Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | RL78 | | Core Size | 16-Bit | | Speed | 32MHz | | Connectivity | CSI, I ² C, LINbus, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 48 | | Program Memory Size | 128KB (128K x 8) | | Program Memory Type | FLASH | | EEPROM Size | 8K x 8 | | RAM Size | 12K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V | | Data Converters | A/D 12x8/10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 64-LQFP | | Supplier Device Package | 64-LFQFP (10x10) | | Purchase URL | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100lgdfb-v0 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Table 1-1. List of Ordering Part Numbers (11/12) | Pin count | Package | Data flash | Fields of
Application | Ordering Part Number | |-----------|--|------------|--------------------------|--| | 100 pins | 100-pin plastic
LFQFP (14 × 14
mm, 0.5 mm pitch) | Mounted | А | R5F100PFAFB#V0, R5F100PGAFB#V0, R5F100PHAFB#V0, R5F100PJAFB#V0, R5F100PKAFB#V0, R5F100PLAFB#V0 R5F100PFAFB#X0, R5F100PGAFB#X0, R5F100PHAFB#X0, | | | min, 0.5 min pitch) | | | R5F100PJAFB#X0, R5F100PKAFB#X0, R5F100PLAFB#X0 | | | | | D | R5F100PFDFB#V0, R5F100PGDFB#V0, R5F100PHDFB#V0, | | | | | | R5F100PJDFB#V0, R5F100PKDFB#V0, R5F100PLDFB#V0 | | | | | | R5F100PFDFB#X0, R5F100PGDFB#X0, R5F100PHDFB#X0, | | | | | | R5F100PJDFB#X0, R5F100PKDFB#X0, R5F100PLDFB#X0 | | | | | G | R5F100PFGFB#V0, R5F100PGGFB#V0, R5F100PHGFB#V0, | | | | | | R5F100PJGFB#V0 | | | | | | R5F100PFGFB#X0, R5F100PGGFB#X0, R5F100PHGFB#X0, | | | | | | R5F100PJGFB#X0 | | | | Not | Α | R5F101PFAFB#V0, R5F101PGAFB#V0, R5F101PHAFB#V0, | | | | mounted | | R5F101PJAFB#V0, R5F101PKAFB#V0, R5F101PLAFB#V0 | | | | | | R5F101PFAFB#X0, R5F101PGAFB#X0, R5F101PHAFB#X0, | | | | | | R5F101PJAFB#X0, R5F101PKAFB#X0, R5F101PLAFB#X0 | | | | | D | R5F101PFDFB#V0, R5F101PGDFB#V0, R5F101PHDFB#V0, | | | | | | R5F101PJDFB#V0, R5F101PKDFB#V0, R5F101PLDFB#V0 | | | | | | R5F101PFDFB#X0, R5F101PGDFB#X0, R5F101PHDFB#X0, | | | | | | R5F101PJDFB#X0, R5F101PKDFB#X0, R5F101PLDFB#X0 | | | 100-pin plastic | Mounted | Α | R5F100PFAFA#V0, R5F100PGAFA#V0, R5F100PHAFA#V0, | | | LQFP (14 × 20 mm, | | | R5F100PJAFA#V0, R5F100PKAFA#V0, R5F100PLAFA#V0 | | | 0.65 mm pitch) | | | R5F100PFAFA#X0, R5F100PGAFA#X0, R5F100PHAFA#X0, | | | | | | R5F100PJAFA#X0, R5F100PKAFA#X0, R5F100PLAFA#X0 | | | | | D | R5F100PFDFA#V0, R5F100PGDFA#V0, R5F100PHDFA#V0, | | | | | | R5F100PJDFA#V0, R5F100PKDFA#V0, R5F100PLDFA#V0 | | | | | | R5F100PFDFA#X0, R5F100PGDFA#X0, R5F100PHDFA#X0, | | | | | | R5F100PJDFA#X0, R5F100PKDFA#X0, R5F100PLDFA#X0 | | | | | G | R5F100PFGFA#V0, R5F100PGGFA#V0, R5F100PHGFA#V0, | | | | | | R5F100PJGFA#V0 | | | | | | R5F100PFGFA#X0, R5F100PGGFA#X0, R5F100PHGFA#X0, | | | | | | R5F100PJGFA#X0 | | | | Not | Α | R5F101PFAFA#V0, R5F101PGAFA#V0, R5F101PHAFA#V0, | | | | mounted | | R5F101PJAFA#V0, R5F101PKAFA#V0, R5F101PLAFA#V0 | | | | | | R5F101PFAFA#X0, R5F101PGAFA#X0, R5F101PHAFA#X0, | | | | | | R5F101PJAFA#X0, R5F101PKAFA#X0, R5F101PLAFA#X0 | | | | | D | R5F101PFDFA#V0, R5F101PGDFA#V0, R5F101PHDFA#V0, | | | | | | R5F101PJDFA#V0, R5F101PKDFA#V0, R5F101PLDFA#V0 | | | | | | R5F101PFDFA#X0, R5F101PGDFA#X0, R5F101PHDFA#X0, | | | | | | R5F101PJDFA#X0, R5F101PKDFA#X0, R5F101PLDFA#X0 | Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. ### 1.3.2 24-pin products • 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. 2. It is recommended to connect an exposed die pad to $V_{\mbox{\scriptsize ss}}.$ ### 1.3.13 100-pin products • 100-pin plastic LQFP (14 × 14 mm, 0.5 mm pitch) - Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin. - 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1). - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). - Remarks 1. For pin identification, see 1.4 Pin Identification. - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD}, EV_{DDO} and EV_{DD1} pins and connect the Vss, EV_{SS0} and EV_{SS1} pins to separate ground lines. - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual. ### 1.5.12 80-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. **3.** The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see **6.9.3 Operation as multiple PWM output function** in the RL78/G13 User's Manual). 4. When setting to PIOR = 1 | 70 | n | ١ | |----|---|---| | 1/ | ' | п | | _ | _ | , | | Iter | m | 20- | nin | 24- | nin | 25- | nin | 30- | pin | 32 | -pin | 36 | pin | |--------------------------------------|----------------------|--|--
--|---|--|---------------------------|-----------|-----------|-----------|-----------|----------|----------| | itoi | | | | | | | | | | | İ | | İ | | | | R5F1006x | R5F1016x | R5F1007x | R5F1017x | R5F1008x | R5F1018x | R5F100Ax | R5F101Ax | R5F100Bx | R5F101Bx | R5F100Cx | R5F101Cx | | Clock output/buzze | er output | - | = | | 1 | | 1 | | 2 | | 2 | | 2 | | | | | | 88 kHz, 9
n clock: fr | | | | ИНz, 5 М | Hz, 10 N | МНz | | | | | 8/10-bit resolution | A/D converter | 6 channels 6 channels 6 channels 8 channels 8 channels 8 channels | | | | | | | | | | | | | Serial interface | | [20-pin, 24-pin, 25-pin products] | | | | | | | | | | | | | | | CSI: 1 channel/simplified l ² C: 1 channel/UART: 1 channel | | | | | | | | | | | | | | | • CSI: | 1 chann | el/simplif | ied I ² C: | 1 channe | el/UART | : 1 chanr | nel | | | | | | | | [30-pin, | 32-pin | products] |] | | | | | | | | | | | | • CSI: | 1 chann | el/simplif
el/simplif | ied I ² C: | 1 channe | el/UART | : 1 chanr | nel | | | | | | | | | | el/simplif | fied I ² C: | 1 channe | el/UART | (UART s | supportir | ng LIN-b | us): 1 ch | nannel | | | | | [36-pin | | | | | | | | | | | | | | | 1 | | el/simplif
el/simplif | | | | | | | | | | | 1 | | | | els/simpl | | | | | | rting LIN | -bus): 1 | channel | | | ſ | I ² C bus | - | - 1 channel 1 channel 1 channel 1 channel | | | | | | | | | | | | Multiplier and divide accumulator | er/multiply- | 16 bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) | | | | | | | | | | | | | DMA controller | | 2 channels | | | | | | | | | | | | | Vectored interrupt | Internal | 2 | 3 | 2 | 24 | 2 | <u>!</u> 4 | 2 | 27 | 2 | 27 | 2 | 27 | | sources | External | ; | 3 | ļ | 5 | | 5 | | 6 | | 6 | | 6 | | Key interrupt | | | | | | | | | | | | | | | Reset | | | | | | | | | | | | | | | | | InterrInterrInterrInterrInterr | nal reset
nal reset
nal reset
nal reset
nal reset | SET pin by watch by power by volta by illega by RAM by illega | er-on-res
ge detec
al instruc
parity e | et
ctor
tion exec
rror | | e | | | | | | | Power-on-reset circ | puit | InterrInterrInterrInterrInterrInterrPowe | nal reset
nal reset
nal reset
nal reset
nal reset
er-on-res | by watch
by power
by volta
by illega
by RAM
by illega | er-on-res
ge detect
al instruct
parity e
al-memod | et stor
stor
tion exec
rror
ry access | | 0 | | | | | | | Power-on-reset circ | cuit | InterrInterrInterrInterrInterrInterrPowe | nal reset
nal reset
nal reset
nal reset
nal reset
nal reset
er-on-reser
er-down- | by watch
by power
by volta
by illega
by RAM
by illega
set: 1
reset: 1 | er-on-res
ge detectal instruction parity et al-memorial.51 V (Tours) (| et stor
stor
tion exec
rror
ry access | s
14 stage | es) | | | | | | | | | Interr Interr Interr Interr Interr Interr Interr Powe | nal reset er-on-reser-down- g edge: g edge | by watch
by power
by volta
by illega
by RAM
by illega
set: 1
reset: 1 | er-on-res
ge detectal instruction parity et al-memorial.51 V (Tours) (| et
ctor
tion exec
rror
ry access
YP.)
YP.) | s
14 stage | es) | | | | | | | Voltage detector | ction | Interresident In | nal reset er-on-reser-down- g edge: g edge d | by watch
by power
by volta
by illega
by RAM
by illega
set: 1
reset: 1 | er-on-res
ge detect
al instruct
parity e
al-memon
.51 V (T
.50 V (T
.67 V to | set stor rich execution
ex | s
14 stage | es) | | | | | | | Voltage detector On-chip debug fund | ction | Interr Interr Interr Interr Interr Interr Powe Powe Rising Fallin Provide | nal reset er-on-reser down- g edge: g edge d | by watch
by power
by volta
by illega
by RAM
by illega
set: 1
reset: 1 | er-on-res
ge detect
al instruct
parity e
al-memon
.51 V (T
.50 V (T
.67 V to
.63 V to | set stor return execution exec | s
14 stage | es) | | | | | | | Voltage detector On-chip debug fund | ction | Interr Interr Interr Interr Interr Interr Interr Powe Powe Rising Fallin Provide V_{DD} = 1 V_{DD} = 2. | nal reset er-on-reser er-down- g edge g edge d .6 to 5.5 | by watch by power by volta by illegate by RAM by illegate illeg | er-on-res
ge detect
al instruct
parity e
al-memor
.51 V (T
.50 V (T
.63 V to
.63 V to | set stor rich execution ex | s
14 stage
14 stage | es) | applica | tions) | | | | Note The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator. #### 2.3 DC Characteristics ### 2.3.1 Pin characteristics $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/5)$ | Items | Symbol | Conditions | | MIN. | TYP. | MAX. | Unit | |---|--------|---|---------------------------------------|------|------|------------------|------| | Output current,
high ^{Note 1} | Іонт | Per pin for P00 to P07, P10 to P17,
P30 to P37, P40 to P47, P50 to P57, P64
to P67, P70 to P77, P80 to P87, P90 to
P97, P100 to P106,
P110 to P117, P120, P125 to P127,
P130, P140 to P147 | $1.6~V \leq EV_{DD0} \leq 5.5~V$ | | | -10.0
Note 2 | mA | | | | P40 to P47, P102 to P106, P120, | $4.0~V \leq EV_{DD0} \leq 5.5~V$ | | | -55.0 | mA | | | | | $2.7~V \leq EV_{DD0} < 4.0~V$ | | | -10.0 | mA | | | | P125 to P127, P130, P140 to P145 (When duty $\leq 70\%$ Note 3) | $1.8~V \leq EV_{DD0} < 2.7~V$ | | | -5.0 | mA | | | | | $1.6~V \leq EV_{DD0} < 1.8~V$ | | | -2.5 | mA | | | | Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 | | | | -80.0 | mA | | | | | $2.7~V \leq EV_{DD0} < 4.0~V$ | | | -19.0 | mA | | | | to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 | $1.8~V \leq EV_{DD0} < 2.7~V$ | | | -10.0 | mA | | | | (When duty ≤ 70% Note 3) | $1.6~V \leq EV_{DD0} < 1.8~V$ | | | -5.0 | mA | | | | Total of all pins (When duty $\leq 70\%$ Note 3) | $1.6~V \leq EV_{DD0} \leq 5.5~V$ | | | -135.0
Note 4 | mA | | | 10н2 | Per pin for P20 to P27, P150 to P156 | $1.6~V \leq V_{DD} \leq 5.5~V$ | | | -0.1 Note 2 | mA | | | | Total of all pins (When duty $\leq 70\%$ Note 3) | $1.6~V \leq V_{\text{DD}} \leq 5.5~V$ | | | -1.5 | mA | - **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin. - 2. However, do not exceed the total current value. - 3. Specification under conditions where the duty factor $\leq 70\%$. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%). • Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and loh = -10.0 mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin. **4.** The applied current for the products for industrial application (R5F100xxDxx, R5F101xxDxx, R5F100xxGxx) is -100 mA. Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode. **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (5/5) | Items | Symbol | Conditio | ns | | MIN. | TYP. | MAX. | Unit | |--------------------------------|--------|--|------------------|---------------------------------------|------|------|------|------| | Input leakage
current, high | Ішн | P00 to P07, P10 to P17,
P30 to P37, P40 to P47,
P50 to P57, P60 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100 to P106,
P110 to P117, P120,
P125 to P127, P140 to P147 | VI = EVDDO | | | | 1 | μΑ | | | ILIH2 | P20 to P27, P1 <u>37,</u>
P150 to P156, RESET | $V_{I} = V_{DD}$ | | | | 1 | μΑ | | | Ішнз | P121 to P124
(X1, X2, XT1, XT2, EXCLK,
EXCLKS) | VI = VDD | In input port or external clock input | | | 1 | μΑ | | | | | | In resonator connection | | | 10 | μΑ | | Input leakage
current, low | lut1 | P00 to P07, P10 to P17,
P30 to P37, P40 to P47,
P50 to P57, P60 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100 to P106,
P110 to P117, P120,
P125 to P127, P140 to P147 | Vi = EVsso | Vi = EVsso | | | -1 | μΑ | | | ILIL2 | P20 to P27, P137,
P150 to P156, RESET | Vı = Vss | | | | -1 | μΑ | | | Ішз | P121 to P124
(X1, X2, XT1, XT2, EXCLK,
EXCLKS) | Vı = Vss | In input port or external clock input | | | -1 | μΑ | | | | | | In resonator connection | | | -10 | μΑ | | On-chip pll-up resistance | R∪ | P00 to P07, P10 to P17,
P30 to P37, P40 to P47,
P50 to P57, P64 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100 to P106,
P110 to P117, P120,
P125 to P127, P140 to P147 | Vı = EVsso | , In input port | 10 | 20 | 100 | kΩ | **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. - Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. When high-speed on-chip oscillator and subsystem clock are stopped. - 3. When high-speed system clock and subsystem clock are stopped. - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 16~MHz LS (low-speed main) mode: 1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fih: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - 4. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C #### (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | | Conditions | | speed | high-
I main)
ode | LS (low-speed
main) Mode | | LV (low-
voltage main)
Mode | | Unit | |---------------|--------|----------------|--|---|-------|-------------------------|-----------------------------|----------------------|-----------------------------------|----------------------|------| | | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | Transfer rate | | Recep-
tion | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$
$2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$ | | | fMCK/6
Note 1 | | fMCK/6
Note 1 | | fMCK/6
Note 1 | bps | | | | | | Theoretical value of the maximum transfer rate fmck = fclk Note 4 | | 5.3 | | 1.3 | | 0.6 | Mbps | | | | | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$
$2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$ | | | fMCK/6
Note 1 | | fMCK/6
Note 1 | | fMCK/6
Note 1 | bps | | | | | | Theoretical value of the maximum transfer rate fack Note 4 | | 5.3 | | 1.3 | | 0.6 | Mbps | | | | | $1.8 \ V \le EV_{DD0} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V$ | | | fMCK/6
Notes 1 to 3 | | fMCK/6
Notes 1, 2 | | fMCK/6
Notes 1, 2 | bps | | | | | | Theoretical value of the maximum transfer rate fmck = fclk Note 4 | | 5.3 | | 1.3 | | 0.6 | Mbps | **Notes 1.** Transfer rate in
the SNOOZE mode is 4800 bps only. - 2. Use it with EVDD0≥Vb. - 3. The following conditions are required for low voltage interface when $E_{VDDO} < V_{DD}$. $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V} : \text{MAX. } 2.6 \text{ Mbps}$ $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.4 \text{ V} : \text{MAX. } 1.3 \text{ Mbps}$ 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are: HS (high-speed main) mode: 32 MHz (2.7 V \leq V_{DD} \leq 5.5 V) 16 MHz (2.4 V \leq V_{DD} \leq 5.5 V) LS (low-speed main) mode: 8 MHz (1.8 V \leq V_{DD} \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq V_{DD} \leq 5.5 V) Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vpd tolerance (When 20- to 52-pin products)/EVpd tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For ViH and ViL, see the DC characteristics with TTL input buffer selected. **Remarks 1.** $V_b[V]$: Communication line voltage - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14) - 3. fmcκ: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13) - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1. ### (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | C, 1.0 V S E V | Conditions | | | high- | LS (| low- | | low-
age
Mode | Unit | |---------------|--------|----------------|--|--|------|----------------|------|----------------|------|---------------------|------| | | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | Transfer rate | | | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$
$2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$ | | | Note
1 | | Note
1 | | Note
1 | bps | | | | | | Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$ | | 2.8
Note 2 | | 2.8
Note 2 | | 2.8
Note 2 | Mbps | | | | | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$ | | | Note
3 | | Note
3 | | Note
3 | bps | | | | | 2.3 V ≤ Vb ≤ 2.7 V | Theoretical value of the maximum transfer rate Cb = 50 pF, Rb = | | 1.2
Note 4 | | 1.2
Note 4 | | 1.2
Note 4 | Mbps | | | | | | $2.7 \text{ k}\Omega, V_b = 2.3$ | | | | | | | | | | | | $1.8 \ V \le EV_{DD0} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V$ | | | Notes
5, 6 | | Notes
5, 6 | | Notes
5, 6 | bps | | | | | | Theoretical value of the maximum transfer rate | | 0.43
Note 7 | | 0.43
Note 7 | | 0.43
Note 7 | Mbps | | | | | | $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$ | | | | | | | | **Notes 1.** The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 4.0 V \leq EV $_{DD0} \leq$ 5.5 V and 2.7 V \leq V $_{b} \leq$ 4.0 V Maximum transfer rate = $$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$ [bps] $$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.2}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$ - * This value is the theoretical value of the relative difference between the transmission and reception sides. - 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer. ## (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | Conditions | , 0 | h-speed
Mode | , | /-speed
Mode | , | -voltage
Mode | Unit | |--------------------------------------|---------------|---|------|-----------------|------|-----------------|------|------------------|------| | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SIp setup time (to SCKp↑) Note 1 | tsıĸı | $ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, $ | 81 | | 479 | | 479 | | ns | | | | $C_b = 30$ pF, $R_b = 1.4$ k Ω | | | | | | | | | | | | 177 | | 479 | | 479 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | | | | | $\label{eq:local_local_local_local_local} \begin{split} 1.8 \ V & \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V & \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{split}$ | 479 | | 479 | | 479 | | ns | | | | $C_b = 30$ pF, $R_b = 5.5$ k Ω | | | | | | | | | SIp hold time
(from SCKp↑) Note 1 | t KSI1 | $ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, $ | 19 | | 19 | | 19 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | | | | | | 19 | | 19 | | 19 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | | | | | $\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array}$ | 19 | | 19 | | 19 | | ns | | | | $C_b = 30$ pF, $R_b = 5.5$ k Ω | | | | | | | | | Delay time from SCKp↓ to | tkso1 | $ \begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array} $ | | 100 | | 100 | | 100 | ns | | SOp output Note 1 | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | | | | | $ 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, $ | | 195 | | 195 | | 195 | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | | | | | $\begin{array}{c} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array}$ | | 483 | | 483 | | 483 | ns | | | | $C_b = 30$ pF, $R_b = 5.5$ k Ω | | | | | | | | Notes - 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. - 2. Use it with $EV_{DD0} \ge V_b$. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the page after the next page.) ### (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (2/2) | Parameter | Symbol | Conditions | HS (| high-
main)
ode | LS (low | | , | -voltage
Mode | Unit | |---|---------------|---|-----------------|-----------------------|-----------------|-----------------|-----------------|------------------|------| | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SCKp high-/low-level width | tкн2,
tкL2 | $ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, $ $ 2.7 \ V \leq V_b \leq 4.0 \ V $ | tксу2/2
- 12 | | tксү2/2
- 50 | | txcy2/2
- 50 | | ns | | | | $ 2.7 \ V \le EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \le V_b \le 2.7 \ V $ | tксу2/2
- 18 | | tксү2/2
- 50 | | txcy2/2
- 50 | | ns | | | | $\begin{aligned} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{aligned}$ | tkcy2/2
- 50 | | tксү2/2
- 50 | | tkcy2/2
- 50 | | ns | | SIp setup time (to SCKp↑) Note 3 | tsık2 | $\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V \end{aligned}$ | 1/fмск
+ 20 | | 1/fмск
+ 30 | | 1/fмск
+ 30 | | ns | | | | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$ | 1/fмск
+ 20 | | 1/fмск
+ 30 | | 1/fмск
+ 30 | | ns | | | | $\begin{aligned} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{aligned}$ | 1/fмск
+ 30 | | 1/fмск
+ 30 | | 1/fмcк
+ 30 | | ns | | SIp hold time
(from SCKp [↑]) Note 4 | tksi2 | | 1/fмск +
31 | | 1/fмск
+ 31 | | 1/fмск
+ 31 | | ns | | Delay time from
SCKp↓ to SOp output
Note 5 | tkso2 | $ 4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0 $ $V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega $ | | 2/fмск
+ 120 | | 2/fмск
+ 573 | | 2/fмск
+ 573 | ns | | | | $ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \\ \text{V}, \\ \text{C}_{\text{b}} = 30 \text{ pF}, \ \text{R}_{\text{b}}
= 2.7 \text{ k}\Omega $ | | 2/fмск
+ 214 | | 2/fмск
+ 573 | | 2/fмск
+ 573 | ns | | | | $\begin{split} &1.8 \; V \leq \text{EV}_{\text{DD0}} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ &C_b = 30 \; p\text{F}, \; R_b = 5.5 \; k\Omega \end{split}$ | | 2/fмск
+ 573 | | 2/fмск
+ 573 | | 2/fмск
+ 573 | ns | Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps - 2. Use it with $EV_{DD0} \ge V_b$. - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - **5.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the next page.) ### (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (1/2) (Ta = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) | Parameter | Symbol | Conditions | ` ` | h-speed
Mode | ` | v-speed
Mode | , | -voltage
Mode | Unit | |------------------------------|--------|---|------|-----------------|------|-----------------|------|------------------|------| | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SCLr clock frequency | fscL | $\begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned}$ | | 1000
Note 1 | | 300
Note 1 | | 300
Note 1 | kHz | | | | $ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $ | | 1000
Note 1 | | 300
Note 1 | | 300
Note 1 | kHz | | | | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $ | | 400
Note 1 | | 300
Note 1 | | 300
Note 1 | kHz | | | | eq:second-seco | | 400
Note 1 | | 300
Note 1 | | 300
ote 1 | kHz | | | | $\begin{split} &1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$ | | 300
Note 1 | | 300
Note 1 | | 300
Note 1 | kHz | | Hold time when SCLr = "L" | tLOW | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $ | 475 | | 1550 | | 1550 | | ns | | | | $ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $ | 475 | | 1550 | | 1550 | | ns | | | | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $ | 1150 | | 1550 | | 1550 | | ns | | | | $\label{eq:section} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$ | 1150 | | 1550 | | 1550 | | ns | | | | $\begin{split} &1.8~V \leq EV_{DD0} < 3.3~V,\\ &1.6~V \leq V_b \leq 2.0~V^{\text{Note 2}},\\ &C_b = 100~pF,~R_b = 5.5~k\Omega \end{split}$ | 1550 | | 1550 | | 1550 | | ns | | Hold time when SCLr
= "H" | tніgн | $\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$ | 245 | | 610 | | 610 | | ns | | | | $\label{eq:section} \begin{split} 2.7 \ V & \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V & \leq V_b \leq 2.7 \ V, \\ C_b & = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$ | 200 | | 610 | | 610 | | ns | | | | $\begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned}$ | 675 | | 610 | | 610 | | ns | | | | $\begin{split} 2.7 \ V &\leq EV_{DDO} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$ | 600 | | 610 | | 610 | | ns | | | | $\begin{split} &1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$ | 610 | | 610 | | 610 | | ns | ### Simplified I²C mode connection diagram (during communication at different potential) ### Simplified I²C mode serial transfer timing (during communication at different potential) - **Remarks 1.** $R_b[\Omega]$:Communication line (SDAr, SCLr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance, $V_b[V]$: Communication line voltage - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14) - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13) # (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (Ta = -40 to $+105^{\circ}$ C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V) (2/2) | Parameter | | | | | | MIN. | TYP. | MAX. | Unit | |-------------------|------------------------|------------------------|---|--|-------------------------|------|------|-------|---------
 | Supply | I _{DD2} | HALT | HS (high- | fin = 32 MHz Note 4 | V _{DD} = 5.0 V | | 0.62 | 3.40 | mA | | Current
Note 1 | Note 2 | mode | speed main)
mode Note 7 | | V _{DD} = 3.0 V | | 0.62 | 3.40 | mA | | | | | mode | fih = 24 MHz Note 4 | V _{DD} = 5.0 V | | 0.50 | 2.70 | mA | | | | | | | V _{DD} = 3.0 V | | 0.50 | 2.70 | mA | | | | | | fih = 16 MHz Note 4 | V _{DD} = 5.0 V | | 0.44 | 1.90 | mA | | | | | | | V _{DD} = 3.0 V | | 0.44 | 1.90 | mA | | | | | HS (high- | $f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.31 | 2.10 | mA | | | | | speed main)
mode Note 7 | V _{DD} = 5.0 V | Resonator connection | | 0.48 | 2.20 | mA | | | | | | $f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.31 | 2.10 | mA | | | | | | V _{DD} = 3.0 V | Resonator connection | | 0.48 | 2.20 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{Note 3},$ | Square wave input | | 0.21 | 1.10 | mA | | | | | | V _{DD} = 5.0 V | Resonator connection | | 0.28 | 1.20 | mA | | | | | | f _{MX} = 10 MHz ^{Note 3} , | Square wave input | | 0.21 | 1.10 | mA | | | | | | V _{DD} = 3.0 V | Resonator connection | | 0.28 | 1.20 | mA | | | | | Subsystem clock operation | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.28 | 0.61 | μA | | | | | | T _A = -40°C | Resonator connection | | 0.47 | 0.80 | μА | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.34 | 0.61 | μΑ | | | | | | T _A = +25°C | Resonator connection | | 0.53 | 0.80 | μΑ | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.41 | 2.30 | μA | | | | | | T _A = +50°C Resonator connection | | | 0.60 | 2.49 | μΑ | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.64 | 4.03 | μA | | | | | | T _A = +70°C | Resonator connection | | 0.83 | 4.22 | μА | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 1.09 | 8.04 | μΑ | | | | | | T _A = +85°C | Resonator connection | | 1.28 | 8.23 | μА | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 5.50 | 41.00 | μΑ | | | | | | T _A = +105°C | Resonator connection | | 5.50 | 41.00 | μА | | | IDD3 ^{Note 6} | STOP | T _A = -40°C | | | | 0.19 | 0.52 | μΑ | | | | mode ^{Note 8} | T _A = +25°C | | | | 0.25 | 0.52 | μΑ | | | | | T _A = +50°C | | | | 0.32 | 2.21 | μΑ | | | | | $T_A = +70^{\circ}C$ $T_A = +85^{\circ}C$ | | | | 0.55 | 3.94 | μΑ | | | | | | | | | 1.00 | 7.95 | μΑ | | | | | T _A = +105°C | :
 | | | 5.00 | 40.00 | μ A | (Notes and Remarks are listed on the next page.) ### (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) | Parameter | Symbol | Conditions | HS (high-speed main)
Mode | | Unit | |---------------------------|--------|---|------------------------------|------------|------| | | | | MIN. | MAX. | | | SCLr clock frequency | fscL | $\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$ | | 400 Note 1 | kHz | | | | $\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$ | | 400 Note 1 | kHz | | | | $\begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$ | | 100 Note 1 | kHz | | | | $2.7 \text{ V} \leq \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$ | | 100 Note 1 | kHz | | | | $\begin{split} &2.4 \; V \leq \text{EV}_{\text{DDO}} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V, \\ &C_b = 100 \; p\text{F}, \; R_b = 5.5 \; k\Omega \end{split}$ | | 100 Note 1 | kHz | | Hold time when SCLr = "L" | tLow | $\begin{aligned} 4.0 & \ V \le EV_{DD0} \le 5.5 \ V, \\ 2.7 & \ V \le V_b \le 4.0 \ V, \\ C_b = 50 & \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$ | 1200 | | ns | | | | $\begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$ | 1200 | | ns | | | | $\begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$ | 4600 | | ns | | | | $\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$ | 4600 | | ns | | | | $\begin{split} 2.4 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$ | 4650 | | ns | | Hold time when SCLr = "H" | tніgн | $\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$ | 620 | | ns | | | | $\begin{aligned} 2.7 & \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned}$ | 500 | | ns | | | | $\begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned}$ | 2700 | | ns | | | | $2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$ | 2400 | | ns | | | | $2.4 \text{ V} \leq \text{EV}_{\text{DDO}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega$ | 1830 | | ns | (${f Notes}$ and ${f Caution}$ are listed on the next page, and ${f Remarks}$ are listed on the page after the next page.) ### 4.10 52-pin Products R5F100JCAFA, R5F100JDAFA, R5F100JEAFA, R5F100JFAFA, R5F100JGAFA, R5F100JHAFA, R5F100JJAFA, R5F100JKAFA, R5F100JLAFA R5F101JCAFA, R5F101JDAFA, R5F101JEAFA, R5F101JFAFA, R5F101JJAFA, R5F101JJAFA, R5F101JJAFA, R5F101JAFA, R5F101JKAFA, R5F101JLAFA R5F100JCDFA, R5F100JDDFA, R5F100JEDFA, R5F100JFDFA, R5F100JDFA, R5F100JPA, R R5F100JKDFA, R5F100JLDFA R5F101JCDFA, R5F101JDDFA, R5F101JEDFA, R5F101JFDFA, R5F101JDFA, R5 R5F101JKDFA, R5F101JLDFA R5F100JCGFA, R5F100JDGFA, R5F100JEGFA, R5F100JFGFA, R5F100JGGFA, R5F100JHGFA, R5F100JJGFA | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |---------------------|--------------|----------------|-----------------| | P-LQFP52-10x10-0.65 | PLQP0052JA-A | P52GB-65-GBS-1 | 0.3 | © 2012 Renesas Electronics Corporation. All rights reserved. (UNIT:mm) ### 4.14 128-pin Products R5F100SHAFB, R5F100SJAFB, R5F100SKAFB, R5F100SLAFB R5F101SHAFB, R5F101SJAFB, R5F101SKAFB, R5F101SLAFB R5F100SHDFB, R5F100SJDFB, R5F100SKDFB, R5F100SLDFB R5F101SHDFB, R5F101SJDFB, R5F101SKDFB, R5F101SLDFB | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |-----------------------|--------------|-----------------|-----------------| | P-LFQFP128-14x20-0.50 | PLQP0128KD-A | P128GF-50-GBP-1 | 0.92 | \bigcirc 2012 Renesas Electronics Corporation. All rights reserved. | | | | Description | | |------|--------------|---------------|--|--| | Rev. | Date | Page | Summary | | | 3.00 | Aug 02, 2013 | 118 | Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics | | | | | 118 | Modification of table and note in 2.6.3 POR circuit characteristics | | | | | 119 | Modification of table in 2.6.4 LVD circuit characteristics | | | | | 120 | Modification of table of LVD Detection Voltage of Interrupt & Reset Mode | | | | | 120 | Renamed to 2.6.5 Power supply voltage rising slope characteristics | | | | | 122 | Modification of table, figure, and remark in 2.10 Timing Specs for Switching Flash Memory Programming Modes | | | | | 123 | Modification of caution 1 and description | | | | | 124 | Modification of table and remark 3 in Absolute Maximum Ratings (T _A = 25°C) | | | | | 126 | Modification of table, note, caution, and remark in 3.2.1 X1, XT1 oscillator characteristics | | | | | 126 | Modification of table in 3.2.2 On-chip oscillator characteristics | | | | | 127 | Modification of note 3 in 3.3.1 Pin characteristics (1/5) | | | | | 128 | Modification of note 3 in 3.3.1 Pin characteristics (2/5) | | | | | 133 | Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (1/2) | | | | | 135 | Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (2/2) | | | | | 137 | Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (1/2) | | | | | 139 | Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (2/2) | | | | | 140 | Modification of (3) Peripheral Functions (Common to all products) | | | | | 142 | Modification of table in 3.4 AC Characteristics | | | | | 143 | Addition of Minimum Instruction Execution Time during Main System Clock Operation | | | | | 143 | Modification of figure of AC Timing Test Points | | | | | 143 | Modification of figure of External System Clock Timing | | | | | 145 | Modification of figure of AC Timing Test Points | | | | | 145 | Modification of description, note 1, and caution in (1) During communication at same potential (UART mode) | | | | | 146 | Modification of
description in (2) During communication at same potential (CSI mode) | | | | | 147 | Modification of description in (3) During communication at same potential (CSI mode) | | | | | 149 | Modification of table, note 1, and caution in (4) During communication at same potential (simplified I ² C mode) | | | | | 151 | Modification of table, note 1, and caution in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) | | | | | 152 to
154 | Modification of table, notes 2 to 6, caution, and remarks 1 to 4 in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) | | | | | 155 | Modification of table in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3) | | | | | 156 | Modification of table and caution in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3) | | | | | 157, 158 | Modification of table, caution, and remarks 3 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3) | | | | | 160, 161 | Modification of table and caution in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) | | | | | | Description | | |------|--------------|----------|---|--| | Rev. | Date | Page | Summary | | | 3.00 | Aug 02, 2013 | 163 | Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2) | | | | | | Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2) | | | | | 166 | Modification of table in 3.5.2 Serial interface IICA | | | | | | Modification of IICA serial transfer timing | | | | | 167 | Addition of table in 3.6.1 A/D converter characteristics | | | | | 167, 168 | Modification of table and notes 3 and 4 in 3.6.1 (1) | | | | | 169 | Modification of description in 3.6.1 (2) | | | | | 170 | Modification of description and note 3 in 3.6.1 (3) | | | | | 171 | Modification of description and notes 3 and 4 in 3.6.1 (4) | | | | | | Modification of table and note in 3.6.3 POR circuit characteristics | | | | | 173 | Modification of table of LVD Detection Voltage of Interrupt & Reset Mode | | | | | 173 | Modification from Supply Voltage Rise Time to 3.6.5 Power supply voltage rising slope characteristics | | | | | 174 | Modification of 3.9 Dedicated Flash Memory Programmer Communication (UART) | | | | | 175 | Modification of table, figure, and remark in 3.10 Timing Specs for Switching Flash Memory Programming Modes | | | 3.10 | Nov 15, 2013 | 123 | Caution 4 added. | | | | | 125 | Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted. | | | 3.30 | Mar 31, 2016 | | Modification of the position of the index mark in 25-pin plastic WFLGA (3 \times 3 mm, 0.50 mm pitch) of 1.3.3 25-pin products | | | | | | Modification of power supply voltage in 1.6 Outline of Functions [20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products] | | | | | | Modification of power supply voltage in 1.6 Outline of Functions [40-pin, 44-pin, 48-pin, 52-pin, 64-pin products] | | | | | | Modification of power supply voltage in 1.6 Outline of Functions [80-pin, 100-pin, 128-pin products] | | | | | | ACK corrected to ACK | | | | | | ACK corrected to ACK | | All trademarks and registered trademarks are the property of their respective owners. SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan. Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.