5.	5 V	1.3		1.3		1.3		μS
Hold time when SCLA0 =	tніgн	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
"H"		1.8 V ≤ EV _{DD0} ≤ 5.	5 V	0.6		0.6		0.6		μS
Data setup time	tsu:dat	2.7 V ≤ EV _{DD0} ≤ 5.5 V		100		100		100		μS
(reception)		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	100		100		100		μS
Data hold time	thd:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0	0.9	0	0.9	0	0.9	μS
(transmission)Note 2		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0	0.9	0	0.9	0	0.9	μS
Setup time of stop	tsu:sto	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6	_	0.6		0.6		μS
condition		1.8 V ≤ EV _{DD0} ≤ 5.	5 V	0.6		0.6		0.6		μS
Bus-free time	t BUF	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.8$	5 V	1.3		1.3		1.3		μS
		1.8 V ≤ EV _{DD0} ≤ 5.	5 V	1.3		1.3		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

<R>

Remark The electrical characteristics of the products G: Industrial applications (T_A = -40 to +105°C) are different from those of the products "A: Consumer applications, and D: Industrial applications". For details, refer to **3.1** to **3.10**.

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($T_A = 25$ °C) (1/2)

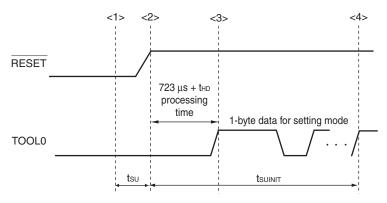
Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.5 to +6.5	٧
	EV _{DD0} , EV _{DD1}	EV _{DD0} = EV _{DD1}	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and $-0.3 \text{ to V}_{DD} +0.3^{\text{Note 1}}$	V
Input voltage	VII	P00 to P07, P10 to P17, P30 to P37, P40 to P47,	-0.3 to EV _{DD0} +0.3	V
		P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	and -0.3 to V _{DD} +0.3 ^{Note 2}	
	V _{I2}	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	V _{I3}	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	V ₀₁	P00 to P07, P10 to P17, P30 to P37, P40 to P47,	-0.3 to EV _{DD0} +0.3	٧
		P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	and –0.3 to V _{DD} +0.3 ^{Note 2}	
	V _{O2}	P20 to P27, P150 to P156	-0.3 to V _{DD} +0.3 Note 2	٧
Analog input voltage	VAI1	ANI16 to ANI26	-0.3 to EV _{DD0} +0.3 and -0.3 to AV _{REF} (+) +0.3 $^{\text{Notes 2, 3}}$	V
	V _{Al2}	ANI0 to ANI14	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF} (+) +0.3 $^{\text{Notes 2, 3}}$	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

- Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.


HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

3.10 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)		POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

 t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

4.8 44-pin Products

R5F100FAAFP, R5F100FCAFP, R5F100FDAFP, R5F100FEAFP, R5F100FFAFP, R5F100FGAFP,

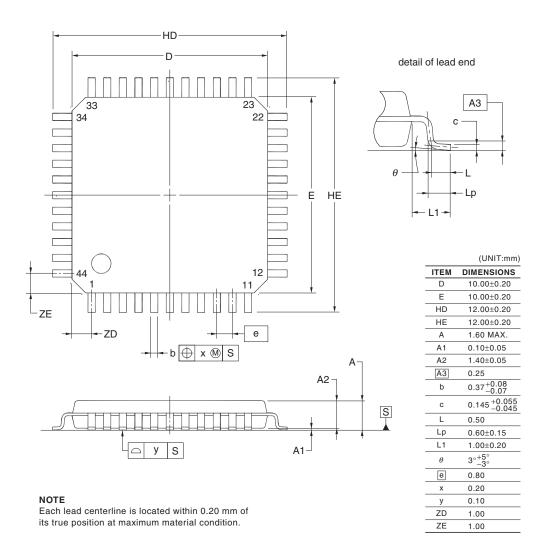
R5F100FHAFP, R5F100FJAFP, R5F100FKAFP, R5F100FLAFP

R5F101FAAFP, R5F101FCAFP, R5F101FDAFP, R5F101FEAFP, R5F101FFAFP, R5F101FGAFP,

R5F101FHAFP, R5F101FJAFP, R5F101FKAFP, R5F101FLAFP

R5F100FADFP, R5F100FCDFP, R5F100FDDFP, R5F100FEDFP, R5F100FFDFP, R5F100FGDFP,

R5F100FHDFP, R5F100FJDFP, R5F100FKDFP, R5F100FLDFP


R5F101FADFP, R5F101FCDFP, R5F101FDDFP, R5F101FEDFP, R5F101FFDFP, R5F101FGDFP,

R5F101FHDFP, R5F101FJDFP, R5F101FKDFP, R5F101FLDFP

R5F100FAGFP, R5F100FCGFP, R5F100FDGFP, R5F100FEGFP, R5F100FFGFP, R5F100FGGFP,

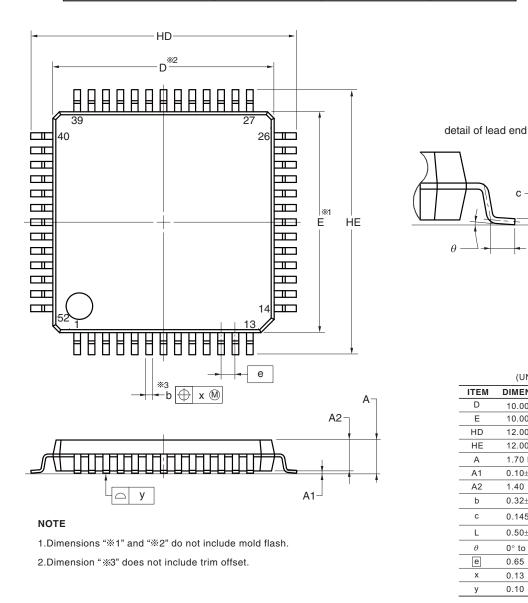
R5F100FHGFP, R5F100FJGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP44-10x10-0.80	PLQP0044GC-A	P44GB-80-UES-2	0.36

© 2012 Renesas Electronics Corporation. All rights reserved.

4.10 52-pin Products

R5F100JCAFA, R5F100JDAFA, R5F100JEAFA, R5F100JFAFA, R5F100JGAFA, R5F100JHAFA, R5F100JJAFA, R5F100JKAFA, R5F100JLAFA


R5F101JCAFA, R5F101JDAFA, R5F101JEAFA, R5F101JFAFA, R5F101JJAFA, R5F101JJAFA, R5F101JJAFA, R5F101JAFA, R5F101JKAFA, R5F101JLAFA

R5F100JCDFA, R5F100JDDFA, R5F100JEDFA, R5F100JFDFA, R5F100JDFA, R5F100JPA, R R5F100JKDFA, R5F100JLDFA

R5F101JCDFA, R5F101JDDFA, R5F101JEDFA, R5F101JFDFA, R5F101JDFA, R5 R5F101JKDFA, R5F101JLDFA

R5F100JCGFA, R5F100JDGFA, R5F100JEGFA, R5F100JFGFA, R5F100JGGFA, R5F100JHGFA, R5F100JJGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

© 2012 Renesas Electronics Corporation. All rights reserved.

(UNIT:mm)

DIMENSIONS

10.00±0.10

10.00±0.10

12.00±0.20

12.00±0.20 1.70 MAX.

 0.10 ± 0.05 1.40

0.32±0.05

 $0.50 {\pm} 0.15$

 0° to 8° 0.65

0.13 0.10

0.145±0.055