

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

-	
Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100lddfb-v0

Table 1-1. List of Ordering Part Numbers

(3/12)

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
			Note	
36 pins	36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)	Mounted	A G	R5F100CAALA#U0, R5F100CCALA#U0, R5F100CDALA#U0, R5F100CEALA#U0, R5F100CFALA#U0, R5F100CGALA#U0 R5F100CAALA#W0, R5F100CAALA#W0, R5F100CAALA#W0, R5F100CEALA#W0, R5F100CGALA#W0 R5F100CAGLA#W0, R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0
		Not mounted	A	R5F101CAALA#U0, R5F101CCALA#U0, R5F101CDALA#U0, R5F101CEALA#U0, R5F101CFALA#U0, R5F101CAALA#W0, R5F10AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
				R5F101CEALA#W0, R5F101CFALA#W0, R5F101CGALA#W0
40 pins	40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch)	Mounted	A	R5F100EAANA#U0, R5F100ECANA#U0, R5F100EDANA#U0, R5F100EEANA#U0, R5F100EFANA#U0, R5F100EGANA#U0, R5F100EHANA#U0
				R5F100EAANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100EEANA#W0, R5F100EFANA#W0, R5F100EGANA#W0, R5F100EHANA#W0
			D	R5F100EADNA#U0, R5F100ECDNA#U0, R5F100EDDNA#U0, R5F100EEDNA#U0, R5F100EFDNA#U0, R5F100EGDNA#U0, R5F100EHDNA#U0
				R5F100EADNA#W0, R5F100ECDNA#W0, R5F100EDDNA#W0, R5F100EEDNA#W0, R5F100EFDNA#W0, R5F100EGDNA#W0, R5F100EHDNA#W0
			G	R5F100EAGNA#U0, R5F100ECGNA#U0, R5F100EDGNA#U0, R5F100EEGNA#U0, R5F100EFGNA#U0, R5F100EHGNA#U0 R5F100EAGNA#W0, R5F100ECGNA#W0,
				R5F100EDGNA#W0, R5F100ECGNA#W0,
				R5F100EFGNA#W0, R5F100EGGNA#W0, R5F100EHGNA#W0
		Not mounted	А	R5F101EAANA#U0, R5F101ECANA#U0, R5F101EDANA#U0, R5F101EEANA#U0, R5F101EFANA#U0, R5F101EGANA#U0,
		mounted		R5F101EEANA#00, R5F101EFANA#00, R5F101EGANA#00, R5F101EAANA#W0, R5F101ECANA#W0, R5F101EDANA#W0, R5F101EEANA#W0, R5F101EFANA#W0, R5F101EGANA#W0, R5F101EHANA#W0
			D	R5F101EADNA#U0, R5F101ECDNA#U0, R5F101EDDNA#U0, R5F101EEDNA#U0, R5F101EFDNA#U0, R5F101EGDNA#U0, R5F101EHDNA#U0 R5F101EADNA#W0, R5F101ECDNA#W0, R5F101EFDNA#W0, R5F101EDNA#W0, R5F101EFDNA#W0,
				R5F101EGDNA#W0, R5F101EHDNA#W0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

Table 1-1. List of Ordering Part Numbers

(5/12)

Pin	Package	Data	Fields of	Ordering Part Number
count		flash	Application Note	
48 pins	48-pin plastic	Mounted	Α	R5F100GAAFB#V0, R5F100GCAFB#V0, R5F100GDAFB#V0,
	LFQFP (7 × 7 mm,			R5F100GEAFB#V0, R5F100GFAFB#V0, R5F100GGAFB#V0,
	0.5 mm pitch)			R5F100GHAFB#V0, R5F100GJAFB#V0, R5F100GKAFB#V0,
				R5F100GLAFB#V0
				R5F100GAAFB#X0, R5F100GCAFB#X0, R5F100GDAFB#X0,
				R5F100GEAFB#X0, R5F100GFAFB#X0, R5F100GGAFB#X0,
				R5F100GHAFB#X0, R5F100GJAFB#X0, R5F100GKAFB#X0,
				R5F100GLAFB#X0
			D	R5F100GADFB#V0, R5F100GCDFB#V0, R5F100GDDFB#V0,
				R5F100GEDFB#V0, R5F100GFDFB#V0, R5F100GGDFB#V0,
				R5F100GHDFB#V0, R5F100GJDFB#V0, R5F100GKDFB#V0,
				R5F100GLDFB#V0
				R5F100GADFB#X0, R5F100GCDFB#X0, R5F100GDDFB#X0,
				R5F100GEDFB#X0, R5F100GFDFB#X0, R5F100GGDFB#X0,
				R5F100GHDFB#X0, R5F100GJDFB#X0, R5F100GKDFB#X0,
				R5F100GLDFB#X0
			G	R5F100GAGFB#V0, R5F100GCGFB#V0, R5F100GDGFB#V0,
				R5F100GEGFB#V0, R5F100GFGFB#V0, R5F100GGGFB#V0,
				R5F100GHGFB#V0, R5F100GJGFB#V0
				R5F100GAGFB#X0, R5F100GCGFB#X0, R5F100GDGFB#X0,
				R5F100GEGFB#X0, R5F100GFGFB#X0, R5F100GGGFB#X0,
				R5F100GHGFB#X0, R5F100GJGFB#X0
		Not	Α	R5F101GAAFB#V0, R5F101GCAFB#V0, R5F101GDAFB#V0,
		mounted		R5F101GEAFB#V0, R5F101GFAFB#V0, R5F101GGAFB#V0,
				R5F101GHAFB#V0, R5F101GJAFB#V0, R5F101GKAFB#V0,
				R5F101GLAFB#V0
				R5F101GAAFB#X0, R5F101GCAFB#X0, R5F101GDAFB#X0,
				R5F101GEAFB#X0, R5F101GFAFB#X0, R5F101GGAFB#X0,
				R5F101GHAFB#X0, R5F101GJAFB#X0, R5F101GKAFB#X0,
				R5F101GLAFB#X0
			D	R5F101GADFB#V0, R5F101GCDFB#V0, R5F101GDDFB#V0,
				R5F101GEDFB#V0, R5F101GFDFB#V0, R5F101GGDFB#V0,
				R5F101GHDFB#V0, R5F101GJDFB#V0, R5F101GKDFB#V0,
				R5F101GLDFB#V0
				R5F101GADFB#X0, R5F101GCDFB#X0, R5F101GDDFB#X0,
				R5F101GEDFB#X0, R5F101GFDFB#X0, R5F101GGDFB#X0,
				R5F101GHDFB#X0, R5F101GJDFB#X0, R5F101GKDFB#X0,
				R5F101GLDFB#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.4 Pin Identification

ANI0 to ANI14,		REGC:	Regulator capacitance
ANI16 to ANI26:	Analog input	RESET:	Reset
AVREFM:	A/D converter reference	RTC1HZ:	Real-time clock correction clock
	potential (- side) input		(1 Hz) output
AVREFP:	A/D converter reference	RxD0 to RxD3:	Receive data
	potential (+ side) input	SCK00, SCK01, SCK10,	
EVDD0, EVDD1:	Power supply for port	SCK11, SCK20, SCK21,	
EVsso, EVss1:	Ground for port	SCLA0, SCLA1:	Serial clock input/output
EXCLK:	External clock input (Main	SCLA0, SCLA1, SCL00,	
	system clock)	SCL01, SCL10, SCL11,	
EXCLKS:	External clock input	SCL20,SCL21, SCL30,	
	(Subsystem clock)	SCL31:	Serial clock output
INTP0 to INTP11:	Interrupt request from	SDAA0, SDAA1, SDA00	,
	peripheral	SDA01,SDA10, SDA11,	
KR0 to KR7:	Key return	SDA20,SDA21, SDA30,	
P00 to P07:	Port 0	SDA31:	Serial data input/output
P10 to P17:	Port 1	SI00, SI01, SI10, SI11,	
P20 to P27:	Port 2	SI20, SI21, SI30, SI31:	Serial data input
P30 to P37:	Port 3	SO00, SO01, SO10,	
P40 to P47:	Port 4	SO11, SO20, SO21,	
P50 to P57:	Port 5	SO30, SO31:	Serial data output
P60 to P67:	Port 6	TI00 to TI07,	
P70 to P77:	Port 7	TI10 to TI17:	Timer input
P80 to P87:	Port 8	TO00 to TO07,	
P90 to P97:	Port 9	TO10 to TO17:	Timer output
P100 to P106:	Port 10	TOOL0:	Data input/output for tool
P110 to P117:	Port 11	TOOLRxD, TOOLTxD:	Data input/output for external device
P120 to P127:	Port 12	TxD0 to TxD3:	Transmit data
P130, P137:	Port 13	V _{DD} :	Power supply
P140 to P147:	Port 14	Vss:	Ground
P150 to P156:	Port 15	X1, X2:	Crystal oscillator (main system clock)
PCLBUZ0, PCLBUZ1	: Programmable clock	XT1, XT2:	Crystal oscillator (subsystem clock)
	output/buzzer output		

3. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see **6.9.3 Operation as multiple PWM output function** in the RL78/G13 User's Manual).

4. When setting to PIOR = 1

70	n	١
1/	'	1
_	_	,

Iter	m	20-	nin	24-	nin	25-	nin	30-	pin	32	-pin	36	pin
itoi											İ		İ
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	R5F101Cx
Clock output/buzze	er output	-	=		1		1		2		2		2
				88 kHz, 9 n clock: fr				ИНz, 5 М	Hz, 10 N	МНz			
8/10-bit resolution	A/D converter	6 channels 6 channels 8 channels 8 channels 8 channels											
Serial interface		[20-pin,	24-pin,	25-pin p	roducts]								
		• CSI:	1 chann	el/simplif	ied I ² C:	1 channe	el/UART	: 1 chanr	nel				
		• CSI:	1 chann	el/simplif	ied I ² C:	1 channe	el/UART	: 1 chanr	nel				
		[30-pin,	32-pin	products]]								
		• CSI:	1 chann	el/simplif el/simplif	ied I ² C:	1 channe	el/UART	: 1 chanr	nel				
				el/simplif	fied I ² C:	1 channe	el/UART	(UART s	supportir	ng LIN-b	us): 1 ch	nannel	
		[36-pin											
		1		el/simplif									
1		 CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel 											
ſ	I ² C bus	-	=	1 chanr		1 chanr		1 chanı		1 chan		1 chan	nel
Multiplier and divide accumulator	er/multiply-	 16 bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) 											
DMA controller		2 channels											
Vectored interrupt	Internal	2	3	2	24	2	<u>!</u> 4	2	27	2	27	2	27
sources	External	;	3	ļ	5		5		6		6		6
Key interrupt													
Reset													
		InterrInterrInterrInterrInterr	nal reset nal reset nal reset nal reset nal reset	SET pin by watch by power by volta by illega by RAM by illega	er-on-res ge detec al instruc parity e	et ctor tion exec rror		e					
Power-on-reset circ	puit	InterrInterrInterrInterrInterrInterrInterrPower	nal reset nal reset nal reset nal reset nal reset er-on-res	by watch by power by volta by illega by RAM by illega	er-on-res ge detect al instruct parity e al-memod	et stor stor tion exec rror ry access		0					
Power-on-reset circ	cuit	InterrInterrInterrInterrInterrInterrInterrPower	nal reset nal reset nal reset nal reset nal reset nal reset er-on-reser er-down-	by watch by power by volta by illega by RAM by illega set: 1 reset: 1	er-on-res ge detectal instruction parity et al-memorial.51 V (Tours) (et stor stor tion exec rror ry access	s 14 stage	es)					
		Interr Interr Interr Interr Interr Interr Interr Powe	nal reset nal reset nal reset nal reset nal reset nal reset nal reset er-on-reser-down- g edge: g edge	by watch by power by volta by illega by RAM by illega set: 1 reset: 1	er-on-res ge detectal instruction parity et al-memorial.51 V (Tours) (et ctor tion exec rror ry access YP.) YP.)	s 14 stage	es)					
Voltage detector	ction	Interresident In	nal reset nal reset nal reset nal reset nal reset nal reset nal reset nal reset er-on-reser-down- g edge: g edge d	by watch by power by volta by illega by RAM by illega set: 1 reset: 1	er-on-res ge detect al instruct parity e al-memon .51 V (T .50 V (T .67 V to	set stor rich execution ex	s 14 stage	es)					
Voltage detector On-chip debug fund	ction	 Interr Interr Interr Interr Interr Interr Powe Powe Rising Fallin Provide 	nal reset nal reset nal reset nal reset nal reset nal reset nal reset nal reset nal reset er-on-reser down- g edge: g edge d	by watch by power by volta by illega by RAM by illega set: 1 reset: 1	er-on-res ge detect al instruct parity e al-memon .51 V (T .50 V (T .67 V to .63 V to	set stor return execution exec	s 14 stage	es)					
Voltage detector On-chip debug fund	ction	 Interr Interr Interr Interr Interr Interr Interr Powe Powe Rising Fallin Provide V_{DD} = 1 V_{DD} = 2. 	nal reset nal reset nal reset nal reset nal reset nal reset nal reset nal reset nal reset er-on-reser er-down- g edge g edge d .6 to 5.5	by watch by power by volta by illegate by RAM by illegate by illeg	er-on-res ge detect al instruct parity e al-memor .51 V (T .50 V (T .63 V to .63 V to	set stor rich execution ex	s 14 stage 14 stage	es)	applica	tions)			

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (5/5)

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Іинт	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVDDO	Vi = EV _{DD0}			1	μΑ
	ILIH2	P20 to P27, P1 <u>37,</u> P150 to P156, RESET	$V_{I} = V_{DD}$				1	μΑ
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μΑ
				In resonator connection			10	μΑ
Input leakage current, low	lut1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	V _I = EV _{SS0}				-1	μΑ
	ILIL2	P20 to P27, P137, P150 to P156, RESET	Vı = Vss				-1	μΑ
	Ішз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vı = Vss	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
On-chip pll-up resistance	R∪	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vı = EVsso	, In input port	10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz

 $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 16~MHz

LS (low-speed main) mode: 1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fih: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C

- Notes 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVSSD, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz

- **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C

2.4 AC Characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Items	Symbol		Conditions	·	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main	HS (high-	$2.7V\!\leq\!V_{DD}\!\leq\!5.5V$	0.03125		1	μS
instruction execution time)		system clock (fmain)	speed main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
		operation	LS (low-speed main) mode	$1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.125		1	μS
			LV (low- voltage main) mode	1.6 V ≤ V _{DD} ≤ 5.5 V	0.25		1	μS
		Subsystem of	clock (fsuв)	1.8 V ≤ V _{DD} ≤ 5.5 V	28.5	30.5	31.3	μS
		operation						
		In the self	HS (high-	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.03125		1	μS
		programming mode	speed main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
			LS (low-speed main) mode	$1.8 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.125		1	μS
			LV (low- voltage main) mode	1.8 V ≤ V _{DD} ≤ 5.5 V	0.25		1	μS
External system clock	fex	2.7 V ≤ V _{DD} ≤	≤ 5.5 V		1.0		20.0	MHz
frequency		2.4 V ≤ V _{DD} <			1.0		16.0	MHz
		1.8 V ≤ V _{DD} <	< 2.4 V		1.0		8.0	MHz
		1.6 V ≤ V _{DD} <			1.0		4.0	MHz
	fexs				32		35	kHz
External system clock input	texh, texl	2.7 V ≤ V _{DD} ≤	≤ 5.5 V		24			ns
high-level width, low-level width		2.4 V ≤ V _{DD} <	< 2.7 V		30			ns
		1.8 V ≤ V _{DD} <	< 2.4 V		60			ns
		1.6 V ≤ V _{DD} <	< 1.8 V		120			ns
	texhs, texhs				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтін, tтіL				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	fто	HS (high-spe	eed 4.0 V	≤ EV _{DD0} ≤ 5.5 V			16	MHz
output frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			1.8 V	≤ EV _{DD0} < 2.7 V			4	MHz
			1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
		LS (low-spec	ed 1.8 V	$\leq EV_{DD0} \leq 5.5 V$			4	MHz
		main) mode	1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-volta main) mode	age 1.6 V	\leq EV _{DD0} \leq 5.5 V			2	MHz
PCLBUZ0, PCLBUZ1 output	fpcL	HS (high-spe	eed 4.0 V	$\leq EV_{DD0} \leq 5.5 V$			16	MHz
frequency		main) mode		≤ EV _{DD0} < 4.0 V			8	MHz
				\leq EV _{DD0} $<$ 2.7 V			4	MHz
				≤ EV _{DD0} < 1.8 V			2	MHz
		LS (low-spec		\leq EV _{DD0} \leq 5.5 V			4	MHz
		main) mode	_	≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-volta main) mode		\leq EV _{DD0} \leq 5.5 V \leq EV _{DD0} $<$ 1.8 V			2	MHz MHz
Interrupt input high-level width,	tinth,	INTP0		≤ V _{DD} ≤ 5.5 V	1		=	μS
low-level width	tintl	INTP1 to INT		≤ EV _{DD0} ≤ 5.5 V	1			μS
Karrintanının tianın tarınlarınl	tkr	KR0 to KR7		≤ EV _{DD0} ≤ 5.5 V	250			ns
Key interrupt input low-level					1		1	
Key interrupt input low-level width			1.6 V	≤ EV _{DD0} < 1.8 V	1			μS

(Note and Remark are listed on the next page.)

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	ol Conditions		HS (hig	h-speed Mode	LS (low	r-speed Mode	LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy2	$4.0~V \leq EV_{DD0} \leq 5.5$	20 MHz < fмск	8/fмск				_		ns
Note 5		V	fмcк ≤ 20 MHz	6/fмск		6/ƒмск		6/ƒмск		ns
		2.7 V ≤ EV _{DD0} ≤ 5.5 V	16 MHz < fмск	8/fмск		_		_		ns
			fмcк ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4~V \le EV_{DD0} \le 5.5~V$		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		1.8 V ≤ EV _{DD0} ≤ 5.5 V	6/fмск and 750		6/fмск and 750		6/fмск and 750		ns	
		$1.7~V \le EV_{DD0} \le 5.5~V$		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
		1.6 V ≤ EV _{DD0} ≤ 5.5 V		_		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/low- level width	tkH2,	4.0 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 – 7		tксү2/2 - 7		tксү2/2 - 7		ns
		$2.7~\text{V} \leq \text{EV}_\text{DD0} \leq 5.5~\text{V}$		tксу2/2 — 8		tксу2/2 - 8		tксу2/2 - 8		ns
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 – 18		tксу2/2 - 18		tксу2/2 - 18		ns
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 – 66		tксү2/2 - 66		tксү2/2 - 66		ns
		1.6 V ≤ EV _{DD0} ≤ 5.5	V	_		tkcy2/2 - 66		tkcy2/2 - 66		ns

(Notes, Caution, and Remarks are listed on the next page.)

<R>

(3) I2C fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Cor	Conditions		h-speed Mode	LS (low main)	r-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: fcLk≥ 10 MHz	. 2.7 2 2 2 3 3			_		_		kHz
Setup time of restart condition	tsu:sta	2.7 V ≤ EV _{DD0} ≤ 5.5	2.7 V ≤ EV _{DD0} ≤ 5.5 V			_	_	_	_	μS
Hold time ^{Note 1}	thd:STA	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$	2.7 V ≤ EV _{DD0} ≤ 5.5 V			_		_		μS
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ EV _{DD0} ≤ 5.5	2.7 V ≤ EV _{DD0} ≤ 5.5 V			_		_		μS
Hold time when SCLA0 = "H"	tніgн	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	0.26		_		_		μS
Data setup time (reception)	tsu:dat	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	50		_		_		μS
Data hold time (transmission) ^{Note 2}	thd:dat	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	0	0.45	45 — –		_	_	μS
Setup time of stop condition	tsu:sto	2.7 V ≤ EV _{DD0} ≤ 5.5	2.7 V ≤ EV _{DD0} ≤ 5.5 V				_	_	_	μs
Bus-free time	tbuf	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	0.5		_	_	_	_	μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: $C_b = 120 \ pF, \ R_b = 1.1 \ k\Omega$

IICA serial transfer timing

Remark n = 0, 1

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}. 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}. \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (4/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -3.0 mA	EV _{DD0} – 0.7			V
		to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to	$\label{eq:loss_problem} \begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$	EV _{DD0} – 0.6			V
		P117, P120, P125 to P127, P130, P140 to P147	$2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OH1} = -1.5~mA$	EV _{DD0} – 0.5			V
	V _{OH2}	P20 to P27, P150 to P156	2.4 V \leq V _{DD} \leq 5.5 V, I _{OH2} = $-100~\mu$ A	V _{DD} – 0.5			V
Output voltage, low	V _{OL1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 8.5~mA$			0.7	V
		to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 3.0~mA$			0.6	V
			$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$			0.4	V
			$2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 0.6~mA$			0.4	V
	V _{OL2}	P20 to P27, P150 to P156	2.4 V \leq V _{DD} \leq 5.5 V, I _{DL2} = 400 μ A			0.4	V
	Vоьз	P60 to P63	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 15.0~mA$			2.0	V
			$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 5.0~mA$			0.4	V
			$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 3.0~mA$			0.4	V
			$2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 2.0~mA$			0.4	V

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (Ta = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current	I _{DD1}	Operating mode	HS (high- speed main)	fih = 32 MHz ^{Note 3}	Basic operatio	V _{DD} = 5.0 V		2.1		mA
Note 1		mode	mode Note 5		n	V _{DD} = 3.0 V		2.1		mA
					Normal	V _{DD} = 5.0 V		4.6	7.5	mA
				operatio n	V _{DD} = 3.0 V		4.6	7.5	mA	
				fin = 24 MHz Note 3	Normal	V _{DD} = 5.0 V		3.7	5.8	mA
					operatio n	V _{DD} = 3.0 V		3.7	5.8	mA
				fih = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.7	4.2	mA
					operatio n	V _{DD} = 3.0 V		2.7	4.2	mA
		sr	HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.9	mA
	speed main) mode Note 5	$V_{DD} = 5.0 \text{ V}$	operatio n	Resonator connection		3.2	5.0	mA		
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.9	mA
				$V_{DD} = 3.0 \text{ V}$	operatio n	Resonator connection		3.2	5.0	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	2.9	mA
			$V_{DD} = 5.0 \text{ V}$	operatio n	Resonator connection		1.9	2.9	mA	
			Subsystem	$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.9	mA
				$V_{DD} = 3.0 \text{ V}$	operatio n	Resonator connection		1.9	2.9	mA
				fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μΑ
			clock operation	Note 4 $T_A = -40^{\circ}C$	operatio n	Resonator connection		4.2	5.0	μΑ
				fsub = 32.768 kHz	Normal	Square wave input		4.1	4.9	μΑ
				T _A = +25°C	operatio n	Resonator connection		4.2	5.0	μΑ
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	5.5	μΑ
				Note 4 $T_A = +50^{\circ}C$	operatio n	Resonator connection		4.3	5.6	μΑ
				fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μΑ
				Note 4 $T_A = +70^{\circ}C$	operatio n	Resonator connection		4.4	6.4	μА
				fsuB = 32.768 kHz	Normal	Square wave input		4.6	7.7	μΑ
			Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		4.7	7.8	μΑ	
				fsus = 32.768 kHz	Normal	Square wave input		6.9	19.7	μΑ
		Note 4 $T_{A} = +105^{\circ}C$	operation	Resonator connection		7.0	19.8	μΑ		

(Notes and Remarks are listed on the next page.)

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (Ta = -40 to $+105^{\circ}$ C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V) (2/2)

Parameter	Symbol		Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD2}	HALT	\ 0	fih = 32 MHz Note 4	V _{DD} = 5.0 V		0.62	3.40	mA
Current Note 1	Note 2	mode			V _{DD} = 3.0 V		0.62	3.40	mA
			mode	fih = 24 MHz Note 4	V _{DD} = 5.0 V		0.50	2.70	mA
					V _{DD} = 3.0 V		0.50	2.70	mA
				fih = 16 MHz Note 4	V _{DD} = 5.0 V		0.44	1.90	mA
					V _{DD} = 3.0 V		0.44	1.90	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.31	2.10	mA
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.48	2.20	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.31	2.10	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	2.20	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.21	1.10	mA
				V _{DD} = 5.0 V	Resonator connection		0.28	1.20	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.21	1.10	mA
				V _{DD} = 3.0 V	Resonator connection		0.28	1.20	mA
		Subsystem clock operation	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μA	
			T _A = -40°C	Resonator connection		0.47	0.80	μΑ	
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μΑ
			T _A = +25°C	Resonator connection		0.53	0.80	μΑ	
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μA
				T _A = +50°C	Resonator connection		0.60	2.49	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.64	4.03	μA
				T _A = +70°C	Resonator connection		0.83	4.22	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μΑ
				T _A = +85°C	Resonator connection		1.28	8.23	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		5.50	41.00	μΑ
			T _A = +105°C	Resonator connection		5.50	41.00	μΑ	
	DD3 ^{Note 6}	STOP	T _A = -40°C	T _A = -40°C			0.19	0.52	μΑ
		mode ^{Note 8}	T _A = +25°C				0.25	0.52	μΑ
			T _A = +50°C	T _A = +50°C			0.32	2.21	μΑ
			T _A = +70°C				0.55	3.94	μΑ
			$T_A = +85^{\circ}C$				1.00	7.95	μΑ
			T _A = +105°C			<u> </u>	5.00	40.00	μΑ

(Notes and Remarks are listed on the next page.)

3.5 Peripheral Functions Characteristics

AC Timing Test Points

3.5.1 Serial array unit

(1) During communication at same potential (UART mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-spee	Unit	
				MIN.	MAX.	
Transfer rate Note 1					fmck/12 Note 2	bps
			Theoretical value of the maximum transfer rate fclk = 32 MHz, fMck = fclk		2.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The following conditions are required for low voltage interface when EVDDO < VDD.

 $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MAX. 1.3 Mbps

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)

2. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13))

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spec	HS (high-speed main) Mode		
				MIN.	MAX.		
SCKp cycle time Note 1	tkcy2	$4.0~V \leq EV_{DD0} \leq 5.5$	24 MHz < fмск	28/fмск		ns	
		V,	20 MHz < fмcк ≤ 24 MHz	24/fмск		ns	
		$2.7 \ V \le V_b \le 4.0 \ V$	8 MHz < fмck ≤ 20 MHz	20/fмск		ns	
			4 MHz < fmck ≤ 8 MHz	16/fмск		ns	
			fмcк ≤ 4 MHz	12/fмск		ns	
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0$	24 MHz < fмск	40/fмск		ns	
		V,	$20~\text{MHz} < \text{fmck} \le 24~\text{MHz}$	32/fмск		ns	
		$2.3 \ V \leq V_b \leq 2.7 \ V$	16 MHz < fмcк ≤ 20 MHz	28/fмск		ns	
			8 MHz < fмск ≤ 16 MHz	24/fмск		ns	
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns	
			fмcк ≤ 4 MHz	12/fмск		ns	
		$2.4~V \leq EV_{DD0} < 3.3$	24 MHz < fмск	96/fмск		ns	
		V,	20 MHz < fмcк ≤ 24 MHz	72/fмск		ns	
		$1.6 \ V \le V_b \le 2.0 \ V$	16 MHz < fмcк ≤ 20 MHz	64/fмск		ns	
			8 MHz < fмcк ≤ 16 MHz	52/fмск		ns	
			4 MHz < fмcк ≤ 8 MHz	32/fмск		ns	
			fмcк ≤ 4 MHz	20/fмск		ns	
SCKp high-/low-level width	tкн2, tкL2	$ 4.0 \ V \le EV_{DD0} \le 5.5 \ V, $ $ 2.7 \ V \le V_b \le 4.0 \ V $		tkcy2/2 - 24		ns	
		$2.7 \ V \le EV_{DD0} < 4.$ $2.3 \ V \le V_b \le 2.7 \ V$		tkcy2/2 - 36		ns	
				tkcy2/2 - 100		ns	
SIp setup time (to SCKp↑) Note2	tsık2	$ 4.0 \ V \leq EV_{DD0} \leq 5.5 $ $ 2.7 \ V \leq V_b \leq 4.0 \ V $	5 V,	1/fмск + 40		ns	
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		1/fмск + 40		ns	
		$2.4 \ V \le EV_{DD0} < 3.$ $1.6 \ V \le V_b \le 2.0 \ V$	3 V,	1/fмск + 60		ns	
Slp hold time (from SCKp [↑]) Note 3	tksi2			1/fmck + 62		ns	
Delay time from SCKp↓ to SOp output Note 4	tkso2	$4.0~V \leq EV_{DD0} \leq 5.$ $C_b = 30~pF,~R_b = 1$	5 V, 2.7 V \leq V _b \leq 4.0 V, .4 k Ω		2/fмск + 240	ns	
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2$	0 V, 2.3 V \leq V _b \leq 2.7 V, .7 kΩ		2/fмск + 428	ns	
		$2.4 \ V \le EV_{DD0} < 3.$ $C_b = 30 \ pF, \ R_b = 5$	3 V, 1.6 V ≤ V _b ≤ 2.0 V .5 kΩ		2/fмск + 1146	ns	

(Notes, Caution and Remarks are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	HS (high-s	Unit	
			MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$		400 Note 1	kHz
		$\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		400 Note 1	kHz
		$\begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$		100 Note 1	kHz
		$2.7 \text{ V} \leq \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$		100 Note 1	kHz
		$\begin{split} &2.4 \; V \leq \text{EV}_{\text{DDO}} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V, \\ &C_b = 100 \; p\text{F}, \; R_b = 5.5 \; k\Omega \end{split}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLow	$\begin{aligned} 4.0 & \ V \le EV_{DD0} \le 5.5 \ V, \\ 2.7 & \ V \le V_b \le 4.0 \ V, \\ C_b = 50 & \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$	1200		ns
		$\begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1200		ns
		$\begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$	4600		ns
		$\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	4600		ns
		$\begin{split} 2.4 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	4650		ns
Hold time when SCLr = "H"	tніgн	$\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$	620		ns
		$\begin{aligned} 2.7 & \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned}$	500		ns
		$\begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned}$	2700		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$	2400		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DDO}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega$	1830		ns

(${f Notes}$ and ${f Caution}$ are listed on the next page, and ${f Remarks}$ are listed on the page after the next page.)

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

		Reference Voltage								
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = VBGR							
Input channel	Reference voltage (-) = AVREFM	Reference voltage (-) = Vss	Reference voltage (-) = AVREFM							
ANI0 to ANI14	Refer to 3.6.1 (1) .	Refer to 3.6.1 (3) .	Refer to 3.6.1 (4) .							
ANI16 to ANI26	Refer to 3.6.1 (2) .									
Internal reference voltage	Refer to 3.6.1 (1) .		_							
Temperature sensor output										
voltage										

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES					10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI2 to ANI14	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Integral linearity error	ILE	10-bit resolution AVREFP = VDD Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±1.5	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
	Internal reference voltage output (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 4			V	
		Temperature sensor output voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode)			VTMPS25 Note	4	V

(Notes are listed on the next page.)

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

3.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

4. PACKAGE DRAWINGS

4.1 20-pin Products

R5F1006AASP, R5F1006CASP, R5F1006DASP, R5F1006EASP R5F1016AASP, R5F1016CASP, R5F1016DASP, R5F1016EASP R5F1006ADSP, R5F1006CDSP, R5F1006DDSP, R5F1006EDSP R5F1016ADSP, R5F1016CDSP, R5F1016DDSP, R5F1016EDSP R5F1006AGSP, R5F1006CGSP, R5F1006DGSP, R5F1006EGSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP20-0300-0.65	PLSP0020JC-A	S20MC-65-5A4-3	0.12

© 2012 Renesas Electronics Corporation. All rights reserved.

4.11 64-pin Products

R5F100LCAFA, R5F100LDAFA, R5F100LEAFA, R5F100LFAFA, R5F100LGAFA, R5F100LHAFA, R5F100LJAFA, R5F100LKAFA, R5F100LLAFA

R5F101LCAFA, R5F101LDAFA, R5F101LEAFA, R5F101LFAFA, R5F101LGAFA, R5F101LHAFA, R5F101LJAFA, R5F101LKAFA, R5F101LLAFA

R5F100LCDFA, R5F100LDDFA, R5F100LEDFA, R5F100LFDFA, R5F100LGDFA, R5F100LHDFA, R5F100LJDFA, R5F100LKDFA, R5F100LLDFA

R5F101LCDFA, R5F101LDDFA, R5F101LEDFA, R5F101LFDFA, R5F101LGDFA, R5F101LHDFA, R5F101LJDFA, R5F101LKDFA, R5F101LLDFA

Previous Code

MASS (TYP.) [g]

R5F100LCGFA, R5F100LDGFA, R5F100LEGFA, R5F100LFGFA, R5F100LGGFA, R5F100LHGFA, R5F100LJGFA

RENESAS Code

JEITA Package Code

©2012 Renesas Electronics Corporation. All rights reserved.