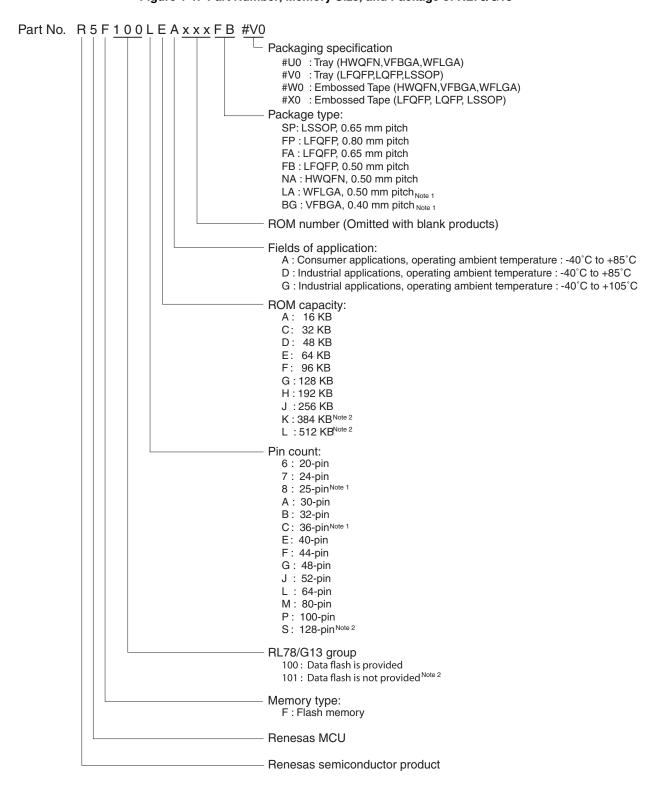


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

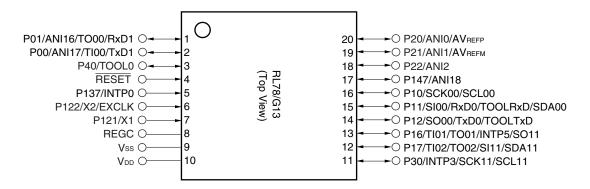

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100lgafa-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package of RL78/G13

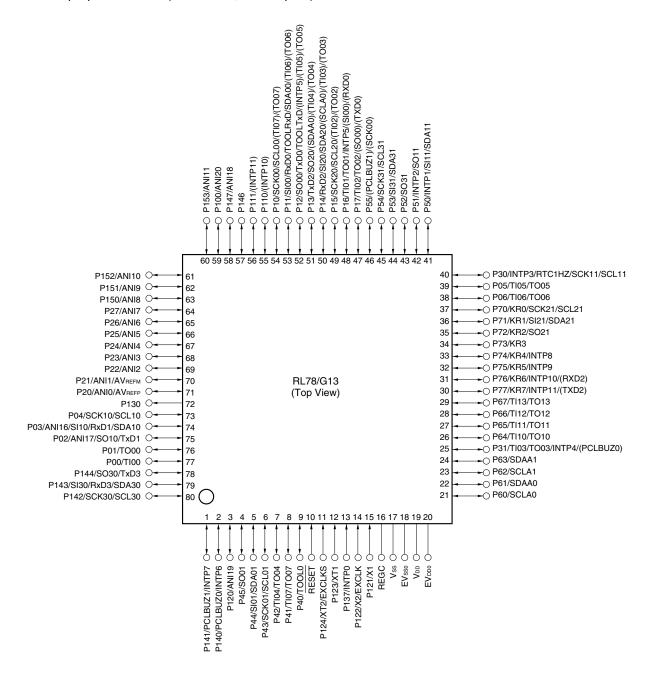

Notes 1. Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}$ C)", and "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)"

2. Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}$ C)", and "D: Industrial applications ($T_A = -40$ to $+85^{\circ}$ C)"

1.3 Pin Configuration (Top View)

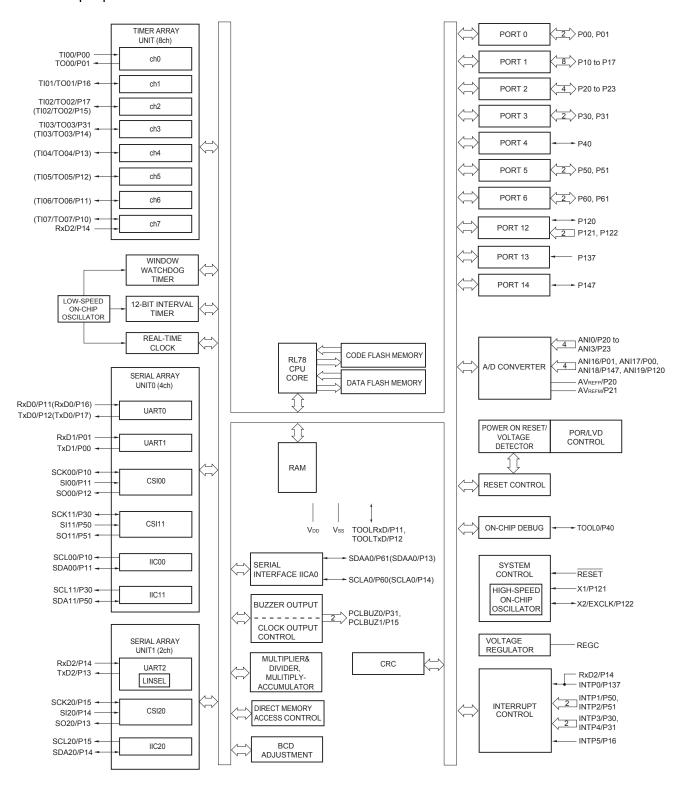
1.3.1 20-pin products

• 20-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

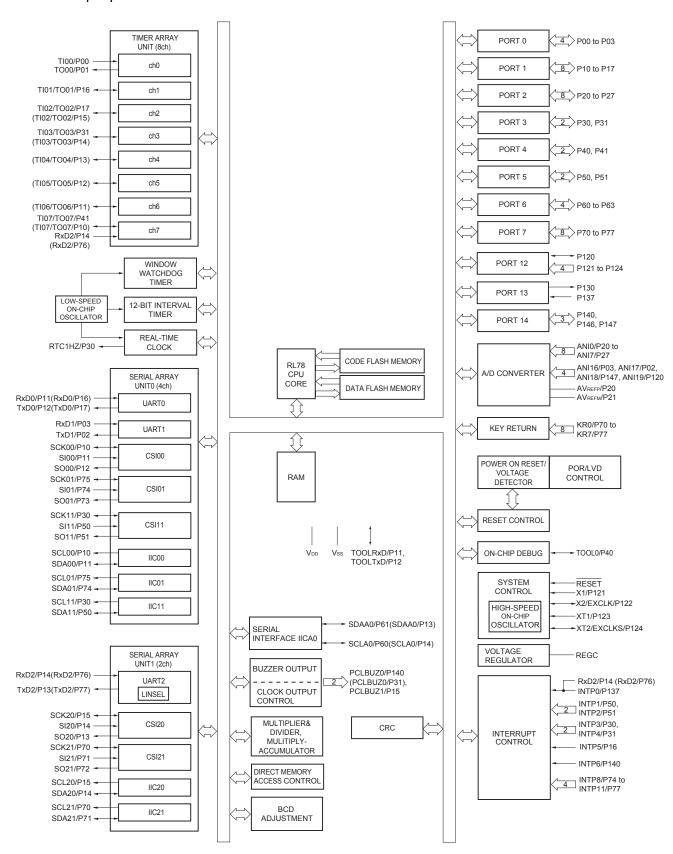


Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark For pin identification, see 1.4 Pin Identification.


1.3.12 80-pin products

- 80-pin plastic LQFP (14 × 14 mm, 0.65 mm pitch)
- 80-pin plastic LFQFP (12 x 12 mm, 0.5 mm pitch)


- Cautions 1. Make EVsso pin the same potential as Vss pin.
 - 2. Make VDD pin the potential that is higher than EVDDO pin.
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the Vss and EV_{SS0} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.

1.5.4 30-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.10 52-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($T_A = 25$ °C) (1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.5 to +6.5	V
	EV _{DD0} , EV _{DD1}	EV _{DD0} = EV _{DD1}	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	Vıı	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		V
	V _{I2}	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	Vo ₁	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147		V
	V _{O2}	P20 to P27, P150 to P156	-0.3 to V _{DD} +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI26	-0.3 to EV _{DD0} +0.3 and -0.3 to AV _{REF} (+) +0.3 ^{Notes 2,3}	V
	V _{Al2}	ANI0 to ANI14	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF} (+) +0.3 Notes 2, 3	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4~V \leq V_{DD} < 2.7~V$	1.0		16.0	MHz
		$1.8~V \leq V_{DD} < 2.4~V$	1.0		8.0	MHz
		$1.6~V \leq V_{DD} < 1.8~V$	1.0		4.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator.

2.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		32	MHz
High-speed on-chip oscillator		–20 to +85 °C	$1.8~V \leq V_{DD} \leq 5.5~V$	-1.0		+1.0	%
clock frequency accuracy			$1.6~V \leq V_{DD} < 1.8~V$	-5.0		+5.0	%
		–40 to −20 °C	$1.8~V \leq V_{DD} \leq 5.5~V$	-1.5		+1.5	%
			$1.6~V \leq V_{DD} < 1.8~V$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fıL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (4/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -10.0 mA	EV _{DD0} –			V
		to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -3.0 mA	EV _{DD0} – 0.7			V
		P117, P120, P125 to P127, P130, P140 to P147	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -2.0 mA	EV _{DD0} – 0.6			V
			$\label{eq:loss_loss} \begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$	EV _{DD0} – 0.5			٧
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ $I_{\text{OH1}} = -1.0 \text{ mA}$	EV _{DD0} – 0.5			V
	V _{OH2}	P20 to P27, P150 to P156	1.6 V \leq V _{DD} \leq 5.5 V, I _{OH2} = $-100~\mu$ A	V _{DD} - 0.5			V
Output voltage, low	V _{OL1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 20~mA$			1.3	٧
		to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$\label{eq:loss_state} \begin{cases} 4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ \\ \text{Iol1} = 8.5 \text{ mA} \end{cases}$			0.7	>
			$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$ $I_{\text{OL1}} = 3.0~\text{mA}$			0.6	>
			$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$			0.4	V
			$\label{eq:local_decomposition} \begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ \\ I_{\text{OL1}} = 0.6 \ mA \end{array}$			0.4	V
			$1.6~V \leq EV_{DD0} < 5.5~V,$ $I_{OL1} = 0.3~mA$			0.4	V
	V _{OL2}	P20 to P27, P150 to P156	1.6 V \leq VDD \leq 5.5 V, lol2 = 400 μ A			0.4	V
	Vol3	P60 to P63	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $I_{\text{OL3}} = 15.0 \text{ mA}$			2.0	٧
			$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 5.0~mA$			0.4	V
			$2.7~\textrm{V} \leq \textrm{EV}_\textrm{DD0} \leq 5.5~\textrm{V},$ $\textrm{Iol3} = 3.0~\textrm{mA}$			0.4	V
			$1.8~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 2.0~mA$			0.4	V
			$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ $\text{Iol3} = 1.0 \text{ mA}$			0.4	V

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2}	HALT	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		0.54	1.63	mA
current	Note 2	mode	speed main) mode Note 7		V _{DD} = 3.0 V		0.54	1.63	mA
				$f_{IH} = 24 \text{ MHz}^{\text{Note 4}}$	V _{DD} = 5.0 V		0.44	1.28	mA
					V _{DD} = 3.0 V		0.44	1.28	mA
				fih = 16 MHz Note 4	V _{DD} = 5.0 V		0.40	1.00	mA
					V _{DD} = 3.0 V		0.40	1.00	mA
			LS (low-	fih = 8 MHz Note 4	V _{DD} = 3.0 V		260	530	μА
			speed main) mode Note 7		V _{DD} = 2.0 V		260	530	μА
			LV (low-	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μA
		voltage main) mode		V _{DD} = 2.0 V		420	640	μА	
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.00	mA
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	0.60	mA
				$V_{DD} = 5.0 \text{ V}$	Resonator connection		0.26	0.67	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	0.60	mA
				$V_{DD} = 3.0 \text{ V}$	Resonator connection		0.26	0.67	mA
		LS (low- speed main) mode Note 7	LS (low-	$f_{MX} = 8 MHz^{Note 3}$	Square wave input		95	330	μΑ
			V _{DD} = 3.0 V	Resonator connection		145	380	μΑ	
			$f_{MX} = 8 MHz^{Note 3}$	Square wave input		95	330	μΑ	
				$V_{DD} = 2.0 \text{ V}$	Resonator connection		145	380	μΑ
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μΑ
			clock	T _A = -40°C	Resonator connection		0.44	0.76	μΑ
			operation	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μΑ
				T _A = +25°C	Resonator connection		0.49	0.76	μΑ
				$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		0.37	1.17	μΑ
				T _A = +50°C	Resonator connection		0.56	1.36	μΑ
				$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		0.53	1.97	μΑ
				T _A = +70°C	Resonator connection		0.72	2.16	μA
				$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		0.82	3.37	μΑ
				T _A = +85°C	Resonator connection		1.01	3.56	μΑ
	IDD3 Note 6	STOP	T _A = -40°C				0.18	0.50	μΑ
		mode ^{Note 8}	T _A = +25°C				0.23	0.50	μА
			T _A = +50°C				0.30	1.10	μА
			T _A = +70°C				0.46	1.90	μА
			T _A = +85°C				0.75	3.30	μΑ

(Notes and Remarks are listed on the next page.)

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (high-	fin = 32 MHz Note 4	V _{DD} = 5.0 V		0.62	1.86	mA
Current Note 1	Note 2	mode	speed main) mode Note 7		V _{DD} = 3.0 V		0.62	1.86	mA
			mode	fih = 24 MHz Note 4	V _{DD} = 5.0 V		0.50	1.45	mA
					V _{DD} = 3.0 V		0.50	1.45	mA
				fih = 16 MHz Note 4	V _{DD} = 5.0 V		0.44	1.11	mA
					V _{DD} = 3.0 V		0.44	1.11	mA
			LS (low-	fin = 8 MHz Note 4	V _{DD} = 3.0 V		290	620	μA
			speed main) mode Note 7		V _{DD} = 2.0 V		290	620	μΑ
			LV (low-	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		440	680	μΑ
			voltage main) mode		V _{DD} = 2.0 V		440	680	μΑ
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.48	1.28	mA
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		0.31	1.08	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	1.28	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.21	0.63	mA
				V _{DD} = 5.0 V	Resonator connection		0.28	0.71	mA
				f _M x = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.63	mA
				V _{DD} = 3.0 V	Resonator connection		0.28	0.71	mA
		LS (low- speed ma mode ^{Note}	,	$f_{MX} = 8 MHz^{Note 3},$	Square wave input		110	360	μΑ
			speed main) mode Note 7	V _{DD} = 3.0 V	Resonator connection		160	420	μΑ
				fmx = 8 MHz ^{Note 3} ,	Square wave input		110	360	μΑ
				V _{DD} = 2.0 V	Resonator connection		160	420	μΑ
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μΑ
			clock operation	T _A = -40°C	Resonator connection		0.47	0.80	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μΑ
				T _A = +25°C	Resonator connection		0.53	0.80	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μΑ
				T _A = +50°C	Resonator connection		0.60	2.49	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.64	4.03	μΑ
				T _A = +70°C	Resonator connection		0.83	4.22	μА
				fsub = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μΑ
				T _A = +85°C	Resonator connection		1.28	8.23	μА
	IDD3 ^{Note 6}	STOP	T _A = -40°C	•	•		0.19	0.52	μΑ
		mode ^{Note 8}	T _A = +25°C				0.25	0.52	μΑ
			T _A = +50°C				0.32	2.21	μΑ
			T _A = +70°C				0.55	3.94	μΑ
		T _A = +85°C				1.00	7.95	μA	

(Notes and Remarks are listed on the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol		Conditions		speed	high- I main) ode		/-speed Mode	voltage	low- e main) ode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Recep- tion	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$			fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
				Theoretical value of the maximum transfer rate fmck = fclk Note 4		5.3		1.3		0.6	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$			fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
				Theoretical value of the maximum transfer rate folk Note 4		5.3		1.3		0.6	Mbps
			$1.8 \ V \le EV_{DD0} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V$			fMCK/6 Notes 1 to 3		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate fmck = fclk Note 4		5.3		1.3		0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. Use it with EVDD0≥Vb.
- 3. The following conditions are required for low voltage interface when $E_{VDDO} < V_{DD}$.

 $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V} : \text{MAX. } 2.6 \text{ Mbps}$ $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.4 \text{ V} : \text{MAX. } 1.3 \text{ Mbps}$

4. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 32 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq V_{DD} \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq V_{DD} \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remarks 1. $V_b[V]$: Communication line voltage

- 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
- 3. fmcκ: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13)
- **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	` `	h-speed Mode	`	/-speed Mode	,	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) Note 1	tsıĸı	$ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, $	81		479		479		ns
		$C_b = 30$ pF, $R_b = 1.4$ k Ω							
			177		479		479		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$							
		$ \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array} $	479		479		479		ns
		$C_b = 30$ pF, $R_b = 5.5$ k Ω							
SIp hold time (from SCKp↑) Note 1	t KSI1	$ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, $	19		19		19		ns
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$							
		$ 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, $	19		19		19		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$							
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array}$	19		19		19		ns
		$C_b = 30$ pF, $R_b = 5.5$ k Ω							
Delay time from SCKp↓ to	tkso1	$ \begin{array}{c} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array} $		100		100		100	ns
SOp output Note 1		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$							
		$ 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, $		195		195		195	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$							
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array}$		483		483		483	ns
		$C_b = 30$ pF, $R_b = 5.5$ k Ω							

Notes

- 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- 2. Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq AV_{REFP} \leq 5.5~V$		1.2	±5.0	LSB
		EVDD0 = AV _{REFP} = V _{DD} Notes 3, 4	$\begin{array}{ c c c }\hline 1.6 \ V \leq AV_{REFP} \leq 5.5 \ V^{Note} \\ & & \\ &$		1.2	±8.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target ANI pin : ANI16 to	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		ANI26	$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μS
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq AV_{REFP} \leq 5.5~V$			±0.35	%FSR
		EVDD0 = AVREFP = VDD Notes 3, 4	$1.6~V \leq AV_{REFP} \leq 5.5~V^{Note}$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$1.8~V \le AV_{REFP} \le 5.5~V$			±0.35	%FSR
		EVDD0 = AVREFP = VDD Notes 3, 4	$1.6~V \le AV_{REFP} \le 5.5~V^{Note}$			±0.60	%FSR
Integral linearity error ^{Note}	ILE	10-bit resolution	$1.8~V \leq AV_{REFP} \leq 5.5~V$			±3.5	LSB
1		EVDD0 = AVREFP = VDD Notes 3, 4	$1.6~V \le AV_{REFP} \le 5.5~V^{Note}$			±6.0	LSB
Differential linearity	DLE	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±2.0	LSB
error ^{Note 1}		EVDD0 = AVREFP = VDD Notes 3, 4	$1.6~V \le AV_{REFP} \le 5.5~V^{Note}$			±2.5	LSB
Analog input voltage	VAIN	ANI16 to ANI26	,	0		AVREFP and EVDD0	٧

- **Notes 1.** Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

- **4.** When $AV_{REFP} < EV_{DD0} \le V_{DD}$, the MAX. values are as follows.
 - Overall error: Add ± 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

5. When the conversion time is set to 57 μs (min.) and 95 μs (max.).

- Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

- Notes 1. Total current flowing into V_{DD} and EV_{DDO}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DDO} or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

- **8.** Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol		Conditions			HS (high-speed main) Mode		
					MIN.	MAX.		
Transfer rate		Reception	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$			fмск/12 Note 1	bps	
			V , $2.7 \ V \le V_b \le 4.0 \ V$	Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk		2.6	Mbps	
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0$			fmck/12 Note 1	bps	
			$V,$ $2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk		2.6	Mbps	
			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$			fMCK/12 Notes 1,2	bps	
			$1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk		2.6	Mbps	

- Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
 - 2. The following conditions are required for low voltage interface when EVDDO < VDD.

 $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MAX. 1.3 Mbps

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

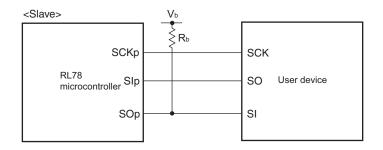
- Remarks 1. V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13)
 - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-spe	eed main) Mode	Unit
			MIN.	MAX.	
SIp setup time	tsıĸı	$4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	88		ns
(to SCKp↓) Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	88		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \ V \leq EV_{DD0} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$	220		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
SIp hold time	tksi1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$	38		ns
(from SCKp↓) Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
Delay time from SCKp↑ to	tkso1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$		50	ns
SOp output Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V,$		50	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$		50	ns
		$C_b=30~pF,~R_b=5.5~k\Omega$			

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

- Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

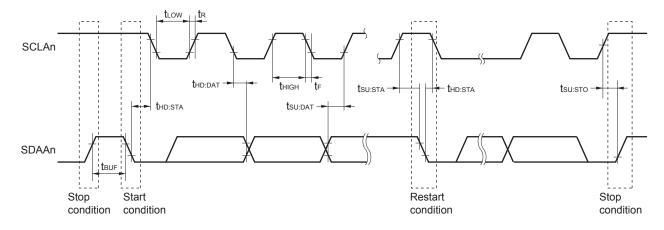
- **Remarks 1.** $R_b[\Omega]$:Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 00, 01, 02,
 - 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

3.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed Standard Mode		ed main) Mode		Unit
					Fast Mode		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fclk ≥ 3.5 MHz	_	_	0	400	kHz
		Standard mode: fcLK ≥ 1 MHz	0	100	ı	_	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μS
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	tBUF		4.7		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

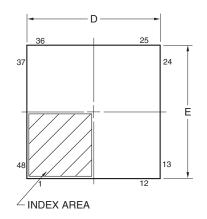
Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

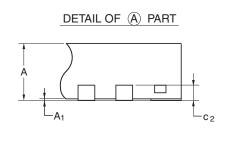
Remark n = 0, 1

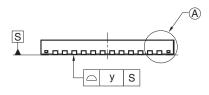
<R>

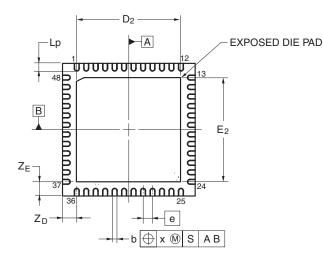
R5F100GAANA, R5F100GCANA, R5F100GDANA, R5F100GEANA, R5F100GFANA, R5F100GHANA, R5F100GHANA, R5F100GKANA, R5F100GKANA, R5F100GKANA, R5F100GKANA


R5F101GAANA, R5F101GCANA, R5F101GDANA, R5F101GEANA, R5F101GFANA, R5F101GHANA, R5F101GHANA, R5F101GHANA, R5F101GKANA, R5F101GKANA, R5F101GLANA

R5F100GADNA, R5F100GCDNA, R5F100GDDNA, R5F100GEDNA, R5F100GFDNA, R5F100GDNA, R5F100GHDNA, R5F100GJDNA, R5F100GKDNA, R5F100GLDNA


R5F101GADNA, R5F101GCDNA, R5F101GDDNA, R5F101GEDNA, R5F101GFDNA, R5F101GGDNA, R5F101GHDNA, R5F101GJDNA, R5F101GKDNA, R5F101GLDNA


R5F100GAGNA, R5F100GCGNA, R5F100GDGNA, R5F100GEGNA, R5F100GFGNA, R5F100GHGNA, R5F100GJGNA


JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HWQFN48-7x7-0.50	PWQN0048KB-A	48PJN-A P48K8-50-5B4-6	0.13

Referance	Dimension in Millimeters				
Symbol	Min	Nom	Max		
D	6.95	7.00	7.05		
Е	6.95	7.00	7.05		
Α			0.80		
A ₁	0.00				
b	0.18	0.25	0.30		
е		0.50			
Lp	0.30	0.40	0.50		
Х			0.05		
у			0.05		
Z _D		0.75			
Z _E		0.75			
C ₂	0.15	0.20	0.25		
D ₂		— 5.50 —			
E ₂		5.50	_		

©2013 Renesas Electronics Corporation. All rights reserved.