

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Ξ·ΧΕΙ

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100ldafb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.2 24-pin products

• 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)

- Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. It is recommended to connect an exposed die pad to Vss.

1.3.6 36-pin products

• 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)

	А	В	С	D	E	F	
6	P60/SCLA0	Vdd	P121/X1	P122/X2/EXCLK	P137/INTP0	P40/TOOL0	6
5	P62	P61/SDAA0	Vss	REGC	RESET	P120/ANI19	5
4	P72/SO21	P71/SI21/ SDA21	P14/RxD2/SI20/ SDA20/(SCLA0) /(TI03)/(TO03)	P31/TI03/TO03/ INTP4/ PCLBUZ0	P00/TI00/TxD1	P01/TO00/RxD1	4
3	P50/INTP1/ SI11/SDA11	P70/SCK21/ SCL21	P15/PCLBUZ1/ SCK20/SCL20/ (TI02)/(TO02)	P22/ANI2	P20/ANI0/ AVREFP	P21/ANI1/ AVREFM	3
2	P30/INTP3/ SCK11/SCL11	P16/TI01/TO01/ INTP5/(RxD0)	P12/SO00/ TxD0/TOOLTxD /(TI05)/(TO05)	P11/SI00/RxD0/ TOOLRxD/ SDA00/(TI06)/ (TO06)	P24/ANI4	P23/ANI3	2
1	P51/INTP2/ SO11	P17/TI02/TO02/ (TxD0)	P13/TxD2/ SO20/(SDAA0)/ (TI04)/(TO04)	P10/SCK00/ SCL00/(TI07)/ (TO07)	P147/ANI18	P25/ANI5	1
	A	В	С	D	E	F	•

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.8 44-pin products

• 44-pin plastic LQFP (10 × 10 mm, 0.8 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.6 36-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

^{3.} When setting to PIOR = 1

										(2)	/2)
Ite	m	40-	pin	44	-pin	48-	pin	52·	-pin		
		R5F100Ex	R5F101Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx
Clock output/buzz	er output	2	2		2		2		2		2
	·	 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsuB = 32.768 kHz operation) 									
8/10-bit resolution	A/D converter	9 channe	ls	10 chanr	nels	10 chann	nels	12 chanr	nels	12 chanr	nels
Serial interface		[40-pin, 4	4-pin pro	ducts]				•		•	
	 CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel [48-pin, 52-pin products] CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 1 channel/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel [64-pin products] 										
 CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel 					I						
	I ² C bus	1 channe	I	1 channe	el	1 channe	el	1 channe	əl	1 channe	əl
Multiplier and divider/multiply- accumulator • 16 bi • 32 bi • 16 bi			× 16 bits = ÷ 32 bits = × 16 bits -	= 32 bits (L = 32 bits (L + 32 bits =	Jnsigned c Jnsigned) 32 bits (U	or signed) nsigned or	signed)				
DMA controller		2 channe	ls	1		1		1		1	
Vectored	Internal	2	7	2	27	2	27	2	27	2	27
interrupt sources	External	-	7		7	1	10		12		13
Reset	 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 										
Power-on-reset ci	rcuit	Power-Power-	on-reset: down-res	1.51 V et: 1.50 V	(TYP.) (TYP.)						
Voltage detector		RisingFalling	edge : edge :	1.67 V 1.63 V	to 4.06 V (to 3.98 V (14 stages) 14 stages)					
On-chip debug fur	nction	Provided									
Power supply volt	age	$V_{DD} = 1.6$ $V_{DD} = 2.4$	to 5.5 V (to 5.5 V ($T_{A} = -40 \text{ to}$ $T_{A} = -40 \text{ to}$	+85°C) +105°C)						
Operating ambien	t temperature	$T_{A} = 40 \text{ to}$ $T_{A} = 40 \text{ to}$	o +85°C (/ o +105°C	A: Consum (G: Indust	ner applica rial applica	tions, D: Ir itions)	ndustrial a	pplications	3)		

<R>

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IoL1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient	Та	In normal operati	on mode	-40 to +85	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (TA = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2	HALT	HS (high-	fiH = 32 MHz ^{Note 4}	V _{DD} = 5.0 V		0.62	1.89	mA
Current	Note 2	mode	speed main)		V _{DD} = 3.0 V		0.62	1.89	mA
			mode	file = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.50	1.48	mA
					$V_{DD} = 3.0 V$		0.50	1.48	mA
				$f_{IH} = 16 \ MHz^{Note 4}$	$V_{DD} = 5.0 V$		0.44	1.12	mA
					VDD = 3.0 V		0.44	1.12	mA
			LS (low-	$f_{IH} = 8 \text{ MHz}^{Note 4}$	$V_{DD} = 3.0 V$		290	620	μA
			speed main) mode ^{Note 7}		V _{DD} = 2.0 V		290	620	μA
			LV (low-	$f_{IH} = 4 \text{ MHz}^{Note 4}$	V _{DD} = 3.0 V		460	700	μA
			voltage main) mode		$V_{DD} = 2.0 V$		460	700	μΑ
			HS (high-	$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		0.31	1.14	mA
			speed main) mode ^{Note 7}	$V_{DD} = 5.0 V$	Resonator connection		0.48	1.34	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.14	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.48	1.34	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	0.68	mA
				$V_{DD} = 5.0 V$	Resonator connection		0.28	0.76	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.68	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.28	0.76	mA
			LS (low-	$f_{MX} = 8 MHz^{Note 3}$,	Square wave input		110	390	μA
			speed main) mode ^{Note 7}	$V_{DD} = 3.0 V$	Resonator connection		160	450	μA
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	390	μA
				VDD = 2.0 V	Resonator connection		160	450	μA
			Subsystem	fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.66	μA
			clock operation	$T_A = -40^{\circ}C$	Resonator connection		0.50	0.85	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.38	0.66	μA
				T _A = +25°C	Resonator connection		0.57	0.85	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.47	3.49	μA
				T _A = +50°C	Resonator connection		0.66	3.68	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.80	6.10	μA
				T _A = +70°C	Resonator connection		0.99	6.29	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		1.52	10.46	μA
				T _A = +85°C	Resonator connection		1.71	10.65	μA
	DD3 Note 6	STOP	$T_{\text{A}} = -40^{\circ}C$				0.19	0.54	μA
		mode ^{™ote 8}	T _A = +25°C				0.26	0.54	μA
			$T_A = +50^{\circ}C$				0.35	3.37	μA
			T _A = +70°C				0.68	5.98	μA
			T₄ = +85°C				1.40	10.34	μA

(Notes and Remarks are listed on the next page.)

2.4 AC Characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Items	Symbol		Conditions	3	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main	HS (high-	$2.7V\!\leq\!V_{DD}\!\leq\!5.5V$	0.03125		1	μS
instruction execution time)		system clock (fmain)	speed main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
		operation	LS (low-speed main) mode	$1.8 V \le V_{DD} \le 5.5 V$	0.125		1	μS
			LV (low- voltage main) mode	$1.6~V \le V_{DD} \le 5.5~V$	0.25		1	μs
		Subsystem of	clock (fsua)	$1.8V\!\le\!V_{DD}\!\le\!5.5V$	28.5	30.5	31.3	μS
		operation	[
		In the self	HS (high-	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	0.03125		1	μS
		mode	mode	$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μS
			LS (low-speed main) mode	$1.8V\!\leq\!V_{DD}\!\leq\!5.5V$	0.125		1	μS
			LV (low- voltage main) mode	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	0.25		1	μS
External system clock	fex	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	I	1.0		20.0	MHz
frequency		$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$			1.0		16.0	MHz
		$1.8 \text{ V} \leq V_{\text{DD}} < 2.4 \text{ V}$			1.0		8.0	MHz
		$1.6 \ V \leq V_{\text{DD}} < 1.8 \ V$			1.0		4.0	MHz
	fexs				32		35	kHz
External system clock input	texh, texl	$2.7 \ V \le V_{DD}$	≤ 5.5 V		24			ns
high-level width, low-level width		$2.4 V \le V_{DD}$.	< 2.7 V		30			ns
-		$1.8 V \le V_{DD}$	< 2.4 V		60			ns
		$1.6 V \le V_{DD}$	< 1.8 V		120			ns
	texhs, texls				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтıн, tтı∟				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	fтo	HS (high-spe	eed 4.0 V	$\leq EV_{DD0} \leq 5.5 V$			16	MHz
output frequency		main) mode	2.7 V	$\leq EV_{DD0} < 4.0 V$			8	MHz
			1.8 V	$\leq EV_{DD0} < 2.7 V$			4	MHz
			1.6 V	\leq EV _{DD0} < 1.8 V			2	MHz
		LS (low-spee	ed 1.8 V	$\leq EV_{DD0} \leq 5.5 V$			4	MHz
			1.6 V	$\leq EV_{DD0} < 1.8 V$			2	MHz
		LV (low-volta main) mode	age 1.6 V	$\leq EV$ DD0 $\leq 5.5 V$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe	eed 4.0 V	$\leq EV_{DD0} \leq 5.5 V$			16	MHz
nequency		main) mode	2.7 V	$\leq EV_{DD0} < 4.0 V$			8	MHz
			1.8 V	$\leq EV_{DD0} < 2.7 V$			4	MHz
		10 //	1.6 V	\leq EV _{DD0} < 1.8 V			2	MHz
		LS (IOW-Spee main) mode	ea 1.8 V	$\leq EVDD0 \leq 5.5 V$			4	MIHZ
			1.6 V	$\leq EVDD0 < 1.8 V$			2	
		main) mode	1.8 V	$\geq EVDD0 \leq 5.5 V$			4	IVIHZ M⊔⇒
Interrupt input high-lovel width	tiniti i		1.0 V		1		2	IVII⊓∠ ./e
low-level width	tINTL		1.0 V	< EVDD < 5.5 V	1			μs
Key interrupt input low-level	tkB	KB0 to KR7	1.0 V	$\leq \mathrm{EV}_{\mathrm{DD0}} \leq 5.5 \mathrm{V}$	250			μο ne
width			1.6 V	< EV _{DD0} < 1.8 V	1		<u> </u>	<i>u</i> s
RESET low-level width	trsl				10			μs

(Note and Remark are listed on the next page.)

TCY vs VDD (LS (low-speed main) mode)

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Сог	nditions	HS (speed Mc	high- I main) ode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tксү2	$4.0 V \le EV_{DD0} \le 5.5 V$, 27 V < Vb < 4.0 V	24 MHz < fмск	14/ fмск						ns
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$	20 MHz < fмск ≤ 24 MHz	12/ fмск						ns
			8 MHz < fмск ≤ 20 MHz	10/ fмск		_				ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/ fмск				ns
			fмск ≤4 MHz	6/fмск		10/ fмск		10/ fмск		ns
$2.7 \text{ V} \le \text{EV}_{D00} < 4$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$			24 MHz < fмск	20/ fмск						ns
			20 MHz < fмск ≤ 24 MHz	16/ fмск		—		_		ns
		16 MHz < fмск ≤ 20 MHz	14/ fмск						ns	
			8 MHz < fмск ≤ 16 MHz	12/ fмск						ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/ fмск				ns
		$1.8 V \le EV_{DD0} < 3.3 V,$ $1.6 V \le V_P \le 2.0 V^{Note}$	fмск ≤4 MHz	6/fмск		10/ fмск		10/ fмск		ns
			24 MHz < fмск	48/ fмск		—				ns
		2	20 MHz < fмск ≤ 24 MHz	36/ fмск						ns
			16 MHz < fмск ≤ 20 MHz	32/ fмск						ns
			8 MHz < fмск ≤ 16 MHz	26/ fмск		_		_		ns
		4 MHz < fмск ≤ 8 MHz	16/ fмск		16/ fмск				ns	
			fмск ≤4 MHz	10/ fмск		10/ fмск		10/ fмск		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

2.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 2.4 AC Characteristics.

2.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105°C)

Remark The electrical characteristics of the products G: Industrial applications (T_A = -40 to +105°C) are different from those of the products "A: Consumer applications, and D: Industrial applications". For details, refer to 3.1 to 3.10.

3.1 Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	VI1	P00 to P07, P10 to P17, P30 to P37, P40 to P47,	-0.3 to EV _{DD0} +0.3	V
		P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	and -0.3 to V_{DD} +0.3 ^{Note 2}	
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	V ₀₁	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-0.3 to EV_{DD0} +0.3 and -0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
	V _{O2}	P20 to P27, P150 to P156	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANI16 to ANI26	-0.3 to EV_DD0 +0.3 and -0.3 to AVREF(+) +0.3 $^{\text{Notes 2, 3}}$	V
	VAI2	ANI0 to ANI14	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF} (+) +0.3 ^{Notes 2, 3}	V

Absolute Maximum Ratings (T_A = 25°C) (1/2)

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - **3.** Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - **3.** Vss : Reference voltage

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іонт	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lol1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operati	on mode	–40 to +105	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (TA = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.3.2 Supply current characteristics

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit		
Supply	IDD1	Operating	HS (high- speed main) mode ^{Note 5}	f _{IH} = 32 MHz ^{Note 3} Basic operatio n	$V_{DD} = 5.0 V$		2.1		mA	
Current Note 1		mode			operatio n	$V_{DD} = 3.0 V$		2.1		mA
					Normal	$V_{DD} = 5.0 V$		4.6	7.5	mA
					operatio n	$V_{DD} = 3.0 V$		4.6	7.5	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	V _{DD} = 5.0 V		3.7	5.8	mA
					operatio n	V _{DD} = 3.0 V		3.7	5.8	mA
				$f_{IH} = 16 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 V$		2.7	4.2	mA
					operatio n	V _{DD} = 3.0 V		2.7	4.2	mA
			HS (high- speed main) mode ^{Note 5}	$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal	Square wave input		3.0	4.9	mA
				$V_{DD} = 5.0 V$	operatio n	Resonator connection		3.2	5.0	mA
				$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal operatio n	Square wave input		3.0	4.9	mA
				$V_{DD} = 3.0 V$		Resonator connection		3.2	5.0	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal operatio n	Square wave input		1.9	2.9	mA
				$V_{DD} = 5.0 V$		Resonator connection		1.9	2.9	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	2.9	mA
				$V_{DD} = 3.0 V$	operatio n	Resonator connection		1.9	2.9	mA
			Subsystem clock operation	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
				Note 4 $T_A = -40^{\circ}C$	operatio n	Resonator connection		4.2	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
				$T_A = +25^{\circ}C$	operatio n	Resonator connection		4.2	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	5.5	μA
				Note 4 Tr = $+50^{\circ}$ C	operatio n	Resonator		4.3	5.6	μA
				fein - 32 768 kHz	Normal	Square wave input		43	63	Δ
				Note 4	operatio 70°C	Besonator		4.0	6.4	μη
				T _A = +70°C		connection			0.1	ματ
				fsuв = 32.768 kHz	Normal	Square wave input		4.6	7.7	μA
				Note 4 Open $T_A = +85^{\circ}C$	operation	Resonator connection		4.7	7.8	μA
				fsuв = 32.768 kHz	Normal	Square wave input		6.9	19.7	μA
				Note 4 $T_A = +105^{\circ}C$	operation	Resonator connection		7.0	19.8	μA

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (TA = -40 to $+105^{\circ}$ C, 2.4 V $\leq EV_{DD0} \leq V_{DD} \leq 5.5$ V, Vss = EVss₀ = 0 V) (1/2)

(Notes and Remarks are listed on the next page.)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply current	IDD2 Note 2	HALT mode	HS (high-	$f_{\rm H} = 32 \text{ MHz}^{\rm Note 4}$	$V_{DD} = 5.0 V$		0.62	3 40	mA
			speed main) mode ^{Note 7}		$V_{DD} = 3.0 \text{ V}$		0.62	3.40	mA
Note 1				$f_{IH} = 24 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		0.50	2.70	mA
					$V_{DD} = 3.0 \text{ V}$		0.50	2.70	mA
				fih = 16 MHz ^{Note 4}	$V_{DD} = 5.0 V$		0.44	1.90	mA
					V _{DD} = 3.0 V		0.44	1.90	mA
			HS (high- speed main) mode ^{Note 7}	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	2.10	mA
				Vdd = 5.0 V	Resonator connection		0.48	2.20	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 3.0 \text{ V}$ $f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.31	2.10	mA
					Resonator connection		0.48	2.20	mA
					Square wave input		0.21	1.10	mA
				$V_{DD} = 5.0 V$	Resonator connection		0.28	1.20	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	1.10	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.28	1.20	mA
			Subsystem clock operation	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μA
				$T_A = -40^{\circ}C$	Resonator connection		0.47	0.80	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μA
					T _A = +25°C	Resonator connection		0.53	0.80
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μA
				T _A = +50°C	Resonator connection		0.60	2.49	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.64	4.03	μA
				$T_A = +70^{\circ}C$	Resonator connection		0.83	4.22	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μA
				T _A = +85°C	Resonator connection		1.28	8.23	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		5.50	41.00	μA
				T _A = +105°C	Resonator connection		5.50	41.00	μA
	IDD3 ^{Note 6}	STOP mode ^{Note 8}	$T_A = -40^{\circ}C$				0.19	0.52	μA
			$T_A = +25^{\circ}C$				0.25	0.52	μA
			T _A = +50°C				0.32	2.21	μA
			T _A = +70°C				0.55	3.94	μA
			$T_A = +85^{\circ}C$	T _A = +85°C			1.00	7.95	μA
			$T_A = +105^{\circ}C$				5.00	40.00	μA

((2) Flash ROM: 96 to 256 KB of 30- to 100-pin products		
($(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$	(2	/2)

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Transfer rate in the SNOOZE mode : MAX. 1 Mbps
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_L, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 00, 01, 02,

10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))

4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq EVpp0 = EVpp1 \leq Vpp \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	HS (high-s	Unit	
			MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{split} & 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ & 2.7 \; V \leq V_b \leq 4.0 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$		400 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$		400 ^{Note 1}	kHz
				100 ^{Note 1}	kHz
		$\begin{split} & 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ & 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		100 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	t∟ow		1200		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1200		ns
			4600		ns
		$\begin{split} & 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ & 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	4600		ns
		$\label{eq:2.4} \begin{split} 2.4 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	4650		ns
Hold time when SCLr = "H"	tніgн		620		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	500		ns
			2700		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	2400		ns
		$\label{eq:VDD} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	1830		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

4.9 48-pin Products

R5F100GAAFB, R5F100GCAFB, R5F100GDAFB, R5F100GEAFB, R5F100GFAFB, R5F100GGAFB, R5F100GHAFB, R5F100GJAFB, R5F100GKAFB, R5F100GLAFB

R5F101GAAFB, R5F101GCAFB, R5F101GDAFB, R5F101GEAFB, R5F101GFAFB, R5F101GGAFB, R5F101GHAFB, R5F101GJAFB, R5F101GKAFB, R5F101GLAFB

R5F100GADFB, R5F100GCDFB, R5F100GDDFB, R5F100GEDFB, R5F100GFDFB, R5F100GGDFB, R5F100GHDFB, R5F100GJDFB, R5F100GKDFB, R5F100GLDFB

R5F101GADFB, R5F101GCDFB, R5F101GDDFB, R5F101GEDFB, R5F101GFDFB, R5F101GGDFB, R5F101GHDFB, R5F101GJDFB, R5F101GKDFB, R5F101GLDFB

R5F100GAGFB, R5F100GCGFB, R5F100GDGFB, R5F100GEGFB, R5F100GFGFB, R5F100GGGFB, R5F100GHGFB, R5F100GJGFB

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

