

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Ξ·ΧΕΙ

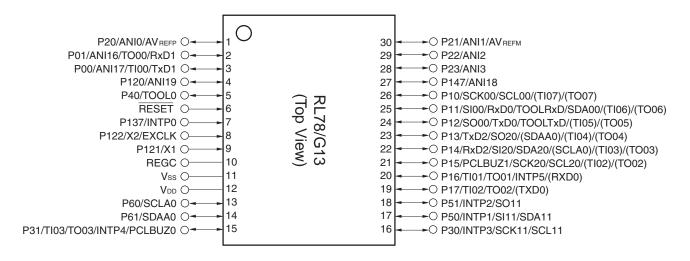
Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100leafb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1.	List of Ordering Part Nu	umbers
------------	--------------------------	--------

				(12/12)
Pin count	Package	Data flash	Fields of Application ^{Note}	Ordering Part Number
128 pins	128-pin plastic LFQFP (14 × 20 mm, 0.5 mm pitch)	Mounted	A	R5F100SHAFB#V0, R5F100SJAFB#V0, R5F100SKAFB#V0, R5F100SLAFB#V0 R5F100SHAFB#X0, R5F100SJAFB#X0, R5F100SKAFB#X0, R5F100SLAFB#X0 R5F100SHDFB#V0, R5F100SJDFB#V0, R5F100SKDFB#V0, R5F100SLDFB#V0 R5F100SKDFB#X0, R5F100SJDFB#X0, R5F100SKDFB#X0, R5F100SLDFB#X0
		Not mounted	D	R5F101SHAFB#V0, R5F101SJAFB#V0, R5F101SKAFB#V0, R5F101SLAFB#V0 R5F101SHAFB#X0, R5F101SJAFB#X0, R5F101SKAFB#X0, R5F101SLAFB#X0 R5F101SHDFB#V0, R5F101SJDFB#V0, R5F101SKDFB#V0, R5F101SLDFB#V0, R5F101SHDFB#X0, R5F101SLDFB#X0, R5F101SKDFB#X0, R5F101SLDFB#X0

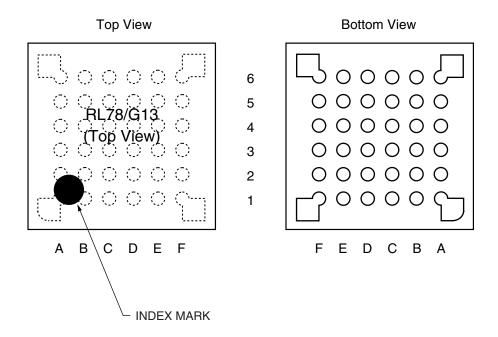

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.4 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

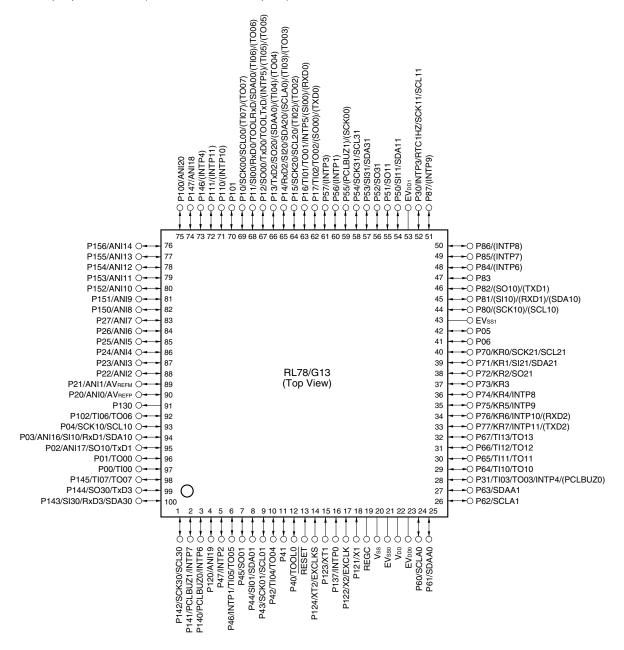
Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.6 36-pin products

• 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)

	А	В	С	D	E	F	_
	P60/SCLA0	Vdd	P121/X1	P122/X2/EXCLK	P137/INTP0	P40/TOOL0	
6							6
	P62	P61/SDAA0	Vss	REGC	RESET	P120/ANI19	
5							5
4	P72/SO21	P71/SI21/ SDA21	P14/RxD2/SI20/ SDA20/(SCLA0) /(TI03)/(TO03)	P31/TI03/TO03/ INTP4/ PCLBUZ0	P00/TI00/TxD1	P01/TO00/RxD1	4
3	P50/INTP1/ SI11/SDA11	P70/SCK21/ SCL21	P15/PCLBUZ1/ SCK20/SCL20/ (TI02)/(TO02)	P22/ANI2	P20/ANI0/ AVrefp	P21/ANI1/ AVREFM	3
2	P30/INTP3/ SCK11/SCL11	P16/TI01/TO01/ INTP5/(RxD0)	P12/SO00/ TxD0/TOOLTxD /(TI05)/(TO05)	P11/SI00/RxD0/ TOOLRxD/ SDA00/(TI06)/ (TO06)	P24/ANI4	P23/ANI3	2
1	P51/INTP2/ SO11	P17/TI02/TO02/ (TxD0)	P13/TxD2/ SO20/(SDAA0)/ (TI04)/(TO04)	P10/SCK00/ SCL00/(TI07)/ (TO07)	P147/ANI18	P25/ANI5	1
	А	В	С	D	E	F	

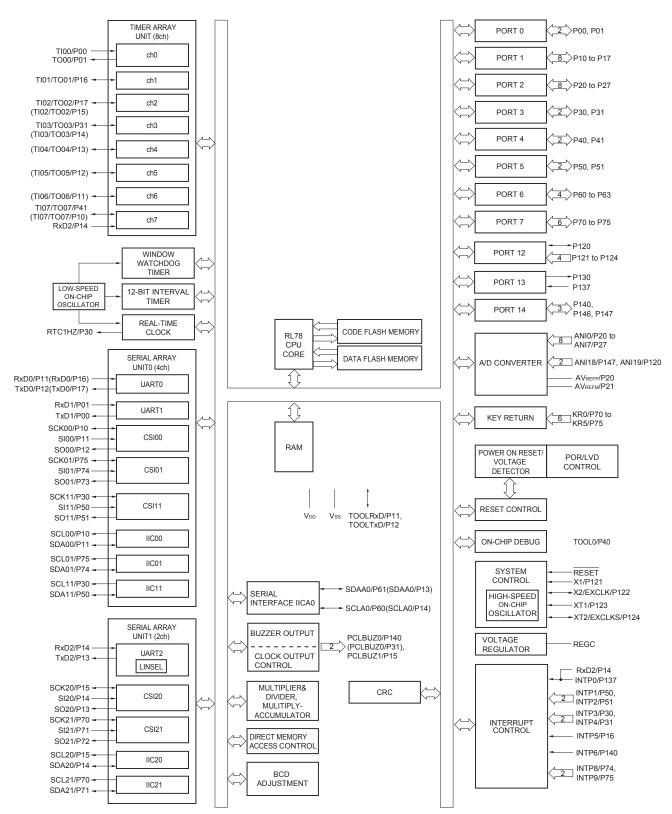
Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.13 100-pin products

• 100-pin plastic LQFP (14 × 14 mm, 0.5 mm pitch)



Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin.

- 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1).
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD}, EV_{DD0} and EV_{DD1} pins and connect the V_{SS}, EV_{SS0} and EV_{SS1} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.9 48-pin products

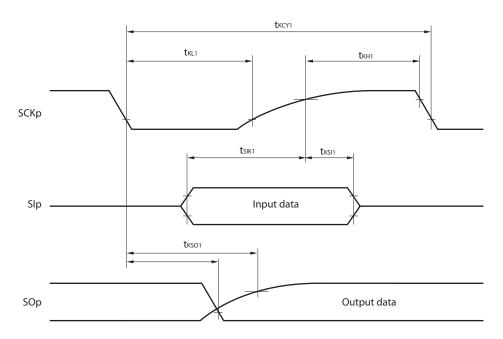
Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.

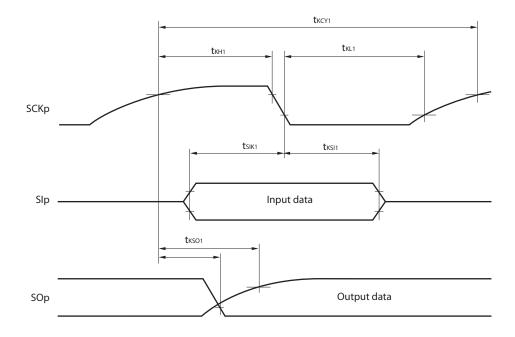
(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit	
Supply	IDD1	Operating	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 3}$	Basic	$V_{DD} = 5.0 V$		2.3		mA	
Current		mode	speed main) mode ^{Note 5}		operation	$V_{\text{DD}} = 3.0 \text{ V}$		2.3		mA	
			mode		Normal	V _{DD} = 5.0 V		5.2	8.5	mA	
				operation	V _{DD} = 3.0 V		5.2	8.5	mA		
			fiH = 24 MHz ^{Note 3} Normal	V _{DD} = 5.0 V		4.1	6.6	mA			
					operation	V _{DD} = 3.0 V		4.1	6.6	mA	
				fin = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.0	4.7	mA	
					operation	V _{DD} = 3.0 V		3.0	4.7	mA	
			LS (low-	f _{IH} = 8 MHz ^{№te 3}	Normal	V _{DD} = 3.0 V		1.3	2.1	mA	
		speed main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.3	2.1	mA		
			LV (low-	$f_{IH}=4\ MHz^{Note3}$	Normal	$V_{DD} = 3.0 V$		1.3	1.8	mA	
			voltage main) mode		operation	V _{DD} = 2.0 V		1.3	1.8	mA	
		HS (high-	f _{MX} = 20 MHz ^{Note 2} ,		Square wave input		3.4	5.5	mA		
		speed main)	V _{DD} = 5.0 V		Resonator connection		3.6	5.7	mA		
			mode Note 5	$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal	Square wave input		3.4	5.5	mA	
			$V_{DD} = 3.0 V$	operation	Resonator connection		3.6	5.7	mA		
			$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.1	3.2	mA		
				$V_{DD} = 5.0 V$	operation	Resonator connection		2.1	3.2	mA	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.1	3.2	mA	
				$V_{DD} = 3.0 V$	operation	Resonator connection		2.1	3.2	mA	
			LS (low-	$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.2	2.0	mA	
			speed main) mode ^{Note 5}	$V_{DD} = 3.0 V$	operation	Resonator connection		1.2	2.0	mA	
			mode	$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.2	2.0	mA	
				$V_{DD} = 2.0 V$	operation	Resonator connection		1.2	2.0	mA	
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.8	5.9	μA	
			clock operation	Note 4 $T_A = -40^{\circ}C$	operation	Resonator connection		4.9	6.0	μA	
				fsuв = 32.768 kHz	Normal	Square wave input		4.9	5.9	μA	
				Note 4 $T_A = +25^{\circ}C$	operation	Resonator connection		5.0	6.0	μA	
				fsuв = 32.768 kHz	Normal	Square wave input		5.0	7.6	μA	
				Note 4	operation	Resonator connection		5.1	7.7	μA	
				T _A = +50°C fsub = 32.768 kHz	Normal	Square wave input		5.2	9.3	μA	
				N	Note 4	operation	Resonator connection		5.3	9.3 9.4	μA
					$T_A = +70^{\circ}C$	Nama	Company to the state of		F 7	10.0	
		fsub = 32.768 kHz Note 4	Normal operation	Square wave input Resonator connection		5.7 5.8	13.3 13.4	μA μA			
				T _A = +85°C	.	TESUTIALUI CUTITIECUUT		5.0	13.4	μΑ	

(Notes and Remarks are listed on the next page.)


- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V @\,1~\text{MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$


- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V~$ @ 1 MHz to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

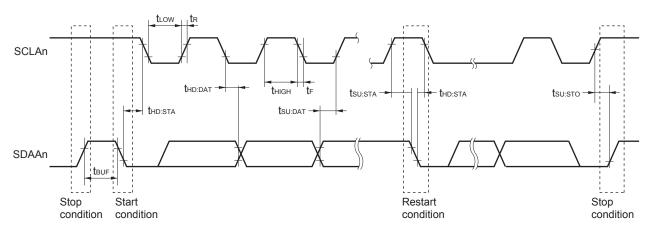
Parameter	Symbol		<u>≤ Vod ≤ 5.5 V, Vss =</u> nditions	HS (speed	high- main) de	LS (low			-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ^{Note 1}		$4.0 V \le EV_{DD0} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$	24 MHz < fмск	14/ fмск				_		ns
			20 MHz < fмск ≤ 24 MHz	12/ fмск		_		—		ns
			8 MHz < fмск ≤ 20 MHz	10/ fмск						ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/ fмск				ns
			fмск ≤4 MHz	6/f мск		10/ fмск		10/ fмск		ns
		2.7 V ≤ EV _{DD0} < 4.0 V, 2.3 V ≤ V _b ≤ 2.7 V	24 MHz < fмск	20/ fмск				_		ns
			20 MHz < fмск ≤ 24 MHz	16/ fмск				—		ns
			16 MHz < fмск ≤ 20 MHz	14/ fмск				_		ns
			8 MHz < fмск ≤ 16 MHz	12/ fмск						ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/ fмск				ns
			fмск ≤4 MHz	6/fмск		10/ fмск		10/ fмск		ns
		$\begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}} \end{split}$	24 MHz < fмск	48/ fмск		_		—		ns
		2	20 MHz < fмск ≤ 24 MHz	36/ fмск		_				ns
			16 MHz < fмск ≤ 20 MHz	32/ fмск		—		_		ns
			8 MHz < fмск ≤ 16 MHz	26/ fмск		_		_		ns
		2	4 MHz < fмск ≤ 8 MHz	16/ fмск		16/ fмск		_		ns
			fмск ≤4 MHz	10/ fмск		10/ fмск		10/ fмск		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(3) I²C fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD0} = EV_{DD1} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS0} = EV_{SS1} = 0 \text{ V})$

Parameter	Symbol	Cor	Conditions		h-speed Mode	LS (low main)	/-speed Mode	,	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: fc∟κ≥ 10 MHz	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	1000		_	_	_	kHz
Setup time of restart condition	tsu:sta	$2.7 V \leq EV_{DD0} \leq 5.8$	5 V	0.26				_	-	μS
Hold time ^{Note 1}	thd:sta	$2.7 V \le EV_{DD0} \le 5.8$	5 V	0.26			_	_	_	μS
Hold time when SCLA0 = "L"	t∟ow	$2.7 V \leq EV_{DD0} \leq 5.8$	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$			_	_	_	-	μS
Hold time when SCLA0 = "H"	tніgн	$2.7 V \leq EV_{DD0} \leq 5.5$	5 V	0.26		_	_	_	-	μS
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.9$	5 V	50		_	_	_	_	μS
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.9$	5 V	0	0.45	_	_	_	_	μS
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.9$	5 V	0.26		_	_	_	_	μS
Bus-free time	tвиғ	$2.7 V \le EV_{DD0} \le 5.8$	5 V	0.5		_	_	-	_	μS


<R>

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: $C_b = 120 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

Remark n = 0, 1

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \leq 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{DD}}, \text{ V}_{\text{DD}} = 0 \text{ V}, \text{ Reference voltage (+)} = 0 \text{ V}, Reference voltage (+)$
Reference voltage (-) = Vss)

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES		8		10	bit	
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$		1.2	±7.0	LSB
			$\frac{1.6~V \leq V\text{DD} \leq 5.5~V}{_{\text{Note 3}}}$		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
			$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
		ANI16 to ANI26	$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V \text{DD} \leq 5.5~V$	57		95	μs
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μs
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±0.60	%FSR
			$\begin{array}{l} 1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} \\ _{\text{Note 3}} \end{array}$			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±0.60	%FSR
			$\frac{1.6~V \leq V\text{DD} \leq 5.5~V}{_{\text{Note 3}}}$			±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±4.0	LSB
			$1.6~V \leq V \text{DD} \leq 5.5~V$ Note 3			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
			$\frac{1.6~V \leq V\text{DD} \leq 5.5~V}{_{\text{Note 3}}}$			±2.5	LSB
Analog input voltage	VAIN	ANI0 to ANI14		0		Vdd	V
		ANI16 to ANI26		0		EVDD0	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high	gh-speed main) mode)		VBGR Note 4		V
		Temperature sensor output (2.4 V \leq V _{DD} \leq 5.5 V, HS (high	•		VTMPS25 Note 4	l	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVDDO				1	μA
	Ілна	P20 to P27, P137, P150 to P156, RESET	$V_{I} = V_{DD}$				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	1.1.1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVsso				-1	μA
	Ilile	P20 to P27, P137, P150 to P156, RESET	VI = Vss				-1	μA
	Ililis	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVsso	, In input port	10	20	100	kΩ

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or Vss, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 32 MHz

2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V@1 MHz to 16 MHz

- 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. file: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_{\text{A}}=25^{\circ}\text{C}$

Parameter	Symbol	Conditions		HS (high-speed main) Mode	
			MIN.	MAX.	
SCLr clock frequency	fscL	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$		400 Note1	kHz
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$		100 Note1	kHz
		$C_b = 100 \text{ pF}, \text{ R}_b = 3 \text{k}\Omega$			
Hold time when SCLr = "L"	t∟ow	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	1200		ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Hold time when SCLr = "H"	tніgн	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	1200		ns
		$C_b = 50 \text{ pF}, \text{R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Data setup time (reception)	tsu:dat	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	1/fмск + 220		ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$	Note2		
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V,$	1/fмск + 580		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	Note2		
Data hold time (transmission)	thd:dat	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	0	770	ns
		C_b = 50 pF, R_b = 2.7 k Ω			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$	0	1420	ns
		$C_b = 100 \text{ pF}, \text{ R}_b = 3 \text{k}\Omega$			

(4) During communication at same potential (simplified l²C mode) (T_A = -40 to +105°C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V)

- Notes 1. The value must also be equal to or less than $f_{MCK}/4$.
 - **2.** Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the normal input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(Remarks are listed on the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCK	p internal clock
output) (1/3)	

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tксүı	$\label{eq:kcy1} \begin{array}{l} t_{\text{KCY1}} \geq 4/f_{\text{CLK}} & 4.0 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \ 2.7 \ \text{V} \leq \text{V}_{\text{b}} \leq 4.0 \\ \text{V}, \\ & \text{C}_{\text{b}} = 30 \ \text{pF}, \ \text{R}_{\text{b}} = 1.4 \ \text{k}\Omega \end{array}$		600		ns
			$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \\ V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1000		ns
			$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \\ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	2300		ns
SCKp high-level width	tкнı	$\begin{array}{l} 1.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$		tксү1/2 – 150		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, \text{ R}_{b} = 2.7 \text{ k}\Omega$		tkcy1/2 - 340		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega$		tксү1/2 – 916		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD0}} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; p\text{F}, \; R_b = 1.4 \; k\Omega \end{array}$		tксү1/2 – 24		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 – 36		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 30 \text{ pF}, \text{ F}$	$_{0}$ < 3.3 V, 1.6 V \leq V $_{b}$ \leq 2.0 V, R_{b} = 5.5 k Ω	tkcy1/2 - 100		ns

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed two pages after the next page.)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

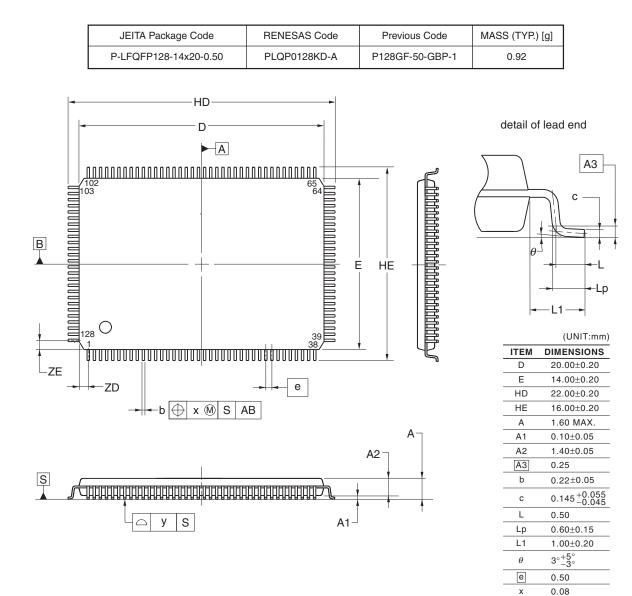
Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	L
SCKp cycle time Note 1	t КСҮ2	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ \text{V}, \end{array}$	24 MHz < fмск	28/f мск		ns
			$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	24/f мск		ns
		$2.7 \: V {\le} V_b {\le} 4.0 \: V$	$8 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	20/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск \leq 4 MHz	12/f мск		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \\ V, \end{array}$	24 MHz < fмск	40/f мск		ns
			$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	32/f мск		ns
		$2.3V{\leq}V_b{\leq}2.7V$	$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	28/f мск		ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	24/fмск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск \leq 4 MHz	12/f мск		ns
		$2.4~V \leq EV_{\text{DD0}} < 3.3$	24 MHz < fмск	96/f мск		ns
		V,	$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	72/f мск		ns
		$1.6 V {\le} V_b {\le} 2.0 V$	$16 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	64/f мск		ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	52/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	32/f мск		ns
			fмск \leq 4 MHz	20/fмск		ns
SCKp high-/low-level width	tкн2, tк∟2	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5. \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$		tkcy2/2 - 24		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4. \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V \end{array}$		tkcy2/2 - 36		ns
		$\begin{array}{l} 2.4 \; V \leq EV_{\text{DD0}} < 3. \\ 1.6 \; V \leq V_{\text{b}} \leq 2.0 \; V \end{array}$		tkcy2/2 - 100		ns
SIp setup time (to SCKp↑) ^{Note2}	tsik2	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD0}} \leq 5. \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$	$\label{eq:states} \begin{array}{l} 0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 7 \ V \leq V_b \leq 4.0 \ V \end{array}$			ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		1/fмск + 40		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{№te 3}	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso2	$\label{eq:linear} \begin{array}{l} 4.0 \; V \leq EV_{\text{DD0}} \leq 5. \\ C_{\text{b}} = 30 \; pF, \; R_{\text{b}} = 1 \end{array}$	5 V, 2.7 V \leq Vb \leq 4.0 V, .4 k\Omega		2/fмск + 240	ns
		$\label{eq:linear} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4. \\ C_{\text{b}} = 30 \ p\text{F}, \ R_{\text{b}} = 2 \end{array}$	0 V, 2.3 V \leq V _b \leq 2.7 V, 2.7 kΩ		2/fмск + 428	ns
			3 V, 1.6 V \leq Vb \leq 2.0 V		2/fмск + 1146	ns

(Notes, Caution and Remarks are listed on the next page.)

(2) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26

 $(T_{A} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V},$ Reference voltage (+) = AV_{\text{REFP}}, Reference voltage (-) = AV_{\text{REFM}} = 0 \text{ V})

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	$\begin{array}{l} 10\text{-bit resolution} \\ EV_{DD0} \leq AV_{\text{REFP}} = V_{\text{DD}} ^{\text{Notes 3, 4}} \end{array}$	$\begin{array}{l} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$		1.2	±5.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
		Target pin : ANI16 to ANI26	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	$\begin{array}{l} \mbox{10-bit resolution} \\ \mbox{EVDD0} \leq AV_{\text{REFP}} = V_{\text{DD}} ^{\text{Notes 3, 4}} \end{array}$	$\begin{array}{l} 2.4 \hspace{0.1 cm} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Efs	$\begin{array}{l} \text{10-bit resolution} \\ \text{EVDD0} \leq AV_{\text{REFP}} = V_{\text{DD}} \\ \end{array} \end{array}$	$\begin{array}{l} 2.4 \ V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution $EVDD0 \leq AV_{REFP} = V_{DD}^{Notes 3, 4}$	$\begin{array}{l} 2.4 \ V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±3.5	LSB
Differential linearity error	DLE	$\begin{array}{l} 10\text{-bit resolution} \\ EV \text{DD0} \leq AV_{\text{REFP}} = V_{\text{DD}} ^{\text{Notes 3, 4}} \end{array}$	$\begin{array}{l} 2.4 \ V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI26		0		AVREFP and EVDD0	V


Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 When AV_{REFP} < EV_{DD0} ≤ V_{DD}, the MAX. values are as follows.
- 4. When AVREFP < EVDDD S VDD, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

4.14 128-pin Products

R5F100SHAFB, R5F100SJAFB, R5F100SKAFB, R5F100SLAFB R5F101SHAFB, R5F101SJAFB, R5F101SKAFB, R5F101SLAFB R5F100SHDFB, R5F100SJDFB, R5F100SKDFB, R5F100SLDFB R5F101SHDFB, R5F101SJDFB, R5F101SKDFB, R5F101SLDFB

©2012 Renesas Electronics Corporation. All rights reserved.

х

y ZD

ZE

0.08

0.75

0.75

Revision History

RL78/G13 Data Sheet

		Description			
Rev.	Date	Page	Summary		
1.00	Feb 29, 2012	-	First Edition issued		
2.00	Oct 12, 2012	7	Figure 1-1. Part Number, Memory Size, and Package of RL78/G13: Pin count corrected.		
		25	1.4 Pin Identification: Description of pins INTP0 to INTP11 corrected.		
		40, 42, 44	1.6 Outline of Functions: Descriptions of Subsystem clock, Low-speed on-chip oscillator, and General-purpose register corrected.		
		41, 43, 45	1.6 Outline of Functions: Lists of Descriptions changed.		
		59, 63, 67	Descriptions of Note 8 in a table corrected.		
		68	(4) Common to RL78/G13 all products: Descriptions of Notes corrected.		
		69	2.4 AC Characteristics: Symbol of external system clock frequency corrected.		
		96 to 98	2.6.1 A/D converter characteristics: Notes of overall error corrected.		
		100	2.6.2 Temperature sensor characteristics: Parameter name corrected.		
		104	2.8 Flash Memory Programming Characteristics: Incorrect descriptions corrected.		
		116	3.10 52-pin products: Package drawings of 52-pin products corrected.		
		120	3.12 80-pin products: Package drawings of 80-pin products corrected.		
3.00	Aug 02, 2013	1	Modification of 1.1 Features		
		3	Modification of 1.2 List of Part Numbers		
		4 to 15	Modification of Table 1-1. List of Ordering Part Numbers, note, and caution		
		16 to 32	Modification of package type in 1.3.1 to 1.3.14		
		33	Modification of description in 1.4 Pin Identification		
		48, 50, 52	Modification of caution, table, and note in 1.6 Outline of Functions		
		55	Modification of description in table of Absolute Maximum Ratings ($T_A = 25^{\circ}C$)		
		57	Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics		
		57	Modification of table in 2.2.2 On-chip oscillator characteristics		
		58	Modification of note 3 of table (1/5) in 2.3.1 Pin characteristics		
		59	Modification of note 3 of table (2/5) in 2.3.1 Pin characteristics		
		63	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products		
		64	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products		
		65	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products		
		66	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64- pin products		
		68	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products		
		70	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products		
		72	Modification of notes 1 and 4 in (3) Flash ROM: 384 to 512 KB of 44- to 100- pin products		
		74	Modification of notes 1, 5, and 6 in (3) Flash ROM: 384 to 512 KB of 44- to 100-pin products		
		75	Modification of (4) Peripheral Functions (Common to all products)		
		77	Modification of table in 2.4 AC Characteristics		
		78, 79	Addition of Minimum Instruction Execution Time during Main System Clock Operation		
		80	Modification of figures of AC Timing Test Points and External System Clock Timing		