Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Discontinued at Digi-Key | | Core Processor | RL78 | | Core Size | 16-Bit | | Speed | 32MHz | | Connectivity | CSI, I ² C, LINbus, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 48 | | Program Memory Size | 128KB (128K x 8) | | Program Memory Type | FLASH | | EEPROM Size | 8K x 8 | | RAM Size | 12K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V | | Data Converters | A/D 12x8/10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 105°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 64-LQFP | | Supplier Device Package | 64-LQFP (12x12) | | Purchase URL | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100lggfa-v0 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Table 1-1. List of Ordering Part Numbers (8/12) | Pin count | Package | Data flash | Fields of | Ordering Part Number | |-----------|---------------------|------------|------------------|--| | | | | Application Note | | | 64 pins | 64-pin plastic LQFP | Mounted | Α | R5F100LCAFA#V0, R5F100LDAFA#V0, | | | (12 × 12 mm, 0.65 | | | R5F100LEAFA#V0, R5F100LFAFA#V0, | | | mm pitch) | | | R5F100LGAFA#V0, R5F100LHAFA#V0, | | | | | | R5F100LJAFA#V0, R5F100LKAFA#V0, R5F100LLAFA#V0 | | | | | | R5F100LCAFA#X0, R5F100LDAFA#X0, | | | | | | R5F100LEAFA#X0, R5F100LFAFA#X0, | | | | | D | R5F100LGAFA#X0, R5F100LHAFA#X0, | | | | | | R5F100LJAFA#X0, R5F100LKAFA#X0, R5F100LLAFA#X0 | | | | | | R5F100LCDFA#V0, R5F100LDDFA#V0, | | | | | | R5F100LEDFA#V0, R5F100LFDFA#V0, | | | | | | R5F100LGDFA#V0, R5F100LHDFA#V0, | | | | | | R5F100LJDFA#V0, R5F100LKDFA#V0, R5F100LLDFA#V0 | | | | | G | R5F100LCDFA#X0, R5F100LDDFA#X0, | | | | | | R5F100LEDFA#X0, R5F100LFDFA#X0, | | | | | | R5F100LGDFA#X0, R5F100LHDFA#X0, | | | | | | R5F100LJDFA#X0, R5F100LKDFA#X0, R5F100LLDFA#X0 | | | | | | R5F100LCGFA#V0, R5F100LDGFA#V0, | | | | | | R5F100LEGFA#V0, R5F100LFGFA#V0 | | | | | | R5F100LCGFA#X0, R5F100LDGFA#X0, | | | | | | R5F100LEGFA#X0, R5F100LFGFA#X0 | | | | | | R5F100LGGFA#V0, R5F100LHGFA#V0, | | | | | | R5F100LJGFA#V0 | | | | | | R5F100LGGFA#X0, R5F100LHGFA#X0, | | | | | | R5F100LJGFA#X0 | | | | Not | Α | R5F101LCAFA#V0, R5F101LDAFA#V0, | | | | mounted | | R5F101LEAFA#V0, R5F101LFAFA#V0, | | | | | | R5F101LGAFA#V0, R5F101LHAFA#V0, | | | | | | R5F101LJAFA#V0, R5F101LKAFA#V0, R5F101LLAFA#V0 | | | | | | R5F101LCAFA#X0, R5F101LDAFA#X0, | | | | | | R5F101LEAFA#X0, R5F101LFAFA#X0, | | | | | D | R5F101LGAFA#X0, R5F101LHAFA#X0, | | | | | | R5F101LJAFA#X0, R5F101LKAFA#X0, R5F101LLAFA#X0 | | | | | | R5F101LCDFA#V0, R5F101LDDFA#V0, | | | | | | R5F101LEDFA#V0, R5F101LFDFA#V0, | | | | | | R5F101LGDFA#V0, R5F101LHDFA#V0, | | | | | | R5F101LJDFA#V0, R5F101LKDFA#V0, R5F101LLDFA#V0 | | | | | | R5F101LCDFA#X0, R5F101LDDFA#X0, | | | | | | R5F101LEDFA#X0, R5F101LFDFA#X0, | | | | | | R5F101LGDFA#X0, R5F101LHDFA#X0, | | | | | | R5F101LJDFA#X0, R5F101LKDFA#X0, R5F101LLDFA#X0 | Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. ### 1.3.5 32-pin products • 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. - Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. - 3. It is recommended to connect an exposed die pad to $V_{\mbox{\scriptsize ss}}.$ • 48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. - Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. - 3. It is recommended to connect an exposed die pad to $V_{\rm ss.}$ # 1.5.2 24-pin products ### 1.5.5 32-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. - Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. During HALT instruction execution by flash memory. - 3. When high-speed on-chip oscillator and subsystem clock are stopped. - 4. When high-speed system clock and subsystem clock are stopped. - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer. - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$ $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 16 \text{ MHz}$ LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 8 \text{ MHz}$ LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 4 \text{ MHz}$ - **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode. - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fin: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C #### (4) Peripheral Functions (Common to all products) #### $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | | Conditions | MIN. | TYP. | MAX. | Unit | |--|----------------------|-----------------------------|--|------|------|-------|------| | Low-speed on-
chip oscillator
operating
current | IFIL Note 1 | | | | 0.20 | | μA | | RTC operating current | RTC
Notes 1, 2, 3 | | | | 0.02 | | μΑ | | 12-bit interval timer operating current | IIT Notes 1, 2, 4 | | | | 0.02 | | μΑ | | Watchdog timer operating current | WDT
Notes 1, 2, 5 | fı∟ = 15 kHz | | | 0.22 | | μΑ | | A/D converter | IADC Notes 1, 6 | When | Normal mode, AV _{REFP} = V _{DD} = 5.0 V | | 1.3 | 1.7 | mA | | operating
current | | conversion at maximum speed | Low voltage mode, AVREFP = VDD = 3.0 V | | 0.5 | 0.7 | mA | | A/D converter
reference
voltage current | IADREF Note 1 | | | | 75.0 | | μА | | Temperature sensor operating current | ITMPS Note 1 | | | | 75.0 | | μΑ | | LVD operating current | LVI Notes 1, 7 | | | | 0.08 | | μΑ | | Self-
programming
operating
current | FSP Notes 1, 9 | | | | 2.50 | 12.20 | mA | | BGO operating current | BGO Notes 1, 8 | | | | 2.50 | 12.20 | mA | | SNOOZE | ISNOZ Note 1 | ADC operation | The mode is performed Note 10 | | 0.50 | 0.60 | mA | | operating
current | | | The A/D conversion operations are performed, Low voltage mode, AVREFP = $V_{DD} = 3.0 \text{ V}$ | | 1.20 | 1.44 | mA | | | | CSI/UART opera | tion | | 0.70 | 0.84 | mA | #### **Notes 1.** Current flowing to VDD. - 2. When high speed on-chip oscillator and high-speed system clock are stopped. - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock. - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. - **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation. ## 2.4 AC Characteristics (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) | Items | Symbol | | Conditions | | MIN. | TYP. | MAX. | Unit | |--|-----------------|---------------------------|-----------------------------------|--|-----------|------|------|--------------------| | Instruction cycle (minimum | Тсч | Main | HS (high- | $2.7 V \le V_{DD} \le 5.5 V$ | 0.03125 | | 1 | μS | | instruction execution time) | | system
clock (fmain) | speed main)
mode | $2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$ | 0.0625 | | 1 | μS | | | | operation | LS (low-speed main) mode | $1.8 V \le V_{DD} \le 5.5 V$ | 0.125 | | 1 | μS | | | | | LV (low-
voltage main)
mode | 1.6 V ≤ V _{DD} ≤ 5.5 V | 0.25 | | 1 | μS | | | | Subsystem of | clock (fsuв) | $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ | 28.5 | 30.5 | 31.3 | μS | | | | operation | | | | | | | | | | In the self | HS (high- | $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}$ | 0.03125 | | 1 | μS | | | | programming
mode | speed main)
mode | $2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$ | 0.0625 | | 1 | μS | | | | | LS (low-speed main) mode | $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ | 0.125 | | 1 | μS | | | | | LV (low-
voltage main)
mode | 1.8 V ≤ V _{DD} ≤ 5.5 V | 0.25 | | 1 | μS | | External system clock | fex | 2.7 V ≤ V _{DD} ≤ | ≤ 5.5 V | | 1.0 | | 20.0 | MHz | | frequency | | 2.4 V ≤ V _{DD} < | | | 1.0 | | 16.0 | MHz | | | | 1.8 V ≤ V _{DD} < | < 2.4 V | | 1.0 | | 8.0 | MHz | | | | 1.6 V ≤ V _{DD} < | < 1.8 V | | 1.0 | | 4.0 | MHz | | | fexs | | | | 32 | | 35 | kHz | | External system clock input | texh, texl | 2.7 V ≤ V _{DD} ≤ | ≤ 5.5 V | | 24 | | | ns | | high-level width, low-level width | | 2.4 V ≤ V _{DD} • | < 2.7 V | | 30 | | | ns | | | | 1.8 V ≤ V _{DD} • | < 2.4 V | | 60 | | | ns | | | | 1.6 V ≤ V _{DD} < | < 1.8 V | | 120 | | | ns | | | texhs, texhs | | | | 13.7 | | | μS | | TI00 to TI07, TI10 to TI17 input high-level width, low-level width | tтін,
tтіL | | | | 1/fмск+10 | | | ns ^{Note} | | TO00 to TO07, TO10 to TO17 | fто | HS (high-spe | eed 4.0 V | ≤ EV _{DD0} ≤ 5.5 V | | | 16 | MHz | | output frequency | | main) mode | 2.7 V | ≤ EV _{DD0} < 4.0 V | | | 8 | MHz | | | | | 1.8 V | ≤ EV _{DD0} < 2.7 V | | | 4 | MHz | | | | | 1.6 V | ≤ EV _{DD0} < 1.8 V | | | 2 | MHz | | | | LS (low-spec | ed 1.8 V | \leq EV _{DD0} \leq 5.5 V | | | 4 | MHz | | | | main) mode | 1.6 V | ≤ EV _{DD0} < 1.8 V | | | 2 | MHz | | | | LV (low-volta main) mode | age 1.6 V | \leq EV _{DD0} \leq 5.5 V | | | 2 | MHz | | PCLBUZ0, PCLBUZ1 output | fpcL | HS (high-spe | eed 4.0 V | ≤ EV _{DD0} ≤ 5.5 V | | | 16 | MHz | | frequency | | main) mode | 2.7 V | ≤ EV _{DD0} < 4.0 V | | | 8 | MHz | | | | | 1.8 V | ≤ EV _{DD0} < 2.7 V | | | 4 | MHz | | | | | | ≤ EV _{DD0} < 1.8 V | | | 2 | MHz | | | | LS (low-spee | | \leq EV _{DD0} \leq 5.5 V | | | 4 | MHz | | | | main) mode | _ | ≤ EV _{DD0} < 1.8 V | | | 2 | MHz | | | | LV (low-volta main) mode | | \leq EV _{DD0} \leq 5.5 V \leq EV _{DD0} $<$ 1.8 V | | | 2 | MHz
MHz | | Interrupt input high-level width, | tinitii | INTP0 | | $\leq V_{DD} \leq 1.8 \text{ V}$
$\leq V_{DD} \leq 5.5 \text{ V}$ | 1 | | | | | low-level width | tinth,
tintl | INTPU | | ≤ VDD ≤ 5.5 V
≤ EVDD0 ≤ 5.5 V | 1 | | | μS
μS | | Key interrupt input low-level | tkr | KR0 to KR7 | 1.8 V | ≤ EV _{DD0} ≤ 5.5 V | 250 | | | ns | | width | | | 1.6 V | ≤ EV _{DD0} < 1.8 V | 1 | | | μS | | RESET low-level width | trsl | | • | | 10 | | | μS | (Note and Remark are listed on the next page.) # (3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | C | Conditions | HS (high
main) | • | LS (low
main) | • | LV (low-
main) | -voltage
Mode | Unit | |---------------------------------|-------------------|---|---------------------------------------|-------------------|------|------------------|------|-------------------|------------------|------| | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SCKp cycle time | tkcy1 | tксү1 ≥ 4/fс∟к | $2.7~V \leq EV_{DD0} \leq 5.5$ V | 125 | | 500 | | 1000 | | ns | | | | | $2.4~V \leq EV_{DD0} \leq 5.5$ V | 250 | | 500 | | 1000 | | ns | | | | | $1.8~V \leq EV_{DD0} \leq 5.5$ V | 500 | | 500 | | 1000 | | ns | | | | | $1.7~V \leq EV_{DD0} \leq 5.5$ V | 1000 | | 1000 | | 1000 | | ns | | | | | $1.6~V \le EV_{DD0} \le 5.5$ V | _ | | 1000 | | 1000 | | ns | | SCKp high-/low-level width | tкн1,
tкL1 | 4.0 V ≤ EV _{DD} | 1.0 V ≤ EV _{DDO} ≤ 5.5 V txc | | | tксу1/2 —
50 | | tксү1/2 —
50 | | ns | | | | $2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$ | | tксу1/2 —
18 | | tксу1/2 — 50 | | tксү1/2 —
50 | | ns | | | | $2.4~V \leq EV_{DD0} \leq 5.5~V$ | | tксү1/2 –
38 | | tксү1/2 –
50 | | tксү1/2 –
50 | | ns | | | | 1.8 V ≤ EVD | $1.8~V \leq EV_{DD0} \leq 5.5~V$ | | | tксу1/2 —
50 | | tксү1/2 —
50 | | ns | | | | $1.7~V \leq EV_{DD0} \leq 5.5~V$ | | tксу1/2 —
100 | | tксу1/2 —
100 | | tксу1/2 —
100 | | ns | | | | 1.6 V ≤ EV _D | ₀₀ ≤ 5.5 V | _ | | tксу1/2 —
100 | | tксу1/2 —
100 | | ns | | SIp setup time | tsıĸı | 4.0 V ≤ EV _{DI} | 00 ≤ 5.5 V | 44 | | 110 | | 110 | | ns | | (to SCKp↑) | | 2.7 V ≤ EV _{DI} | 00 ≤ 5.5 V | 44 | | 110 | | 110 | | ns | | | | 2.4 V ≤ EV _{DI} | 00 ≤ 5.5 V | 75 | | 110 | | 110 | | ns | | | | 1.8 V ≤ EV _{DI} | oo ≤ 5.5 V | 110 | | 110 | | 110 | | ns | | | | 1.7 V ≤ EV _{DI} | oo ≤ 5.5 V | 220 | | 220 | | 220 | | ns | | | | 1.6 V ≤ EV _{DI} | 00 ≤ 5.5 V | _ | | 220 | | 220 | | ns | | SIp hold time | t _{KSI1} | 1.7 V ≤ EV _{DI} | 00 ≤ 5.5 V | 19 | | 19 | | 19 | | ns | | (from SCKp↑) Note 2 | | 1.6 V ≤ EV _{DI} | 00 ≤ 5.5 V | _ | | 19 | | 19 | | ns | | Delay time from
SCKp↓ to SOp | tkso1 | $1.7 \text{ V} \le \text{EV}_{DI}$ $C = 30 \text{ pF}^{\text{Note}}$ | | | 25 | | 25 | | 25 | ns | | output Note 3 | | $1.6 \text{ V} \leq \text{EV}_{DI}$ $C = 30 \text{ pF}^{\text{Note}}$ | | | _ | | 25 | | 25 | ns | **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 4. C is the load capacitance of the SCKp and SOp output lines. Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). #### (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | Conditions | | HS (| high- | LS (| low- | | low-
age
Mode | Unit | |---------------|--------|--|--|------|----------------|------|----------------|------|---------------------|------| | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | Transfer rate | | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$
$2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$ | | | Note
1 | | Note
1 | | Note
1 | bps | | | | | Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$ | | 2.8
Note 2 | | 2.8
Note 2 | | 2.8
Note 2 | Mbps | | | | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$ | | | Note
3 | | Note
3 | | Note
3 | bps | | | | 2.3 V ≤ Vb ≤ 2.7 V | Theoretical value of the maximum transfer rate Cb = 50 pF, Rb = | | 1.2
Note 4 | | 1.2
Note 4 | | 1.2
Note 4 | Mbps | | | | | $2.7 \text{ k}\Omega, V_b = 2.3$ | | | | | | | | | | | $1.8 \ V \le EV_{DD0} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V$ | | | Notes
5, 6 | | Notes
5, 6 | | Notes
5, 6 | bps | | | | | Theoretical value of the maximum transfer rate | | 0.43
Note 7 | | 0.43
Note 7 | | 0.43
Note 7 | Mbps | | | | | $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$ | | | | | | | | **Notes 1.** The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 4.0 V \leq EV $_{DD0} \leq$ 5.5 V and 2.7 V \leq V $_{b} \leq$ 4.0 V Maximum transfer rate = $$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$ [bps] $$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.2}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$ - * This value is the theoretical value of the relative difference between the transmission and reception sides. - 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer. # (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (1/2) (Ta = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) | Parameter | Symbol | Conditions | ` ` | h-speed
Mode | , | v-speed
Mode | , | -voltage
Mode | Unit | |------------------------------|--------|---|------|-----------------|------|-----------------|------|------------------|------| | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SCLr clock frequency | fscL | $\begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned}$ | | 1000
Note 1 | | 300
Note 1 | | 300
Note 1 | kHz | | | | $ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $ | | 1000
Note 1 | | 300
Note 1 | | 300
Note 1 | kHz | | | | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $ | | 400
Note 1 | | 300
Note 1 | | 300
Note 1 | kHz | | | | $\label{eq:section} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$ | | 400
Note 1 | | 300
Note 1 | | 300
ote 1 | kHz | | | | $\begin{split} &1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$ | | 300
Note 1 | | 300
Note 1 | | 300
Note 1 | kHz | | Hold time when SCLr = "L" | tLOW | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $ | 475 | | 1550 | | 1550 | | ns | | | | $ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $ | 475 | | 1550 | | 1550 | | ns | | | | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $ | 1150 | | 1550 | | 1550 | | ns | | | | $\label{eq:section} \begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$ | 1150 | | 1550 | | 1550 | | ns | | | | $\begin{split} &1.8~V \leq EV_{DD0} < 3.3~V,\\ &1.6~V \leq V_b \leq 2.0~V^{\text{Note 2}},\\ &C_b = 100~pF,~R_b = 5.5~k\Omega \end{split}$ | 1550 | | 1550 | | 1550 | | ns | | Hold time when SCLr
= "H" | tніgн | $\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$ | 245 | | 610 | | 610 | | ns | | | | $\label{eq:section} \begin{split} 2.7 \ V & \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V & \leq V_b \leq 2.7 \ V, \\ C_b & = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$ | 200 | | 610 | | 610 | | ns | | | | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $ | 675 | | 610 | | 610 | | ns | | | | $\begin{split} 2.7 \ V &\leq EV_{DDO} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$ | 600 | | 610 | | 610 | | ns | | | | $\begin{split} &1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$ | 610 | | 610 | | 610 | | ns | (2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{REFM}} = 0 \text{ V})$ | Parameter | Symbol | Conditi | MIN. | TYP. | MAX. | Unit | | |--|---------------------------------|---|--|--------|-------|---------------------|------| | Resolution | RES | | | 8 | | 10 | bit | | Overall error ^{Note 1} | AINL | 10-bit resolution | $1.8~V \leq AV_{REFP} \leq 5.5~V$ | | 1.2 | ±5.0 | LSB | | | EVDD0 = AVREFP = VD | EVDD0 = AVREFP = VDD Notes 3, 4 | $1.6~V \leq AV_{REFP} \leq 5.5~V^{Note}$ | | 1.2 | ±8.5 | LSB | | Conversion time | tconv | 10-bit resolution | $3.6~V \leq V_{DD} \leq 5.5~V$ | 2.125 | | 39 | μS | | | | Target ANI pin : ANI16 to | $2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$ | 3.1875 | | 39 | μS | | | | ANI26 | 1.8 V ≤ VDD ≤ 5.5 V | 17 | | 39 | μS | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ | 57 | | 95 | μS | | Zero-scale error ^{Notes 1, 2} | Ezs | 10-bit resolution | $1.8~V \leq AV_{REFP} \leq 5.5~V$ | | | ±0.35 | %FSR | | | EVDD0 = AVREFP = VDD Notes 3, 4 | $1.6~V \leq AV_{REFP} \leq 5.5~V^{Note}$ | | | ±0.60 | %FSR | | | Full-scale error ^{Notes 1, 2} | Ers | 10-bit resolution | 1.8 V ≤ AV _{REFP} ≤ 5.5 V | | | ±0.35 | %FSR | | | | EVDD0 = AVREFP = VDD Notes 3, 4 | $1.6~V \le AV_{REFP} \le 5.5~V^{Note}$ | | | ±0.60 | %FSR | | Integral linearity error ^{Note} | ILE | 10-bit resolution | 1.8 V ≤ AV _{REFP} ≤ 5.5 V | | | ±3.5 | LSB | | 1 | | EVDD0 = AVREFP = VDD Notes 3, 4 | $1.6~V \le AV_{REFP} \le 5.5~V^{Note}$ | | | ±6.0 | LSB | | Differential linearity | DLE | 10-bit resolution | 1.8 V ≤ AV _{REFP} ≤ 5.5 V | | | ±2.0 | LSB | | error Note 1 | | EVDD0 = AV _{REFP} = V _{DD} Notes 3, 4 | $1.6~V \le AV_{REFP} \le 5.5~V^{Note}$ | | | ±2.5 | LSB | | Analog input voltage | VAIN | ANI16 to ANI26 | , | 0 | | AVREFP
and EVDD0 | V | - **Notes 1.** Excludes quantization error (±1/2 LSB). - 2. This value is indicated as a ratio (%FSR) to the full-scale value. - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows. Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AVREFP = VDD. - **4.** When $AV_{REFP} < EV_{DD0} \le V_{DD}$, the MAX. values are as follows. - Overall error: Add ± 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD. 5. When the conversion time is set to 57 μs (min.) and 95 μs (max.). ### 3.4 AC Characteristics ### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Items | Symbol | | Conditions | 3 | MIN. | TYP. | MAX. | Unit | |--|-----------------|---|----------------|--|-----------|------|------|--------------------| | Instruction cycle (minimum | Tcy | Main | HS (high-speed | $1 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ | 0.03125 | | 1 | μS | | instruction execution time) | | system
clock (fmain)
operation | main) mode | $2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$ | 0.0625 | | 1 | μS | | | | Subsystem of operation | clock (fsua) | $2.4~V \le V_{DD} \le 5.5~V$ | 28.5 | 30.5 | 31.3 | μS | | | | In the self | HS (high-speed | $1 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ | 0.03125 | | 1 | μS | | | | programming mode | main) mode | $2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$ | 0.0625 | | 1 | μS | | External system clock frequency | fex | $2.7 \text{ V} \leq \text{V}_{DD} \leq$ | ≤ 5.5 V | | 1.0 | | 20.0 | MHz | | | | 2.4 V ≤ V _{DD} < | < 2.7 V | | 1.0 | | 16.0 | MHz | | | fexs | | | | 32 | | 35 | kHz | | External system clock input high- | texh, texl | $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ | | 24 | | | ns | | | evel width, low-level width | | $2.4~V \leq V_{DD} < 2.7~V$ | | | 30 | | | ns | | | texhs,
texhs | | | | 13.7 | | | μS | | TI00 to TI07, TI10 to TI17 input high-level width, low-level width | tтін,
tтіL | | | | 1/fмск+10 | | | ns ^{Note} | | TO00 to TO07, TO10 to TO17 | f то | HS (high-spe | eed 4.0 V | ≤ EV _{DD0} ≤ 5.5 V | | | 16 | MHz | | output frequency | | main) mode | 2.7 V | ≤ EV _{DD0} < 4.0 V | | | 8 | MHz | | | | | 2.4 V | ≤ EV _{DD0} < 2.7 V | | | 4 | MHz | | PCLBUZ0, PCLBUZ1 output | fpcL | HS (high-spe | eed 4.0 V | ≤ EV _{DD0} ≤ 5.5 V | | | 16 | MHz | | frequency | | main) mode | 2.7 V | ≤ EV _{DD0} < 4.0 V | | | 8 | MHz | | | | | 2.4 V | ≤ EV _{DD0} < 2.7 V | | | 4 | MHz | | Interrupt input high-level width, | tinth, | INTP0 | 2.4 V | $\leq V_{DD} \leq 5.5 \text{ V}$ | 1 | | | μS | | low-level width | tintl | INTP1 to INT | TP11 2.4 V | $\leq EV_{DD0} \leq 5.5 V$ | 1 | | | μS | | Key interrupt input low-level width | t KR | KR0 to KR7 | 2.4 V | $\leq EV_{DD0} \leq 5.5 \text{ V}$ | 250 | | | ns | | RESET low-level width | trsL | | • | | 10 | | | μS | **Note** The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$ $2.4V \le EV_{DD0} < 2.7 \text{ V}$: MIN. 125 ns Remark fmck: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7)) # CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) # CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13) #### (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | | Condit | ions | HS (high-spee | ed main) Mode | Unit | |---------------|--------|--------------|--|---|---------------|----------------|------| | | | | | | MIN. | MAX. | | | Transfer rate | | Transmission | $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ | | | Note 1 | bps | | | | | $2.7~V \leq V_b \leq 4.0~V$ | Theoretical value of the maximum transfer rate $C_b = 50 \ pF, \ R_b = 1.4 \ k\Omega, \ V_b = 2.7 \ V$ | | 2.6 Note 2 | Mbps | | | | | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0$ | | | Note 3 | bps | | | | | $V,$ $2.3~V \leq V_b \leq 2.7~V$ | Theoretical value of the maximum transfer rate $C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega, \ V_b = 2.3 \ V$ | | 1.2 Note 4 | Mbps | | | | | 2.4 V ≤ EV _{DD0} < 3.3 | | | Note 5 | bps | | | | | $V,$ $1.6~V \leq V_b \leq 2.0~V$ | Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 V$ | | 0.43
Note 6 | Mbps | **Notes 1.** The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 4.0 V \leq EV_{DD0} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V Maximum transfer rate = $$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$ [bps] $$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.2}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$ - * This value is the theoretical value of the relative difference between the transmission and reception sides. - 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer. - 3. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V \leq EV_{DDO} < 4.0 V and 2.4 V \leq V_b \leq 2.7 V Maximum transfer rate = $$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$ [bps] $$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.0}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$ - * This value is the theoretical value of the relative difference between the transmission and reception sides. - **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer. (4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{HS (high-speed main) mode)}$ | Parameter | Symbol | Cond | ditions | MIN. | TYP. | MAX. | Unit | |--|--------|------------------|--------------------------------|------|------|-------------------------|------| | Resolution | RES | | | | 8 | | bit | | Conversion time | tconv | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | 17 | | 39 | μS | | Zero-scale error ^{Notes 1, 2} | Ezs | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | | | ±0.60 | %FSR | | Integral linearity error ^{Note 1} | ILE | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | | | ±2.0 | LSB | | Differential linearity error Note 1 | DLE | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | | | ±1.0 | LSB | | Analog input voltage | Vain | | | 0 | | V _{BGR} Note 3 | ٧ | - **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB). - 2. This value is indicated as a ratio (%FSR) to the full-scale value. - 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics. - 4. When reference voltage (-) = Vss, the MAX. values are as follows. Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM. Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM. Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM. ### 3.6.2 Temperature sensor/internal reference voltage characteristics (TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode) | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |-----------------------------------|---------------------|--|------|------|------|-------| | Temperature sensor output voltage | V _{TMPS25} | Setting ADS register = 80H, Ta = +25°C | | 1.05 | | V | | Internal reference voltage | V _{BGR} | Setting ADS register = 81H | 1.38 | 1.45 | 1.5 | V | | Temperature coefficient | FVTMPS | Temperature sensor that depends on the temperature | | -3.6 | | mV/°C | | Operation stabilization wait time | tamp | | 5 | | | μS | #### 3.6.3 POR circuit characteristics $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$ | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |---------------------|------------------|------------------------|------|------|------|------| | Detection voltage | VPOR | Power supply rise time | 1.45 | 1.51 | 1.57 | V | | | V _{PDR} | Power supply fall time | 1.44 | 1.50 | 1.56 | V | | Minimum pulse width | T _{PW} | | 300 | | | μS | **Note** Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC). ### 4.13 100-pin Products R5F100PFAFB, R5F100PGAFB, R5F100PHAFB, R5F100PJAFB, R5F100PKAFB, R5F100PLAFB R5F101PFAFB, R5F101PGAFB, R5F101PHAFB, R5F101PJAFB, R5F101PKAFB, R5F101PLAFB R5F100PFDFB, R5F100PGDFB, R5F100PHDFB, R5F100PJDFB, R5F100PKDFB, R5F101PGDFB, R5F101PGDFB, R5F101PJDFB, R5F101PJDFB, R5F101PLDFB R5F100PFGFB, R5F100PGGFB, R5F100PHGFB, R5F100PJGFB | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |-----------------------|--------------|-----------------|-----------------| | P-LFQFP100-14x14-0.50 | PLQP0100KE-A | P100GC-50-GBR-1 | 0.69 | ©2012 Renesas Electronics Corporation. All rights reserved. # RL78/G13 Data Sheet | | | | Description | | |-------------------|--------------|------------|--|--| | Rev. | Date | Page | Summary | | | 1.00 | Feb 29, 2012 | - | First Edition issued | | | 2.00 Oct 12, 2012 | | 7 | Figure 1-1. Part Number, Memory Size, and Package of RL78/G13: Pin count corrected. | | | | | 25 | 1.4 Pin Identification: Description of pins INTP0 to INTP11 corrected. | | | | | 40, 42, 44 | 1.6 Outline of Functions: Descriptions of Subsystem clock, Low-speed on-chip oscillator, and General-purpose register corrected. | | | | | 41, 43, 45 | 1.6 Outline of Functions: Lists of Descriptions changed. | | | | | 59, 63, 67 | Descriptions of Note 8 in a table corrected. | | | | | 68 | (4) Common to RL78/G13 all products: Descriptions of Notes corrected. | | | | | 69 | 2.4 AC Characteristics: Symbol of external system clock frequency corrected. | | | | | 96 to 98 | 2.6.1 A/D converter characteristics: Notes of overall error corrected. | | | | | 100 | 2.6.2 Temperature sensor characteristics: Parameter name corrected. | | | | | 104 | 2.8 Flash Memory Programming Characteristics: Incorrect descriptions corrected. | | | | | 116 | 3.10 52-pin products: Package drawings of 52-pin products corrected. | | | | | 120 | 3.12 80-pin products: Package drawings of 80-pin products corrected. | | | 3.00 | Aug 02, 2013 | 1 | Modification of 1.1 Features | | | | | 3 | Modification of 1.2 List of Part Numbers | | | | | 4 to 15 | Modification of Table 1-1. List of Ordering Part Numbers, note, and caution | | | | | 16 to 32 | Modification of package type in 1.3.1 to 1.3.14 | | | | | 33 | Modification of description in 1.4 Pin Identification | | | | | 48, 50, 52 | Modification of caution, table, and note in 1.6 Outline of Functions | | | | | 55 | Modification of description in table of Absolute Maximum Ratings (T _A = 25°C) | | | | | 57 | Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics | | | | | 57 | Modification of table in 2.2.2 On-chip oscillator characteristics | | | | | 58 | Modification of note 3 of table (1/5) in 2.3.1 Pin characteristics | | | | | 59 | | | | | | | Modification of note 3 of table (2/5) in 2.3.1 Pin characteristics | | | | | 63 | Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products | | | | | 64 | Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products | | | | | 65 | Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products | | | | | 66 | Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products | | | | | 68 | Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products | | | | | 70 | Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products | | | | | 72 | Modification of notes 1 and 4 in (3) Flash ROM: 384 to 512 KB of 44- to 100-pin products | | | | | 74 | Modification of notes 1, 5, and 6 in (3) Flash ROM: 384 to 512 KB of 44- to 100-pin products | | | | | 75 | Modification of (4) Peripheral Functions (Common to all products) | | | | | 77 | Modification of table in 2.4 AC Characteristics | | | | | 78, 79 | Addition of Minimum Instruction Execution Time during Main System Clock Operation | | | | | 80 | Modification of figures of AC Timing Test Points and External System Clock Timing | | | | | | Description | | |------|--------------|-------------------|---|--| | Rev. | Date | Date Page Summary | | | | 3.00 | Aug 02, 2013 | 163 | Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2) | | | | | 164, 165 | Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2) | | | | | 166 | Modification of table in 3.5.2 Serial interface IICA | | | | | 166 | Modification of IICA serial transfer timing | | | | | 167 | Addition of table in 3.6.1 A/D converter characteristics | | | | | 167, 168 | Modification of table and notes 3 and 4 in 3.6.1 (1) | | | | | 169 | Modification of description in 3.6.1 (2) | | | | | 170 | Modification of description and note 3 in 3.6.1 (3) | | | | | 171 | Modification of description and notes 3 and 4 in 3.6.1 (4) | | | | | 172 | Modification of table and note in 3.6.3 POR circuit characteristics | | | | | 173 | Modification of table of LVD Detection Voltage of Interrupt & Reset Mode | | | | | 173 | Modification from Supply Voltage Rise Time to 3.6.5 Power supply voltage rising slope characteristics | | | | | 174 | Modification of 3.9 Dedicated Flash Memory Programmer Communication (UART) | | | | | 175 | Modification of table, figure, and remark in 3.10 Timing Specs for Switching Flash Memory Programming Modes | | | 3.10 | Nov 15, 2013 | 123 | Caution 4 added. | | | | | 125 | Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted. | | | 3.30 | Mar 31, 2016 | | Modification of the position of the index mark in 25-pin plastic WFLGA (3 \times 3 mm, 0.50 mm pitch) of 1.3.3 25-pin products | | | | | | Modification of power supply voltage in 1.6 Outline of Functions [20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products] | | | | | | Modification of power supply voltage in 1.6 Outline of Functions [40-pin, 44-pin, 48-pin, 52-pin, 64-pin products] | | | | | | Modification of power supply voltage in 1.6 Outline of Functions [80-pin, 100-pin, 128-pin products] | | | | | | ACK corrected to ACK | | | | | | ACK corrected to ACK | | All trademarks and registered trademarks are the property of their respective owners. SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan. Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.