

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

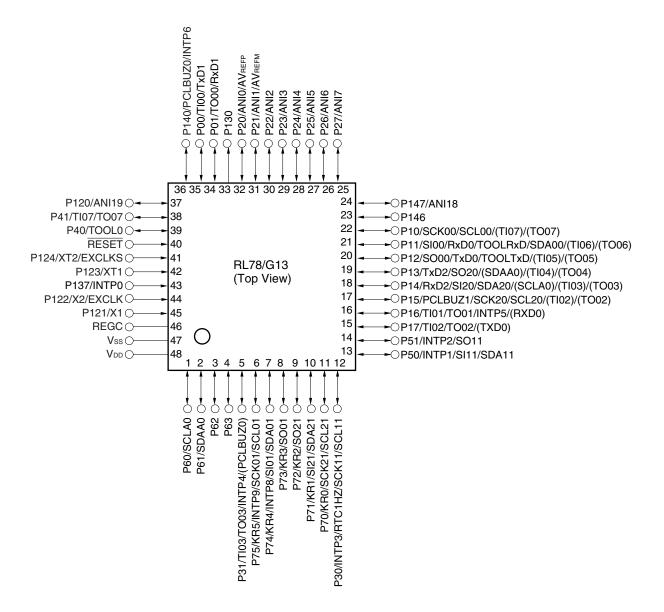
Ξ·ΧΕΙ

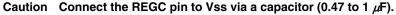
Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100lcafa-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	Package	Data	Fields of	(5/12) Ordering Part Number
count		flash	Application	
48 pins	48-pin plastic	Mounted	A	R5F100GAAFB#V0, R5F100GCAFB#V0, R5F100GDAFB#V0,
	LFQFP (7 \times 7 mm,			R5F100GEAFB#V0, R5F100GFAFB#V0, R5F100GGAFB#V0,
	0.5 mm pitch)			R5F100GHAFB#V0, R5F100GJAFB#V0, R5F100GKAFB#V0,
				R5F100GLAFB#V0
				R5F100GAAFB#X0, R5F100GCAFB#X0, R5F100GDAFB#X0,
				R5F100GEAFB#X0, R5F100GFAFB#X0, R5F100GGAFB#X0,
				R5F100GHAFB#X0, R5F100GJAFB#X0, R5F100GKAFB#X0,
				R5F100GLAFB#X0
			D	R5F100GADFB#V0, R5F100GCDFB#V0, R5F100GDDFB#V0,
				R5F100GEDFB#V0, R5F100GFDFB#V0, R5F100GGDFB#V0,
				R5F100GHDFB#V0, R5F100GJDFB#V0, R5F100GKDFB#V0,
				R5F100GLDFB#V0
				R5F100GADFB#X0, R5F100GCDFB#X0, R5F100GDDFB#X0,
				R5F100GEDFB#X0, R5F100GFDFB#X0, R5F100GGDFB#X0,
				R5F100GHDFB#X0, R5F100GJDFB#X0, R5F100GKDFB#X0,
				R5F100GLDFB#X0
			G	R5F100GAGFB#V0, R5F100GCGFB#V0, R5F100GDGFB#V0,
				R5F100GEGFB#V0, R5F100GFGFB#V0, R5F100GGGFB#V0,
				R5F100GHGFB#V0, R5F100GJGFB#V0
				R5F100GAGFB#X0, R5F100GCGFB#X0, R5F100GDGFB#X0,
				R5F100GEGFB#X0, R5F100GFGFB#X0, R5F100GGGFB#X0,
				R5F100GHGFB#X0, R5F100GJGFB#X0
		Not	А	R5F101GAAFB#V0, R5F101GCAFB#V0, R5F101GDAFB#V0,
		mounted		R5F101GEAFB#V0, R5F101GFAFB#V0, R5F101GGAFB#V0,
				R5F101GHAFB#V0, R5F101GJAFB#V0, R5F101GKAFB#V0,
				R5F101GLAFB#V0
				R5F101GAAFB#X0, R5F101GCAFB#X0, R5F101GDAFB#X0,
				R5F101GEAFB#X0, R5F101GFAFB#X0, R5F101GGAFB#X0,
				R5F101GHAFB#X0, R5F101GJAFB#X0, R5F101GKAFB#X0,
				R5F101GLAFB#X0
			D	R5F101GADFB#V0, R5F101GCDFB#V0, R5F101GDDFB#V0,
				R5F101GEDFB#V0, R5F101GFDFB#V0, R5F101GGDFB#V0,
				R5F101GHDFB#V0, R5F101GJDFB#V0, R5F101GKDFB#V0,
				R5F101GLDFB#V0
				R5F101GADFB#X0, R5F101GCDFB#X0, R5F101GDDFB#X0,
				R5F101GEDFB#X0, R5F101GFDFB#X0, R5F101GGDFB#X0,
				R5F101GHDFB#X0, R5F101GJDFB#X0, R5F101GKDFB#X0,
				R5F101GLDFB#X0


Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.


Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.9 48-pin products

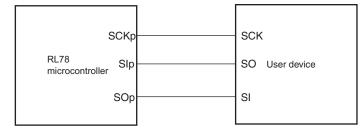
• 48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)

Remarks 1. For pin identification, see 1.4 Pin Identification.

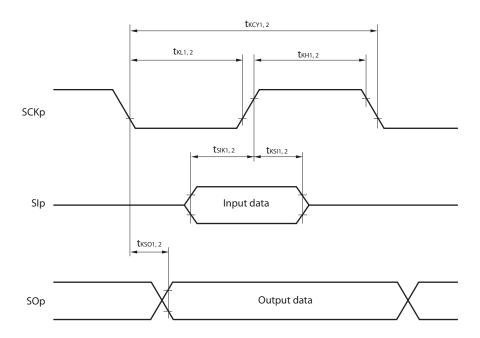
Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

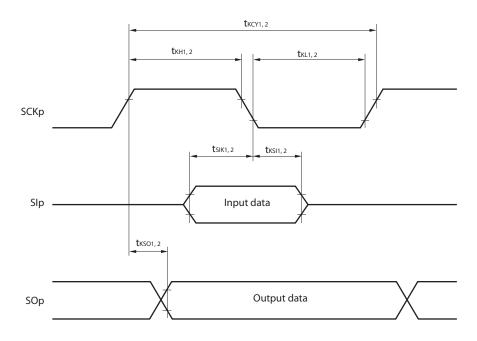
- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C

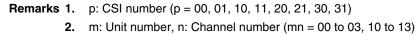
(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products


(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	$f_{H} = 32 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		0.62	1.86	mA
current	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.62	1.86	mA
			mode	fiH = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.50	1.45	mA
					V _{DD} = 3.0 V		0.50	1.45	mA
				file = 16 MHz ^{Note 4}	$V_{DD} = 5.0 V$		0.44	1.11	mA
					$V_{DD} = 3.0 V$		0.44	1.11	
			1.0 //						mA
		LS (low- speed main) mode ^{Note 7}	$f_{IH} = 8 MHz^{Note 4}$	V _{DD} = 3.0 V V _{DD} = 2.0 V		290 290	620 620	μΑ μΑ	
		LV (low-	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		440	680	μA	
			voltage main) mode		V _{DD} = 2.0 V		440	680	μA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA
		speed main) mode ^{Note 7}	$V_{DD} = 5.0 V$	Resonator connection		0.48	1.28	mA	
			f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA	
			$V_{DD} = 3.0 V$	Resonator connection		0.48	1.28	mA	
			$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	0.63	mA	
			$V_{DD} = 5.0 V$	Resonator connection		0.28	0.71	mA	
			f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.63	mA	
				$V_{DD} = 3.0 \text{ V}$	Resonator connection		0.28	0.71	mA
			LS (low-	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	360	μA
			speed main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		160	420	μA
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	360	μA
				V _{DD} = 2.0 V	Resonator connection		160	420	μA
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μA
			clock operation	$T_A = -40^{\circ}C$	Resonator		0.47	0.80	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μA
				$T_A = +25^{\circ}C$	Resonator connection		0.53	0.80	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μA
				$T_A = +50^{\circ}C$	Resonator connection		0.60	2.49	μA
				fs∪B = 32.768 kHz ^{Note 5}	Square wave input	1	0.64	4.03	μA
				$T_A = +70^{\circ}C$	Resonator connection		0.83	4.22	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μA
IDD3 ^{Note 6} S			$T_{A} = +85^{\circ}C$	Resonator connection		1.28	8.23	μA	
	DD3 ^{Note 6}	STOP	$T_A = -40^{\circ}C$				0.19	0.52	μA
		mode ^{Note 8}	T _A = +25°C			1	0.25	0.52	μΑ
			$TA = +25^{\circ}C$ $TA = +50^{\circ}C$ $TA = +70^{\circ}C$				0.32	2.21	μA
							0.55	3.94	μA
			$T_{A} = +85^{\circ}C$				1.00	7.95	μA


(Notes and Remarks are listed on the next page.)


CSI mode connection diagram (during communication at same potential)



CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Unit

ns

60

130

tput,

(7) Communica correspond		-	ntial (2.5 V, 3 V) (CSI	mode) (I	naster	mode, S	СКр і	internal	clock ou	tı
(TA = -40 to Parameter	+85°C, 2 Symbol		$.7 V \le EV_{DD0} = EV_{DD1} \le V_{DD} \le 5.5$ Conditions		5 V, Vss = EVsso = HS (high-speed main) Mode		= EVss1 = 0 V) LS (low-speed main) Mode		-voltage Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tксү1 ≥ 2/fс∟к	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \\ k\Omega \end{array}$	200		1150		1150		
			$\begin{split} & 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ & 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 20 \ pF, \ R_b = 2.7 \\ & k\Omega \end{split}$	300		1150		1150		
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \\ 2.7 \ V \leq V_b \leq \\ C_b = 20 \ pF, \ F \end{array}$	4.0 V,	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} \\ 2.3 \ V \leq V_b \leq \\ C_b = 20 \ pF, \ F \end{array}$	2.7 V,	tксү1/2 – 120		tксү1/2 – 120		tксү1/2 – 120]
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \\ 2.7 \ V \leq V_b \leq \\ C_b = 20 \ pF, \ F \end{array}$	4.0 V,	tксү1/2 – 7		tксү1/2 – 50		t _{ксү1} /2 – 50		
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} \\ 2.3 \ V \leq V_b \leq \\ C_b = 20 \ pF, \ F \end{array}$	2.7 V,	tксү1/2 – 10		tксү1/2 – 50		tксү1/2 – 50		
SIp setup time (to SCKp↑) ^{№te 1}	tsıĸı	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \\ 2.7 \ V \leq V_b \leq \\ C_b = 20 \ pF, \ F \end{array}$	4.0 V,	58		479		479		
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} \\ 2.3 \ V \leq V_b \leq \\ C_b = 20 \ pF, \ F \end{array}$	2.7 V,	121		479		479		
Slp hold time	tksi1	$4.0 V \le EV_{DD}$	$0 \le 5.5 V$,	10		10		10		Ī

(Notes, Caution, and Remarks are listed on the next page.)

 $2.7~V \leq V_b \leq 4.0~V,$

 $2.3~V \leq V_b \leq 2.7~V,$ $C_b = 20 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$ $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$

 $2.7~V \leq V_{b} \leq 4.0~V,$

 $2.3~V \leq V_b \leq 2.7~V,$ $C_b = 20 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$

 $C_{\text{b}}=20 \text{ pF}, \text{ R}_{\text{b}}=1.4 \text{ k}\Omega$ $2.7 V \le EV_{DD0} < 4.0 V$,

 $C_b = 20 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$ $2.7 V \le EV_{DD0} < 4.0 V$,

(from SCKp↑) Note 1

Delay time from

 $\mathsf{SCKp}{\downarrow} \text{ to } \mathsf{SOp}$

output Note 1

tks01

10

60

130

10

60

130

10

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \leq 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{DD}}, \text{ V}_{\text{DD}} = 0 \text{ V}, \text{ Reference voltage (+)} = 0 \text{ V}, Reference voltage (+)$
Reference voltage (-) = Vss)

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$		1.2	±7.0	LSB
			$\frac{1.6~V \leq V\text{DD} \leq 5.5~V}{_{\text{Note 3}}}$		1.2	±10.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI0 to ANI14,	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
		ANI16 to ANI26	$1.8~V \le V \text{DD} \le 5.5~V$	17		39	μs
			$1.6~V \leq V \text{DD} \leq 5.5~V$	57		95	μs
Conversion time	tconv	Target pin: Internal2reference voltage, and2temperature sensor output2voltage (HS (high-speed main) mode)3	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	1.6	$1.8~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V \text{DD} \leq 5.5~V$ Note 3			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±0.60	%FSR
			$\frac{1.6~V \leq V\text{DD} \leq 5.5~V}{_{\text{Note 3}}}$			±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$			±4.0	LSB
			$\frac{1.6~V \leq V \text{DD} \leq 5.5~V}{_{\text{Note 3}}}$			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
			$\frac{1.6~V \leq V\text{DD} \leq 5.5~V}{_{\text{Note 3}}}$			±2.5	LSB
Analog input voltage	VAIN	ANI0 to ANI14	•	0		Vdd	V
		ANI16 to ANI26		0		EVDD0	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high		VBGR Note 4		V	
		Temperature sensor output (2.4 V \leq V _{DD} \leq 5.5 V, HS (high	•	VTMPS25 Note 4			V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

3.2 Oscillator Characteristics

3.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation Ceramic res	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		16.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

- **Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- **Remark** When using the X1 oscillator and XT1 oscillator, refer to **5.4 System Clock Oscillator**.

3.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		32	MHz
High-speed on-chip oscillator		–20 to +85 °C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-1.0		+1.0	%
clock frequency accuracy		–40 to –20 °C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-1.5		+1.5	%
		+85 to +105 °C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	speed r	HS (high-	fin = 32 MHz ^{Note 4}	$V_{DD} = 5.0 V$		0.54	2.90	mA
Current	Note 2		speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.54	2.90	mA
				fin = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	2.30	mA
					V _{DD} = 3.0 V		0.44	2.30	mA
				fin = 16 MHz ^{Note 4}	$V_{DD} = 5.0 V$		0.40	1.70	mA
					V _{DD} = 3.0 V		0.40	1.70	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		0.28	1.90	mA
			speed main) mode ^{Note 7}	$V_{DD} = 5.0 V$	Resonator connection		0.45	2.00	mA
				$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		0.28	1.90	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.45	2.00	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		0.19	1.02	mA
				$V_{DD} = 5.0 V$	Resonator connection		0.26	1.10	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		0.19	1.02	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.26	1.10	mA
		Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA	
			clock	$T_A = -40^{\circ}C$	Resonator connection		0.44	0.76	μA
			operation	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μA
				$T_A = +25^{\circ}C$	Resonator connection		0.49	0.76	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.37	1.17	μA
				$T_A = +50^{\circ}C$	Resonator connection		0.56	1.36	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.53	1.97	μA
				$T_A = +70^{\circ}C$	Resonator connection		0.72	2.16	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.82	3.37	μA
				$T_A = +85^{\circ}C$	Resonator connection		1.01	3.56	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		3.01	15.37	μA
				$T_A = +105^{\circ}C$	Resonator connection		3.20	15.56	μA
	DD3 ^{Note 6}	STOP	$T_{\text{A}} = -40^{\circ}C$				0.18	0.50	μA
		mode ^{Note 8}	$T_A = +25^{\circ}C$				0.23	0.50	μA
			T _A = +50°C				0.30	1.10	μA
			$T_A = +70^{\circ}C$				0.46	1.90	μA
			$T_A = +85^{\circ}C$				0.75	3.30	μA
			T _A = +105°C	;		2.94	15.30	μA	

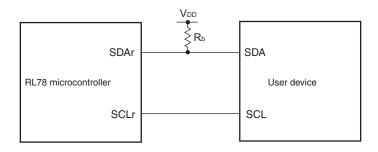
(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (TA = -40 to $+105^{\circ}$ C, 2.4 V $\leq EV_{DD0} \leq V_{DD} \leq 5.5$ V, Vss = EVss₀ = 0 V) (2/2)

(Notes and Remarks are listed on the next page.)

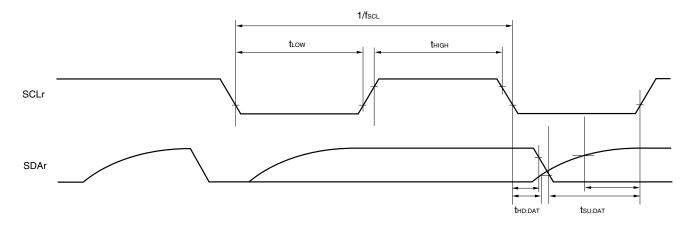
3.4 AC Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	Main system clock (fmain)	HS (high-speed main) mode	$\frac{2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}}{2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}}$	0.03125 0.0625		1 1	μS μS
		· ·	operation 2.4 V ≤ V _{DD} ≤ 5.5 V Subsystem clock (fsuB) 2.4 V ≤ V _{DD} ≤ 5.5 V		28.5	30.5	31.3	μs
		In the self HS (high	HS (high-speed	$2.7 V \le V_{DD} \le 5.5 V$	0.03125		1	μS
				$2.4~V \leq V_{DD} < 2.7~V$	0.0625		1	μS
External system clock frequency	fex	$2.7 V \le V_{DD} \le$	≤ 5.5 V	•	1.0		20.0	MHz
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		1.0		16.0	MHz	
	fexs				32		35	kHz
External system clock input high- level width, low-level width	texh, texl	$2.7 V \le V_{DD} \le$	≤ 5.5 V		24			ns
		$2.4 V \le V_{DD}$	< 2.7 V		30			ns
	texhs, texls				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтıн, tтı∟				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	fто	HS (high-spe	ed 4.0 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			16	MHz
output frequency		main) mode	2.7 V	\leq EV _{DD0} < 4.0 V			8	MHz
			2.4 V	\leq EV _{DD0} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe	ed 4.0 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			16	MHz
frequency		main) mode	2.7 V	\leq EV _{DD0} < 4.0 V			8	MHz
			2.4 V	\leq EV _{DD0} < 2.7 V			4	MHz
Interrupt input high-level width,	tinth,	INTP0	2.4 V	$\leq V_{\text{DD}} \leq 5.5 \text{ V}$	1			μS
low-level width	t intl	INTP1 to INT	P11 2.4 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	1			μS
Key interrupt input low-level width	tкв	KR0 to KR7	2.4 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	250			ns
RESET low-level width	trsl				10			μs


Note The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$ $2.4V \le EV_{DD0} < 2.7 \text{ V}$: MIN. 125 ns

 $\label{eq:rescaled} \textbf{Remark} \quad \text{f_{MCK}: Timer array unit operation clock frequency}$


(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
 h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m

= 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

Parameter	Symbol		Condit	ions	HS (high-spee	ed main) Mode	Unit
					MIN.	MAX.	
Transfer rate		Transmission	$4.0~V \leq EV_{\text{DD0}} \leq 5.5$			Note 1	bps
			V, $2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate		2.6 Note 2	Mbps
				$\begin{array}{l} C_{b}=50 \; pF, \; R_{b}=1.4 \; k\Omega, \; V_{b}=2.7 \\ V \end{array} \label{eq:cb}$			
			$2.7 \ V \leq EV_{\text{DD0}} < 4.0$			Note 3	bps
			V, $2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3$		1.2 Note 4	Mbps
			2.4 V ≤ EV _{DD0} < 3.3	V		Note 5	bps
			V, $1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6$ V		0.43 Note 6	Mbps

Notes 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV _DD0 \leq 5.5 V and 2.7 V \leq V _b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- 3. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} < 4.0 V and 2.4 V \leq V_b \leq 2.7 V

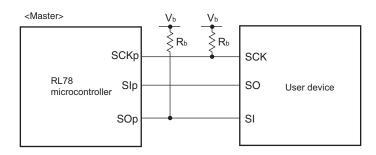
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

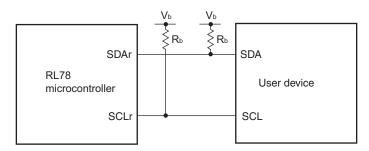
Parameter	Symbol	Conditions	HS (high-spee	Unit	
			MIN.	MAX.	
SIp setup time	tsik1	$4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$	88		ns
(to SCKp↓) ^{Note}		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le EV_{\text{DD0}} < 4.0 \text{ V}, 2.3 \text{ V} \le V_b \le 2.7 \text{ V},$	88		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$	220		ns
		$C_b = 30 \text{ pF}, \text{R}_b = 5.5 \text{k}\Omega$			
SIp hold time	tksi1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$	38		ns
(from SCKp↓) ^{№te}		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	38		ns
		$C_b = 30 \text{ pF}, \text{R}_b = 2.7 \text{k}\Omega$			
		$2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$	38		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 5.5 \text{ k}\Omega$			
Delay time from SCKp↑ to	tkso1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$		50	ns
SOp output Note		$C_b = 30 \text{ pF}, \text{R}_b = 1.4 \text{k}\Omega$			
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$		50	ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$		50	ns
		$C_{b} = 30 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega$			

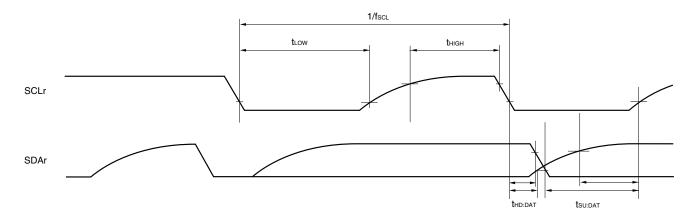
(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)


Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)


CSI mode connection diagram (during communication at different potential)


- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number , n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency

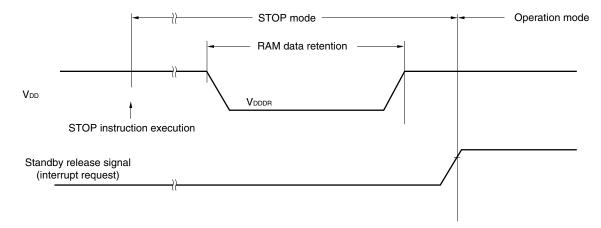
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12, 13)

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

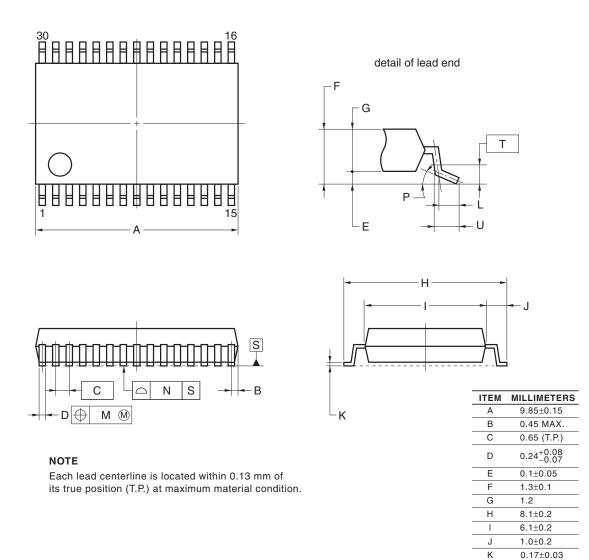

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

3.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.



4.4 30-pin Products

R5F100AAASP, R5F100ACASP, R5F100ADASP, R5F100AEASP, R5F100AFASP, R5F100AGASP R5F101AAASP, R5F101ACASP, R5F101ADASP, R5F101AEASP, R5F101AFASP, R5F101AGASP R5F100AADSP, R5F100ACDSP, R5F100ADDSP, R5F100AEDSP, R5F100AFDSP, R5F100AGDSP R5F101AADSP, R5F101ACDSP, R5F101ADDSP, R5F101AEDSP, R5F101AFDSP, R5F101AGDSP R5F100AAGSP, R5F100ACGSP, R5F100ADGSP, R5F100AEGSP, R5F100AFGSP, R5F100AGGSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18

0.5

0.13

0.10 3°+5°

0.25

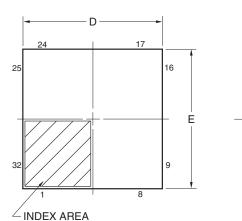
0.6±0.15

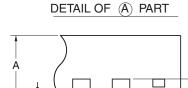
L

M N

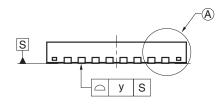
P T

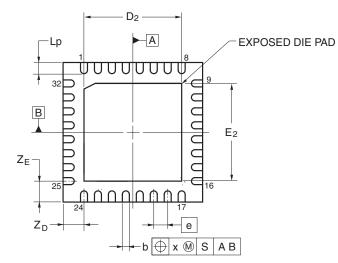
U


©2012 Renesas Electronics Corporation. All rights reserved.


C₂

4.5 32-pin Products


R5F100BAANA, R5F100BCANA, R5F100BDANA, R5F100BEANA, R5F100BFANA, R5F100BGANA R5F101BAANA, R5F101BCANA, R5F101BDANA, R5F101BEANA, R5F101BFANA, R5F101BGANA R5F100BADNA, R5F100BCDNA, R5F100BDDNA, R5F100BEDNA, R5F100BFDNA, R5F100BGDNA R5F101BADNA, R5F101BCDNA, R5F101BDDNA, R5F101BEDNA, R5F101BFDNA, R5F101BGDNA R5F100BAGNA, R5F100BCGNA, R5F100BDGNA, R5F100BEGNA, R5F100BFGNA, R5F100BGGNA


JEITA Package code	RENESAS code	Previous code	MASS (TYP.)[g]	
P-HWQFN32-5x5-0.50	PWQN0032KB-A	P32K8-50-3B4-5	0.06	

A₁

Referance	Dimens	sion in Mil	limeters
Symbol	Min	Nom	Max
D	4.95	5.00	5.05
E	4.95	5.00	5.05
А			0.80
A ₁	0.00		
b	0.18	0.25	0.30
е		0.50	
Lp	0.30	0.40	0.50
х			0.05
у			0.05
ZD		0.75	
Z _E		0.75	—
C2	0.15	0.20	0.25
D ₂		3.50	
E ₂		3.50	

©2013 Renesas Electronics Corporation. All rights reserved.

R01DS0131EJ0330 Rev.3.30 Mar 31, 2016

Revision History

RL78/G13 Data Sheet

		Description			
Rev.	Date	Page	Summary		
1.00	Feb 29, 2012	-	First Edition issued		
2.00	Oct 12, 2012	7	Figure 1-1. Part Number, Memory Size, and Package of RL78/G13: Pin count corrected.		
		25	1.4 Pin Identification: Description of pins INTP0 to INTP11 corrected.		
		40, 42, 44	1.6 Outline of Functions: Descriptions of Subsystem clock, Low-speed on-chip oscillator, and General-purpose register corrected.		
		41, 43, 45	1.6 Outline of Functions: Lists of Descriptions changed.		
		59, 63, 67	Descriptions of Note 8 in a table corrected.		
		68	(4) Common to RL78/G13 all products: Descriptions of Notes corrected.		
		69	2.4 AC Characteristics: Symbol of external system clock frequency corrected.		
		96 to 98	2.6.1 A/D converter characteristics: Notes of overall error corrected.		
		100	2.6.2 Temperature sensor characteristics: Parameter name corrected.		
		104	2.8 Flash Memory Programming Characteristics: Incorrect descriptions corrected.		
		116	3.10 52-pin products: Package drawings of 52-pin products corrected.		
		120	3.12 80-pin products: Package drawings of 80-pin products corrected.		
3.00	Aug 02, 2013	1	Modification of 1.1 Features		
		3	Modification of 1.2 List of Part Numbers		
		4 to 15	Modification of Table 1-1. List of Ordering Part Numbers, note, and caution		
		16 to 32	Modification of package type in 1.3.1 to 1.3.14		
		33	Modification of description in 1.4 Pin Identification		
		48, 50, 52	Modification of caution, table, and note in 1.6 Outline of Functions		
		55	Modification of description in table of Absolute Maximum Ratings ($T_A = 25^{\circ}C$)		
		57	Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics		
		57	Modification of table in 2.2.2 On-chip oscillator characteristics		
		58	Modification of note 3 of table (1/5) in 2.3.1 Pin characteristics		
		59	Modification of note 3 of table (2/5) in 2.3.1 Pin characteristics		
		63	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products		
		64	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products		
		65	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products		
		66	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64- pin products		
		68	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products		
		70	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products		
		72	Modification of notes 1 and 4 in (3) Flash ROM: 384 to 512 KB of 44- to 100- pin products		
		74	Modification of notes 1, 5, and 6 in (3) Flash ROM: 384 to 512 KB of 44- to 100-pin products		
		75	Modification of (4) Peripheral Functions (Common to all products)		
		77	Modification of table in 2.4 AC Characteristics		
		78, 79	Addition of Minimum Instruction Execution Time during Main System Clock Operation		
		80	Modification of figures of AC Timing Test Points and External System Clock Timing		

			Description
Rev.	Date	Page	Summary
3.00	Aug 02, 2013	118	Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics
		118	Modification of table and note in 2.6.3 POR circuit characteristics
		119	Modification of table in 2.6.4 LVD circuit characteristics
		120	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode
		120	Renamed to 2.6.5 Power supply voltage rising slope characteristics
		122	Modification of table, figure, and remark in 2.10 Timing Specs for Switching Flash Memory Programming Modes
		123	Modification of caution 1 and description
		124	Modification of table and remark 3 in Absolute Maximum Ratings ($T_A = 25^{\circ}C$)
		126	Modification of table, note, caution, and remark in 3.2.1 X1, XT1 oscillator characteristics
		126	Modification of table in 3.2.2 On-chip oscillator characteristics
		127	Modification of note 3 in 3.3.1 Pin characteristics (1/5)
		128	Modification of note 3 in 3.3.1 Pin characteristics (2/5)
		133	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (1/2)
		135	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64- pin products (2/2)
		137	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products (1/2)
		139	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (2/2)
		140	Modification of (3) Peripheral Functions (Common to all products)
		142	Modification of table in 3.4 AC Characteristics
		143	Addition of Minimum Instruction Execution Time during Main System Clock Operation
		143	Modification of figure of AC Timing Test Points
		143	Modification of figure of External System Clock Timing
		145	Modification of figure of AC Timing Test Points
		145	Modification of description, note 1, and caution in (1) During communication at same potential (UART mode)
		146	Modification of description in (2) During communication at same potential (CSI mode)
		147	Modification of description in (3) During communication at same potential (CSI mode)
		149	Modification of table, note 1, and caution in (4) During communication at same potential (simplified I ² C mode)
		151	Modification of table, note 1, and caution in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)
		152 to 154	Modification of table, notes 2 to 6, caution, and remarks 1 to 4 in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)
		155	Modification of table in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)
		156	Modification of table and caution in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)
		157, 158	Modification of table, caution, and remarks 3 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)
		160, 161	Modification of table and caution in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode)