

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Ξ·ΧΕΙ

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I²C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100lggfb-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Part Numbers

- **Notes** 1. Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}C$)", and "G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$)"
 - **2.** Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}C$)", and "D: Industrial applications ($T_A = -40$ to $+85^{\circ}C$)"

1.3.7 40-pin products

• 40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch)

Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to $V_{ss.}$

- The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).
- 4. When setting to PIOR = 1

												(2/2	.)
Ite	m	20-	·pin	24-	pin	25-	pin	30-	pin	32-	-pin	36	-pin
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	R5F101Cx
Clock output/buzze	er output		_		1		1		2		2		2
		• 2.44 (Mair	kHz, 4.8 n systen	38 kHz, 9 n clock: f	0.76 kHz main = 20	, 1.25 MI) MHz op	Hz, 2.5 N eration)	/Hz, 5 M	IHz, 10 N	MHz			
8/10-bit resolution	A/D converter	6 channels 6 channels 6 channels 8 channels 8 channels 8 channels											
 CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel (30-pin, 32-pin products) CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel (SSI: 1 channel/simplified I²C: 1 channel/UART (UART supporting LIN-bus): 1 cha (36-pin products) (SSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel (SSI: 1 channel/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 cl (SSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 cl (SSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 cl (1²C bus - 1 channel 1 channel 1 channel (SSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 cl (1²C bus - 1 channel 1 channel (1²C bus - 1 channel 1 channel (1²C bus - 1 channel 1 channel (1²C bus - 1 channel<!--</td--><td>channel</td><td>nel</td>						channel	nel						
DMA controller		2 chanı	nels						·				
Vectored interrupt	Internal	2	23	2	24	2	24	2	27	2	27	2	27
sources	External		3		5		5		6		6		6
Key interrupt								-					
Reset		 Rese Intern Intern Intern Intern Intern Intern Intern 	t by RE nal reset nal reset nal reset nal reset nal reset nal reset	SET pin t by watc t by powe t by volta t by illega t by RAN t by illega	hdog tin er-on-res ge deter al instruc I parity e al-memo	ner set ctor ction exer error error	cution ^{№t} s	e					
Power-on-reset cir	cuit	Powe	ər-on-res ər-down	set: reset:	I.51 V (1 I.50 V (1	ГҮР.) ГҮР.)							
Voltage detector		RisinFallir	g edge : 1g edge	:	1.67 V to 1.63 V to	9 4.06 V (9 3.98 V ((14 stage (14 stage	es) es)					
On-chip debug fun	iction	Provide	ed .										
Power supply volta	age	V _{DD} = 1	.6 to 5.5	V (T _A =	-40 to +	85°C)							
		V _{DD} = 2	.4 to 5.5	$V(T_A = \cdot$	-40 to +1	105°C)							
Operating ambient	temperature	T _A = 40 T _A = 40	∙ to +85°) to +105	C (A: Co 5°C (G: Ir	nsumer ndustrial	applicati applicati	ons, D: I ions)	ndustria	l applica	tions)			

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 3}$	Basic	$V_{DD} = 5.0 V$		2.3		mA
Current Note 1		mode	speed main)		operation	$V_{DD} = 3.0 V$		2.3		mA
			mode		Normal	V _{DD} = 5.0 V		5.2	8.5	mA
					operation	V _{DD} = 3.0 V		5.2	8.5	mA
				fin = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		4.1	6.6	mA
					operation	V _{DD} = 3.0 V		4.1	6.6	mA
				fін = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.0	4.7	mA
					operation	V _{DD} = 3.0 V		3.0	4.7	mA
			LS (low-	fi⊢ = 8 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.3	2.1	mA
			speed main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.3	2.1	mA
			LV (low-	$f_{IH} = 4 \text{ MHz}^{Note 3}$	Normal	V _{DD} = 3.0 V		1.3	1.8	mA
			voltage main) mode Note 5		operation	V _{DD} = 2.0 V		1.3	1.8	mA
			HS (high-	fмx = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.4	5.5	mA
			speed main)	$V_{DD} = 5.0 V$	operation	Resonator connection		3.6	5.7	mA
			mode	$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal	Square wave input		3.4	5.5	mA
	TMX = VDD = fMX =	$V_{DD} = 3.0 V$	operation	Resonator connection		3.6	5.7	mA		
			$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.1	3.2	mA	
			$V_{DD} = 5.0 V$	operation	Resonator connection		2.1	3.2	mA	
		$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.1	3.2	mA		
				$V_{DD} = 3.0 V$	operation	Resonator connection		2.1	3.2	mA
			LS (low-	$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.2	2.0	mA
			speed main)	V _{DD} = 3.0 V	operation	Resonator connection		1.2	2.0	mA
			mode	$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.2	2.0	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.2	2.0	mA
			Subsystem	fsub = 32.768 kHz	Normal	Square wave input		4.8	5.9	μA
			operation	$T_A = -40^{\circ}C$	operation	Resonator connection		4.9	6.0	μA
				fsub = 32.768 kHz	Normal	Square wave input		4.9	5.9	μA
				T _A = +25°C	operation	Resonator connection		5.0	6.0	μA
				fsue = 32.768 kHz	Normal	Square wave input		5.0	7.6	μA
			$T_A = +50^{\circ}C$	operation	Resonator connection		5.1	7.7	μA	
	$T_{A} = -$ $f_{SUB} =$ $Note 4$ $T_{A} = -$	fsuв = 32.768 kHz	Normal	Square wave input		5.2	9.3	μA		
		Note 4	operation	Resonator connection		5.3	9.4	μA		
			T _A = +70°C							
				fsub = 32.768 kHz	Normal operation	Square wave input		5.7	13.3	μA
				T _A = +85°C				5.0	13.4	μΑ

(Notes and Remarks are listed on the next page.)

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}) (1/2)$

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	$f_{\text{IH}} = 32 \text{ MHz}^{\text{Note 3}}$	Basic	$V_{DD} = 5.0 V$		2.6		mA
current		mode	speed main) mode ^{№te 5}		operation	$V_{DD} = 3.0 V$		2.6		mA
			mode		Normal	$V_{DD} = 5.0 V$		6.1	9.5	mA
					operation	$V_{DD} = 3.0 V$		6.1	9.5	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	V _{DD} = 5.0 V		4.8	7.4	mA
					operation	$V_{DD} = 3.0 V$		4.8	7.4	mA
				$f_{\text{IH}} = 16 \; MHz^{Note \; 3}$	Normal	$V_{DD} = 5.0 V$		3.5	5.3	mA
					operation	$V_{DD} = 3.0 V$		3.5	5.3	mA
			LS (low-	$f_{IH} = 8 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 3.0 V$		1.5	2.3	mA
			speed main) mode ^{Note 5}		operation	$V_{DD} = 2.0 V$		1.5	2.3	mA
			LV (low-	$f_{IH} = 4 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 3.0 V$		1.5	2.0	mA
			voltage main) mode		operation	$V_{DD} = 2.0 V$		1.5	2.0	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal	Square wave input		3.9	6.1	mA
			speed main) mode ^{Note 5}	$V_{DD} = 5.0 V$	operation	Resonator connection		4.1	6.3	mA
				$f_{MX} = 20 \text{ MHz}^{Note 2}$,	Normal	Square wave input		3.9	6.1	mA
				$V_{DD} = 3.0 V$	operation	Resonator connection		4.1	6.3	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2}$,	Normal	Square wave input		2.5	3.7	mA
			$V_{DD} = 5.0 V$	operation	Resonator connection		2.5	3.7	mA	
				$f_{MX} = 10 \text{ MHz}^{Note 2}$,	Normal	Square wave input		2.5	3.7	mA
				$V_{DD} = 3.0 V$	operation	Resonator connection		2.5	3.7	mA
			LS (low-	$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.4	2.2	mA
			speed main) mode ^{Note 5}	$V_{DD} = 3.0 V$	operation	Resonator connection		1.4	2.2	mA
				$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.4	2.2	mA
				$V_{DD} = 2.0 V$	operation	Resonator connection		1.4	2.2	mA
			Subsystem	fsub = 32.768 kHz	Normal	Square wave input		5.4	6.5	μA
			clock operation	$T_A = -40^{\circ}C$	operation	Resonator connection		5.5	6.6	μA
				fsue = 32.768 kHz	Normal	Square wave input		5.5	6.5	μA
				T _A = +25°C	operation	Resonator connection		5.6	6.6	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.6	9.4	μA
			$T_{A} = +50^{\circ}C$	operation	Resonator connection		5.7	9.5	μA	
		fsue = 32.768 kHz	Normal	Square wave input		5.9	12.0	μA		
		N N	TA = +70°C	operation	Resonator connection		6.0	12.1	μA	
				fsuв = 32.768 kHz	Normal	Square wave input		6.6	16.3	μA
				Note 4 TA = $+85^{\circ}C$	operation	Resonator connection		6.7	16.4	μA

(Notes and Remarks are listed on the next page.)

- 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode.

Remarks 1. fill: Low-speed on-chip oscillator clock frequency

- **2.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

AC Timing Test Points Vін/Vон Vін/Vон Test points VIL/VOL VIL/VOL **External System Clock Timing** 1/f_{EX}/ 1/f_{EXS} texl/ texн/ **t**EXLS **t**EXHS EXCLK/EXCLKS **TI/TO Timing** t⊤ı∟ tтıн TI00 to TI07, TI10 to TI17 **1/f**то TO00 to TO07, TO10 to TO17 **Interrupt Request Input Timing t**INTL **t**INTH INTP0 to INTP11 **Key Interrupt Input Timing t**ĸĸ KR0 to KR7 **RESET** Input Timing tRSL RESET

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
 h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

Unit

ns

60

130

tput,

(7) Communica correspondi	tion at di	ifferent poter) only) (1/2)	ntial (2.5 V, 3 V) (CSI	mode) (r	naster i	node, S	СКр і	nternal o	clock ou
Parameter	Symbol		0 = EVDD1 S VDD S 3.3 Conditions	HS (high main)	h-speed Mode	LS (low main)	= 0 v) /-speed Mode	LV (low main)	-voltage Mode
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.
SCKp cycle time	t ксү1	tксү1 ≥ 2 /fclк	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	200		1150		1150	
			$\label{eq:cb} \begin{split} C_b &= 20 \text{ pF}, R_b = 1.4 \\ k\Omega \end{split}$						
			$\label{eq:states} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \end{array}$	300		1150		1150	
			C_b = 20 pF, R_b = 2.7 $k\Omega$						
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \\ 2.7 \ V \leq V_{\text{b}} \leq \end{array}$	₀ ≤ 5.5 V, 4.0 V,	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50	
		$C_{b} = 20 \text{ pF}, \text{ f}$	R _b = 1.4 kΩ						
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} \\ 2.3 \ V \leq V_b \leq \end{array}$	o < 4.0 V, 2.7 V,	tксү1/2 – 120		tксү1/2 – 120		tксү1/2 – 120	
		C₀ = 20 pF, I	R _b = 2.7 kΩ						
SCKp low-level width	tĸ∟1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $2.7 \text{ V} \leq \text{V}_{\text{b}} \leq$	₀ ≤ 5.5 V, 4.0 V,	tксү1/2 – 7		tксү1/2 – 50		tксү1/2 – 50	
		$C_{b} = 20 \text{ pF}, \text{ F}$	R₀ = 1.4 kΩ						
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \\ 2.3 \ V \leq V_{\text{b}} \leq \end{array}$	₀ < 4.0 V, 2.7 V,	tксү1/2 – 10		tксү1/2 – 50		tксү1/2 – 50	
		$C_b = 20 \text{ pF}, \text{ f}$	R _b = 2.7 kΩ						
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \\ 2.7 \ V \leq V_{\text{b}} \leq \end{array}$	₀ ≤ 5.5 V, 4.0 V,	58		479		479	
		$C_{b} = 20 \text{ pF}, \text{ f}$	R _b = 1.4 kΩ						
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \\ 2.3 \ V \leq V_{\text{b}} \leq \end{array}$	₀ < 4.0 V, 2.7 V,	121		479		479	
		C _b = 20 pF, I	R _b = 2.7 kΩ						
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$4.0 V \le EV_{DD}$ $2.7 V \le V_{h} \le$	o ≤ 5.5 V, 4.0 V.	10		10		10	

 $2.3~V \leq V_b \leq 2.7~V,$

 $C_b = 20 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$ $2.7 V \le EV_{DD0} < 4.0 V$,

 $2.3~V \leq V_b \leq 2.7~V,$ $C_b = 20 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$ $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$

 $2.7~V \leq V_{b} \leq 4.0~V,$

 $C_{\text{b}}=20 \text{ pF}, \text{ R}_{\text{b}}=1.4 \text{ k}\Omega$ $2.7 V \le EV_{DD0} < 4.0 V$,

 $C_b = 20 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$

(Notes, Caution, and Remarks are listed on the next page.)

Delay time from

 $\mathsf{SCKp}{\downarrow} \text{ to } \mathsf{SOp}$

output Note 1

tks01

10

60

130

10

60

130

10

2.5.2 Serial interface IICA

(1) I^2C standard mode

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	C	Conditions	HS (hig main)	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Standard	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	100	0	100	0	100	kHz
		mode:	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	100	0	100	0	100	kHz
			$1.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	100	0	100	0	100	kHz
			$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$	-		0	100	0	100	kHz
Setup time of restart	tsu:sta	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
condition		$1.8 V \le EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.6 V \le EV_{DD0} \le$	≤ 5.5 V	-	_	4.7		4.7		μs
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	_	_	4.0		4.0		μs
Hold time when SCLA0 =	tLOW	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
"L"		$1.8 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	-	_	4.7		4.7		μs
Hold time when SCLA0 =	tніgн	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
"H"		$1.8 V \le EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.7 V \le EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	-	_	4.0		4.0		μs
Data setup time	tsu:dat	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	250		250		250		ns
(reception)		$1.8 V \le EV_{DD0}$	≤ 5.5 V	250		250		250		ns
		$1.7 V \le EV_{DD0}$	≤ 5.5 V	250		250		250		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	-	_	250		250		ns
Data hold time	thd:dat	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
(transmission) ^{Note 2}		$1.8 V \le EV_{DD0}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
		$1.7 V \le EV_{DD0}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	_	_	0	3.45	0	3.45	μs
Setup time of stop	tsu:sto	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	4.0		4.0		4.0		μs
condition		$1.8 V \le EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.7 V \leq EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	-	_	4.0		4.0		μs
Bus-free time	t BUF	$2.7 V \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.8 V \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.7 V \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	-	_	4.7		4.7		μs

(Notes, Caution and Remark are listed on the next page.)

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

This chapter describes the following electrical specifications.

Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$ R5F100xxGxx

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product.
 - 4. Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.

Remark When RL78/G13 is used in the range of $T_A = -40$ to +85°C, see **CHAPTER 2 ELECTRICAL** SPECIFICATIONS ($T_A = -40$ to +85°C).

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$)" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	Арг	blication
	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz	2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz
	2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz	2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
	LS (low-speed main) mode:	
	1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz	
	LV (low-voltage main) mode:	
	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 4 MHz	
High-speed on-chip oscillator clock	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	$2.4~V \le V_{\text{DD}} \le 5.5~V$
accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C
	±1.5%@ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C
	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	±1.5%@ T _A = -40 to -20°C
	±5.0%@ T _A = -20 to +85°C	
	±5.5%@ T _A = -40 to -20°C	
Serial array unit	UART	UART
	CSI: fcLk/2 (supporting 16 Mbps), fcLk/4	CSI: fclk/4
	Simplified I ² C communication	Simplified I ² C communication
IICA	Normal mode	Normal mode
	Fast mode	Fast mode
	Fast mode plus	
Voltage detector	Rise detection voltage: 1.67 V to 4.06 V	Rise detection voltage: 2.61 V to 4.06 V
	(14 levels)	(8 levels)
	Fall detection voltage: 1.63 V to 3.98 V	Fall detection voltage: 2.55 V to 3.98 V
	(14 levels)	(8 levels)

(Remark is listed on the next page.)

•									
Parameter	Symbol		1	Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high- speed main)	$f_{IH} = 32 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		0.54	2.90	mA
Current	NOTE 2	mode	mode ^{Note 7}		$V_{DD} = 3.0 V$		0.54	2.90	mA
				$f_{\text{IH}} = 24 \text{ MHz}^{\text{Note 4}}$	$V_{DD} = 5.0 V$		0.44	2.30	mA
					$V_{DD} = 3.0 V$		0.44	2.30	mA
				$f_{\text{IH}} = 16 \text{ MHz}^{\text{Note 4}}$	$V_{DD} = 5.0 V$		0.40	1.70	mA
					$V_{DD} = 3.0 V$		0.40	1.70	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		0.28	1.90	mA
			mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.45	2.00	mA
				$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		0.28	1.90	mA
				VDD = 3.0 V	Resonator connection		0.45	2.00	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		0.19	1.02	mA
				VDD = 5.0 V	Resonator connection		0.26	1.10	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		0.19	1.02	mA
				VDD = 3.0 V	Resonator connection		0.26	1.10	mA
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA
			clock	$T_A = -40^{\circ}C$	Resonator connection		0.44	0.76	μA
			operation	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μA
				$T_A = +25^{\circ}C$	Resonator connection		0.49	0.76	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.37	1.17	μA
				$T_A = +50^{\circ}C$	Resonator connection		0.56	1.36	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.53	1.97	μA
				$T_A = +70^{\circ}C$	Resonator connection		0.72	2.16	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.82	3.37	μA
				$T_A = +85^{\circ}C$	Resonator connection		1.01	3.56	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		3.01	15.37	μA
				$T_A = +105^{\circ}C$	Resonator connection		3.20	15.56	μA
	DD3 ^{Note 6}	STOP	$T_{\text{A}} = -40^{\circ}C$				0.18	0.50	μA
		mode ^{Note 8}	T _A = +25°C				0.23	0.50	μA
			T _A = +50°C				0.30	1.10	μA
			T _A = +70°C				0.46	1.90	μA
			T _A = +85°C				0.75	3.30	μA
			T _A = +105°C				2.94	15.30	μA

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (TA = -40 to $+105^{\circ}$ C, 2.4 V $\leq EV_{DD0} \leq V_{DD} \leq 5.5$ V, Vss = EVss₀ = 0 V) (2/2)

(Notes and Remarks are listed on the next page.)

3.5 Peripheral Functions Characteristics

AC Timing Test Points

3.5.1 Serial array unit

(1) During communication at same potential (UART mode)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-spee	ed main) Mode	Unit
			MIN.	MAX.	
Transfer rate Note 1				fмск/12 ^{Note 2}	bps
		Theoretical value of the maximum transfer rate fcLk = 32 MHz, fMck = fcLk		2.6	Mbps

- Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
 - 2. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$. 2.4 V $\leq EV_{DD0} < 2.7$ V : MAX. 1.3 Mbps
- Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

Parameter	Symbol	Conditions	HS (high-sp Mo	beed main) de	Unit
			MIN.	MAX.	
Data setup time (reception)	tsu:dat		1/fмск + 340 Note 2		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 340 Note 2		ns
			1/f _{MCK} + 760 _{Note 2}		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1/f _{MCK} + 760 _{Note 2}		ns
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	1/fмск + 570 Note 2		ns
Data hold time (transmission)	thd:dat		0	770	ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	0	770	ns
			0	1420	ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	0	1420	ns
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	0	1215	ns

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2) (T_A = -40 to +105°C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

3.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS (hi	gh-spee	ed main)	Mode	Unit
			Stan	dard	Fast	Mode	
			Mo	ode			
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: $f_{CLK} \ge 3.5 \text{ MHz}$	1	-	0	400	kHz
		Standard mode: $f_{CLK} \ge 1 \text{ MHz}$	0	100	I	-	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μS
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	t BUF		4.7		1.3		μS

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

<R>

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

 $\begin{array}{ll} \mbox{Standard mode:} & C_b = 400 \mbox{ pF}, \mbox{ } R_b = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ pF}, \mbox{ } R_b = 1.1 \mbox{ } k\Omega \\ \end{array}$

IICA serial transfer timing

3.10 Timing of Entry to Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level
 - thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

4.6 36-pin Products

R5F100CAALA, R5F100CCALA, R5F100CDALA, R5F100CEALA, R5F100CFALA, R5F100CGALA R5F101CAALA, R5F101CCALA, R5F101CDALA, R5F101CEALA, R5F101CFALA, R5F101CGALA R5F100CAGLA, R5F100CCGLA, R5F100CDGLA, R5F100CEGLA, R5F100CFGLA, R5F100CGGLA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-WFLGA36-4x4-0.50	PWLG0036KA-A	P36FC-50-AA4-2	0.023

©2012 Renesas Electronics Corporation. All rights reserved.

R5F100PFAFA, R5F100PGAFA, R5F100PHAFA, R5F100PJAFA, R5F100PKAFA, R5F100PLAFA R5F101PFAFA, R5F101PGAFA, R5F101PHAFA, R5F101PJAFA, R5F101PKAFA, R5F101PLAFA R5F100PFDFA, R5F100PGDFA, R5F100PHDFA, R5F100PJDFA, R5F100PKDFA, R5F100PLDFA R5F101PFDFA, R5F101PGDFA, R5F101PHDFA, R5F101PJDFA, R5F101PKDFA, R5F101PLDFA R5F100PFGFA, R5F100PGGFA, R5F100PHGFA, R5F100PJGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP100-14x20-0.65	PLQP0100JC-A	P100GF-65-GBN-1	0.92

©2012 Renesas Electronics Corporation. All rights reserved.

0.10

0.575

0.825

y ZD

ZE

		Description	
Rev.	Date	Page	Summary
3.00	3.00 Aug 02, 2013		Modification of figure of AC Timing Test Points
		81	Modification of description and note 3 in (1) During communication at same potential (UART mode)
		83	Modification of description in (2) During communication at same potential (CSI mode)
		84	Modification of description in (3) During communication at same potential (CSI mode)
		85	Modification of description in (4) During communication at same potential (CSI mode) (1/2)
		86	Modification of description in (4) During communication at same potential (CSI mode) (2/2)
		88	Modification of table in (5) During communication at same potential (simplified I ² C mode) (1/2)
		89	Modification of table and caution in (5) During communication at same potential (simplified I ² C mode) (2/2)
	91	Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)	
	92, 93	Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)	
	94	Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)	
	95	Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2)	
	96	Modification of table and caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (2/2)	
	97	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)	
	98	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)	
		99	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)
		100	Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)
		102	Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)
	103	Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)	
	106	Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2)	
	107	Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (2/2)	
		109	Addition of (1) I ² C standard mode
		111	Addition of (2) I ² C fast mode
	112	Addition of (3) I ² C fast mode plus	
	112	Modification of IICA serial transfer timing	
		113	Addition of table in 2.6.1 A/D converter characteristics
		113	Modification of description in 2.6.1 (1)
		114	Modification of notes 3 to 5 in 2.6.1 (1)
		115	Modification of description and notes 2, 4, and 5 in 2.6.1 (2)
		116	Modification of description and notes 3 and 4 in 2.6.1 (3)
		117	Modification of description and notes 3 and 4 in 2.6.1 (4)