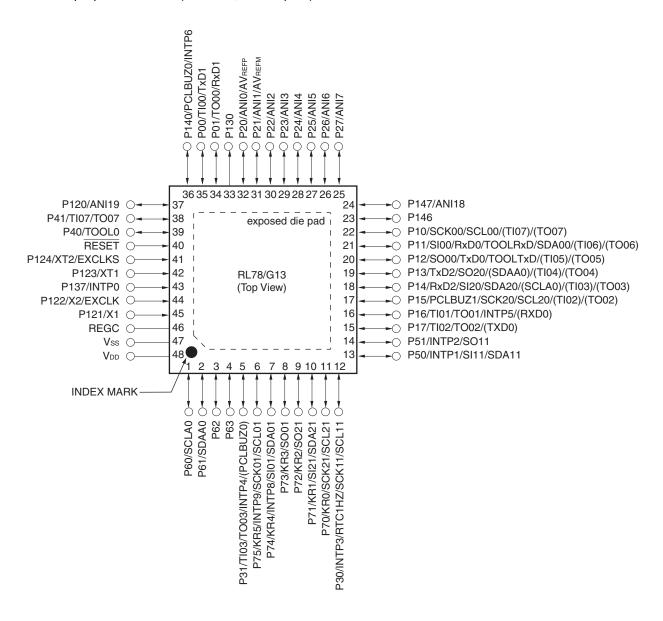


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"


Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFBGA
Supplier Device Package	64-VFBGA (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100lhabg-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G13 1. OUTLINE

• 48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to $V_{\rm ss.}$

RL78/G13 1. OUTLINE

1.4 Pin Identification

ANI0 to ANI14, REGC: Regulator capacitance RESET: ANI16 to ANI26: Reset Analog input AVREFM: A/D converter reference RTC1HZ: Real-time clock correction clock potential (- side) input (1 Hz) output AVREFP: A/D converter reference RxD0 to RxD3: Receive data potential (+ side) input SCK00, SCK01, SCK10, EVDD0, EVDD1: Power supply for port SCK11, SCK20, SCK21, EVsso, EVss1: Ground for port SCLA0, SCLA1: Serial clock input/output EXCLK: External clock input (Main SCLA0, SCLA1, SCL00, SCL01, SCL10, SCL11, system clock) **EXCLKS**: External clock input SCL20, SCL21, SCL30, (Subsystem clock) SCL31: Serial clock output INTP0 to INTP11: Interrupt request from SDAA0, SDAA1, SDA00, peripheral SDA01, SDA10, SDA11, KR0 to KR7: Key return SDA20,SDA21, SDA30, P00 to P07: Port 0 SDA31: Serial data input/output P10 to P17: Port 1 SI00, SI01, SI10, SI11, P20 to P27: Port 2 SI20, SI21, SI30, SI31: Serial data input P30 to P37: Port 3 SO00, SO01, SO10, P40 to P47: Port 4 SO11, SO20, SO21, P50 to P57: Port 5 SO30, SO31: Serial data output P60 to P67: Port 6 TI00 to TI07, P70 to P77: Port 7 TI10 to TI17: Timer input P80 to P87: Port 8 TO00 to TO07. P90 to P97: Port 9 TO10 to TO17: Timer output P100 to P106: Port 10 TOOL0: Data input/output for tool P110 to P117: Port 11 TOOLRxD, TOOLTxD: Data input/output for external device P120 to P127: Port 12 TxD0 to TxD3: Transmit data P130, P137: Port 13 V_{DD}: Power supply P140 to P147: Port 14 Vss: Ground P150 to P156: Port 15 X1, X2: Crystal oscillator (main system clock) PCLBUZ0, PCLBUZ1: Programmable clock XT1, XT2: Crystal oscillator (subsystem clock) output/buzzer output

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (1/2)

Parameter	Symbol			Conditions	,	_	MIN.	TYP.	MAX.	Unit									
Supply current Note 1	I _{DD1}	Operating	HS (high-	fih = 32 MHz Note 3	Basic	V _{DD} = 5.0 V		2.6		mA									
current		mode	speed main) mode Note 5		operation	$V_{DD} = 3.0 \text{ V}$		2.6		mA									
					Normal	$V_{DD} = 5.0 \text{ V}$		6.1	9.5	mA									
					operation	$V_{DD} = 3.0 \text{ V}$		6.1	9.5	mA									
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 \text{ V}$		4.8	7.4	mA									
					operation	$V_{DD} = 3.0 \text{ V}$		4.8	7.4	mA									
				$f_{IH} = 16 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 \text{ V}$		3.5	5.3	mA									
					operation	$V_{DD} = 3.0 \text{ V}$		3.5	5.3	mA									
			LS (low-	$f_{IH} = 8 \text{ MHz}^{Note 3}$	Nomal	$V_{DD} = 3.0 \text{ V}$		1.5	2.3	mA									
			speed main) mode Note 5		operation	V _{DD} = 2.0 V		1.5	2.3	mA									
			LV (low-	$f_{IH} = 4 \text{ MHz}^{\text{Note 3}}$	Normal	V _{DD} = 3.0 V		1.5	2.0	mA									
			voltage main) mode		operation	V _{DD} = 2.0 V		1.5	2.0	mA									
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.9	6.1	mA									
			mode Note 5	$V_{DD} = 5.0 \text{ V}$	operation	Resonator connection		4.1	6.3	mA									
				1 1	Normal	Square wave input		3.9	6.1	mA									
			$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		4.1	6.3	mA										
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.5	3.7	mA									
			LS (low-	$V_{DD} = 5.0 \text{ V}$	operation	Resonator connection		2.5	3.7	mA									
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input		2.5	3.7	mA									
				$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		2.5	3.7	mA									
				$f_{MX} = 8 MHz^{Note 2}$	Normal	Square wave input		1.4	2.2	mA									
			speed main) mode Note 5	$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		1.4	2.2	mA									
				$f_{MX} = 8 MHz^{Note 2}$	Nomal	Square wave input		1.4	2.2	mA									
				$V_{DD} = 2.0 \text{ V}$	operation	Resonator connection		1.4	2.2	mA									
			Subsystem	fsub = 32.768 kHz	Nomal	Square wave input		5.4	6.5	μΑ									
			clock operation	T _A = -40°C	operation	Resonator connection		5.5	6.6	μΑ									
				fsuB = 32.768 kHz	Nomal	Square wave input		5.5	6.5	μΑ									
			No.	N-	N	N	No	No	Not	Note 4	1	Not	T _A = +25°C	operation	Resonator connection		5.6	6.6	μΑ
				fsub = 32.768 kHz	Nomal	Square wave input		5.6	9.4	μΑ									
				TA = +50°C	operation	Resonator connection		5.7	9.5	μΑ									
				fsuB = 32.768 kHz	Normal	Square wave input		5.9	12.0	μΑ									
				Note 4 $T_A = +70^{\circ}C$	operation	Resonator connection		6.0	12.1	μΑ									
				fsuв = 32.768 kHz	Normal	Square wave input		6.6	16.3	μΑ									
			N-				Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		6.7	16.4	μΑ						

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz

 $2.4~V \leq V_{DD} \leq 5.5~V @ 1~MHz$ to 16 MHz

LS (low-speed main) mode: $1.8~V \le V_{DD} \le 5.5~V~@1~MHz$ to 8~MHz LV (low-voltage main) mode: $1.6~V \le V_{DD} \le 5.5~V~@1~MHz$ to 4~MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2}	HALT	HS (high-	f _{IH} = 32 MHz ^{Note 4}	V _{DD} = 5.0 V		0.62	1.89	mA
current	Note 2	mode	speed main) mode Note 7		V _{DD} = 3.0 V		0.62	1.89	mA
			mode	fih = 24 MHz Note 4	V _{DD} = 5.0 V		0.50	1.48	mA
					V _{DD} = 3.0 V		0.50	1.48	mA
				fih = 16 MHz Note 4	V _{DD} = 5.0 V		0.44	1.12	mA
					V _{DD} = 3.0 V		0.44	1.12	mA
			LS (low-	fih = 8 MHz Note 4	V _{DD} = 3.0 V		290	620	μΑ
			speed main) mode Note 7		V _{DD} = 2.0 V		290	620	μΑ
			LV (low-	fih = 4 MHz Note 4	V _{DD} = 3.0 V		460	700	μΑ
			voltage main) mode		V _{DD} = 2.0 V		460	700	μΑ
			HS (high-	fmx = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.14	mA
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.48	1.34	mA
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		0.31	1.14	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	1.34	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.21	0.68	mA
				V _{DD} = 5.0 V	Resonator connection		0.28	0.76	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	0.68	mA
				V _{DD} = 3.0 V	Resonator connection		0.28	0.76	mA
			LS (low-	$f_{MX} = 8 MHz^{Note 3}$	Square wave input		110	390	μΑ
			speed main) mode Note 7	V _{DD} = 3.0 V	Resonator connection		160	450	μΑ
				$f_{MX} = 8 MHz^{Note 3},$	Square wave input		110	390	μΑ
				V _{DD} = 2.0 V	Resonator connection		160	450	μΑ
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.66	μΑ
			clock operation	T _A = -40°C	Resonator connection		0.50	0.85	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.38	0.66	μΑ
				T _A = +25°C	Resonator connection		0.57	0.85	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.47	3.49	μΑ
				T _A = +50°C	Resonator connection		0.66	3.68	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.80	6.10	μΑ
				T _A = +70°C	Resonator connection		0.99	6.29	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		1.52	10.46	μΑ
				T _A = +85°C	Resonator connection		1.71	10.65	μΑ
	IDD3 Note 6	STOP mode ^{Note 8}	T _A = -40°C				0.19	0.54	μΑ
		mode	T _A = +25°C				0.26	0.54	μΑ
			T _A = +50°C				0.35	3.37	μΑ
			T _A = +70°C				0.68	5.98	μA
			T _A = +85°C				1.40	10.34	μΑ

(Notes and Remarks are listed on the next page.)

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	C	Conditions	HS (high main)	•	LS (low main)	•	LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 4/fс∟к	$2.7~V \leq EV_{DD0} \leq 5.5$ V	125		500		1000		ns
			$2.4~V \le EV_{DD0} \le 5.5$ V	250		500		1000		ns
			$1.8~V \le EV_{DD0} \le 5.5$ V	500		500		1000		ns
			$1.7~V \le EV_{DD0} \le 5.5$ V	1000		1000		1000		ns
			$1.6~V \le EV_{DD0} \le 5.5$ V	_		1000		1000		ns
SCKp high-/low-level width	tkhi, tkli	4.0 V ≤ EV _{DD0} ≤ 5.5 V		tксү1/2 – 12		tксу1/2 — 50		tксү1/2 – 50		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		tксү1/2 – 18		tксу1/2 — 50		tксү1/2 – 50		ns
		$2.4~V \leq EV_{DD0} \leq 5.5~V$		tксү1/2 – 38		tксу1/2 — 50		tксү1/2 — 50		ns
		1.8 V ≤ EV _D	00 ≤ 5.5 V	tксү1/2 — 50		tксү1/2 — 50		tксү1/2 — 50		ns
		1.7 V ≤ EV _D	00 ≤ 5.5 V	tксу1/2 — 100		tксу1/2 — 100		tксу1/2 — 100		ns
		1.6 V ≤ EVD	₀₀ ≤ 5.5 V	_		tксу1/2 — 100		tксу1/2 — 100		ns
SIp setup time	tsıĸı	4.0 V ≤ EV _{DI}	00 ≤ 5.5 V	44		110		110		ns
(to SCKp↑)		2.7 V ≤ EV _{DI}	00 ≤ 5.5 V	44		110		110		ns
		2.4 V ≤ EV _{DI}	00 ≤ 5.5 V	75		110		110		ns
		1.8 V ≤ EV _{DI}	oo ≤ 5.5 V	110		110		110		ns
		1.7 V ≤ EV _{DI}	oo ≤ 5.5 V	220		220		220		ns
		1.6 V ≤ EV _{DI}	oo ≤ 5.5 V	_		220		220		ns
SIp hold time	tksi1	1.7 V ≤ EV _{DI}	00 ≤ 5.5 V	19		19		19		ns
(from SCKp↑) Note 2		1.6 V ≤ EV _{DI}	00 ≤ 5.5 V	_		19		19		ns
Delay time from SCKp↓ to SOp	tkso1	$1.7 \text{ V} \le \text{EV}_{DI}$ $C = 30 \text{ pF}^{\text{Note}}$			25		25		25	ns
output Note 3		$1.6 \text{ V} \leq \text{EV}_{DI}$ $C = 30 \text{ pF}^{\text{Note}}$			_		25		25	ns

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	C, 1.0 V S E V	Conditions			high-	LS (low-		low- age Mode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate			$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$			Note 1		Note 1		Note 1	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$			Note 3		Note 3		Note 3	bps
			2.3 V ≤ Vb ≤ 2.7 V	Theoretical value of the maximum transfer rate Cb = 50 pF, Rb =		1.2 Note 4		1.2 Note 4		1.2 Note 4	Mbps
				$2.7 \text{ k}\Omega, V_b = 2.3$							
			$1.8 \ V \le EV_{DD0} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V$			Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
				Theoretical value of the maximum transfer rate		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps
				$C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$							

Notes 1. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV $_{DD0} \leq$ 5.5 V and 2.7 V \leq V $_{b} \leq$ 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times ln \ (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.2}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only) (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions		h-speed Mode	,	v-speed Mode	•	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) Note 2	tsıkı	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $2.7~V \leq V_b \leq 4.0~V,$	23		110		110		ns
		$C_b = 20 \text{ pF}, R_b = 1.4 \text{ k}\Omega$							
		$ 2.7 \ V \le EV_{DD0} < 4.0 \ V, $ $ 2.3 \ V \le V_b \le 2.7 \ V, $	33		110		110		ns
		$C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$							
SIp hold time (from SCKp↓) Note 2	tksi1	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $2.7~V \leq V_b \leq 4.0~V,$	10		10		10		ns
		$C_b = 20 \text{ pF}, R_b = 1.4 \text{ k}\Omega$							
		$2.7 \ V \leq EV_{DD0} < 4.0 \ V,$ $2.3 \ V \leq V_b \leq 2.7 \ V,$	10		10		10		ns
		$C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$							
Delay time from SCKp↑ to	tkso1	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $2.7~V \leq V_b \leq 4.0~V,$		10		10		10	ns
SOp output Note 2		$C_b = 20 \text{ pF}, R_b = 1.4 \text{ k}\Omega$							
		$2.7 \ V \leq EV_{DD0} < 4.0 \ V,$ $2.3 \ V \leq V_b \leq 2.7 \ V,$		10		10		10	ns
		$C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$							

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- **Remarks 1.** $R_b[\Omega]$:Communication line (SCKp, SOp) pull-up resistance, $C_b[F]$: Communication line (SCKp, SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00))
 - 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26

(Ta = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, 1.6 V \leq EVDD0 = EVDD1 \leq VDD, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM = 0 V Note 4, HS (high-speed main) mode)

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity errorNote 1	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		V _{BGR} Note 3	V

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.
 - 4. When reference voltage (-) = Vss, the MAX. values are as follows.
 Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.
 Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.
 Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

LVD Detection Voltage of Interrupt & Reset Mode

(Ta = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Cond	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	V _{LVDA0}	V _{POC2} ,	VPOC1, VPOC0 = 0, 0, 0	, falling reset voltage	1.60	1.63	1.66	V
mode	VLVDA1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	٧
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	٧
	V _{LVDB0}	V _{POC2} ,	VPOC1, VPOC0 = 0, 0, 1	, falling reset voltage	1.80	1.84	1.87	V
	V _{LVDB1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	>
				Falling interrupt voltage	1.90	1.94	1.98	٧
	VLVDB2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	٧
				Falling interrupt voltage	2.00	2.04	2.08	V
,	VLVDB3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	V _{LVDC0}	V _{POC2} ,	VPOC1, VPOC0 = 0, 1, 0	, falling reset voltage	2.40	2.45	2.50	٧
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	>
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	٧
				Falling interrupt voltage	3.60	3.67	3.74	V
	V _{LVDD0}	V _{POC2} ,	VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
\	VLVDD3	V _{LVDD3}	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (5/5)$

Items	Symbol	Condition	ons		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVDDO				1	μΑ
	ILIH2	P20 to P27, P1 <u>37,</u> P150 to P156, RESET	VI = VDD				1	μΑ
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	$V_I = V_{DD}$	In input port or external clock input			1	μΑ
				In resonator connection			10	μΑ
Input leakage current, low	Iuu1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vı = EVsso	VI = EVsso			-1	μΑ
	ILIL2	P20 to P27, P137, P150 to P156, RESET	Vı = Vss				-1	μΑ
	Ішз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vı = Vss	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
On-chip pll-up resistance	Rυ	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vı = EVsso	, In input port	10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Notes 1. Total current flowing into V_{DD} and EV_{DDO}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DDO} or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 32~MHz $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 16~MHz

- **8.** Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (Ta = -40 to $+105^{\circ}$ C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V) (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit		
Supply	I _{DD1}	Operating	HS (high-	fin = 32 MHz Note 3	Basic	V _{DD} = 5.0 V		2.3		mA		
Current Note 1		mode	speed main) mode Note 5		operatio n	V _{DD} = 3.0 V		2.3		mA		
					Normal	V _{DD} = 5.0 V		5.2	9.2	mA		
					operatio n	V _{DD} = 3.0 V		5.2	9.2	mA		
				fih = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		4.1	7.0	mA		
					operatio n	V _{DD} = 3.0 V		4.1	7.0	mA		
				fin = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.0	5.0	mA		
					operatio n	V _{DD} = 3.0 V		3.0	5.0	mA		
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.4	5.9	mA		
			mode Note 5	mode Note 5	mode Note 5	V _{DD} = 5.0 V	operatio n	Resonator connection		3.6	6.0	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.4	5.9	mA		
				n	operatio n	Resonator connection		3.6	6.0	mA		
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.1	3.5	mA		
				V DD = 3.0 V	operatio n	Resonator connection		2.1	3.5	mA		
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.1	3.5	mA		
			Subsystem clock operation	V _{DD} = 3.0 V	operatio n	Resonator connection		2.1	3.5	mA		
				fsub = 32.768 kHz	operatio	Square wave input		4.8	5.9	μΑ		
				ope		Resonator connection		4.9	6.0	μΑ		
				fsub = 32.768 kHz	Normal	Square wave input		4.9	5.9	μΑ		
				T _A = +25°C	operatio n	Resonator connection		5.0	6.0	μΑ		
				fsub = 32.768 kHz	Normal	Square wave input		5.0	7.6	μΑ		
				T _A = +50°C	operatio n	Resonator connection		5.1	7.7	μΑ		
				fsub = 32.768 kHz	Normal	Square wave input		5.2	9.3	μΑ		
				Note 4 TA = +70°C	operatio n	Resonator connection		5.3	9.4	μА		
				fsuB = 32.768 kHz	Normal	Square wave input		5.7	13.3	μΑ		
				Note 4 $T_A = +85^{\circ}C$	operatio n	Resonator connection		5.8	13.4	μΑ		
				fsuв = 32.768 kHz	Normal	Square wave input		10.0	46.0	μΑ		
				Not	Note 4 TA = +105°C	operatio n	Resonator connection		10.0	46.0	μΑ	

(Notes and Remarks are listed on the next page.)

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Cond	ditions	HS (high-speed ma	in) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 5	tkcy2	$4.0~V \leq EV_{DD0} \leq 5.5$	20 MHz < fмск	16/fмск		ns
		V	fмcк ≤ 20 MHz	12/fмск		ns
		2.7 V ≤ EV _{DD0} ≤ 5.5	16 MHz < fмск	16/fмск		ns
		V	fмck ≤ 16 MHz	12/fмск		ns
		$2.4~V \leq EV_{DD0} \leq 5.5~V$		16/fмск		ns
				12/fмcк and 1000		ns
SCKp high-/low-level	t кн2,	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ M}$	V	tkcy2/2 – 14		ns
width	t _{KL2}	$2.7~V \leq EV_{DD0} \leq 5.5$	V	tkcy2/2 – 16		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5	V	tkcy2/2 - 36		ns
SIp setup time	tsık2	$2.7~V \leq EV_{DD0} \leq 5.5$	V	1/fмск+40		ns
(to SCKp↑) Note 1		$2.4~V \leq EV_{DD0} \leq 5.5$	V	1/fмск+60		ns
SIp hold time (from SCKp↑) Note 2	tksi2	2.4 V ≤ EV _{DD0} ≤ 5.5	V	1/fмск+62		ns
Delay time from SCKp↓ to SOp output	tkso2	C = 30 pF Note 4	$2.7~V \leq EV_{DD0} \leq 5.5$ V		2/fмск+66	ns
Note 3			$2.4~V \leq EV_{DD0} \leq 5.5$ V		2/fмск+113	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)
 - 2. fmck: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

 n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode connection diagram (during communication at same potential)

- **Notes 1.** Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD} .

Zero-scale error/Full-scale error: Add $\pm 0.05\% FSR$ to the MAX. value when AV_{REFP} = V_{DD}.

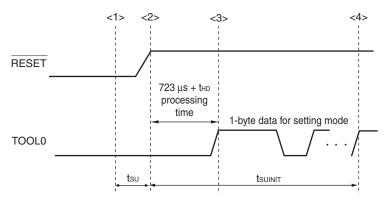
Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.

4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions	s	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall errorNote 1	AINL	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANIO to ANI14,	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		ANI16 to ANI26	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal reference	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
		voltage, and temperature sensor output voltage (HS	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
		(high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Full-scale errorNotes 1, 2	Ers	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
Differential linearity error	DLE	10-bit resolution	$2.4~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI14		0		V _{DD}	V
		ANI16 to ANI26		0		EV _{DD0}	V
		Internal reference voltage outpotential (2.4 V \leq VDD \leq 5.5 V, HS (high-		VBGR Note 3		V	
		Temperature sensor output vo $(2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, HS (high-$,	VTMPS25 Note 3	3	V	


Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

3.10 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)		POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

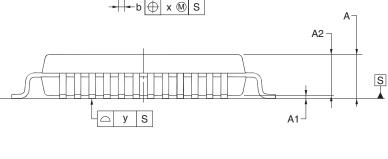
Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

 t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

4.9 48-pin Products

R5F100GAAFB, R5F100GCAFB, R5F100GDAFB, R5F100GEAFB, R5F100GFAFB, R5F100GAFB, R5F100GHAFB, R5F100GJAFB, R5F100GKAFB, R5F100GLAFB


R5F101GAAFB, R5F101GCAFB, R5F101GDAFB, R5F101GEAFB, R5F101GFAFB, R5F101GHAFB, R5F101GJAFB, R5F101GKAFB, R5F101GLAFB

R5F100GADFB, R5F100GCDFB, R5F100GDDFB, R5F100GEDFB, R5F100GFDFB, R5F100GHDFB, R5F100GHDFB, R5F100GHDFB, R5F100GHDFB, R5F100GHDFB

R5F101GADFB, R5F101GCDFB, R5F101GDDFB, R5F101GEDFB, R5F101GFDFB, R5F101GHDFB, R5F101GJDFB, R5F101GKDFB, R5F101GKDFB, R5F101GKDFB, R5F101GKDFB

R5F100GAGFB, R5F100GCGFB, R5F100GDGFB, R5F100GEGFB, R5F100GFGFB, R5F100GHGFB, R5F10

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP48-7x7-0.50	PLQP0048KF-A	P48GA-50-8EU-1	0.16	
HD————————————————————————————————————	25 24	E HE	detail of le	CL
48	13			(UNIT:mn
. 1	12.	↓	D	DIMENSIONS
		<u></u>		7.00±0.20 7.00±0.20
		ļ	<u>E</u>	7.00±0.20 9.00±0.20
	. 4 4 7 7 7	<u></u>	HE	9.00±0.20 9.00±0.20
-ZD	→ e		A	1.60 MAX.
			A1	0.10±0.05
	x (M) S	Δ		1.40±0.05
		A		0.25
		A2 ¬	b	0.22±0.05

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

© 2012 Renesas Electronics Corporation. All rights reserved.

0.145 ^{+0.055} -0.045 0.50

0.60±0.15

1.00±0.20 3°+5° 0.50 0.08 0.08

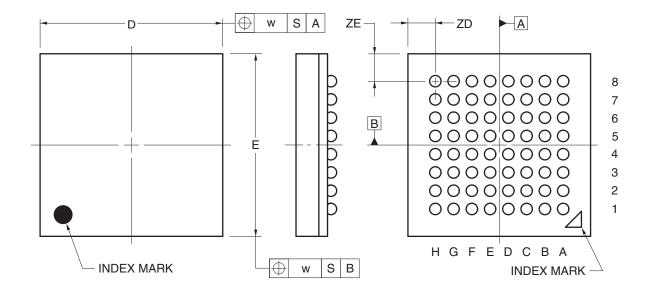
0.75

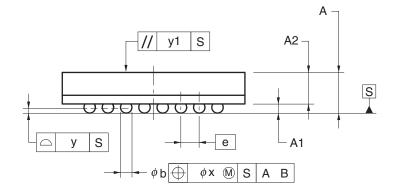
0.75

Lp

ZD

ZE




R5F100LCABG, R5F100LDABG, R5F100LEABG, R5F100LFABG, R5F100LGABG, R5F100LHABG, R5F100LJABG

R5F101LCABG, R5F101LDABG, R5F101LEABG, R5F101LFABG, R5F101LGABG, R5F101LHABG, R5F101LJABG

R5F100LCGBG, R5F100LDGBG, R5F100LEGBG, R5F100LFGBG, R5F100LGGBG, R5F100LHGBG, R5F100LJGBG

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-VFBGA64-4x4-0.40	PVBG0064LA-A	P64F1-40-AA2-2	0.03

	(UNIT:mm)
ITEM	DIMENSIONS
D	4.00±0.10
Е	4.00±0.10
W	0.15
Α	0.89±0.10
A1	0.20±0.05
A2	0.69
е	0.40
b	0.25±0.05
х	0.05
у	0.08
y1	0.20
ZD	0.60
ZE	0.60

© 2012 Renesas Electronics Corporation. All rights reserved.

			Description	
Rev.	Date	Page	Summary	
3.00	Aug 02, 2013	163	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2)	
			Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2)	
		166	Modification of table in 3.5.2 Serial interface IICA	
		166	Modification of IICA serial transfer timing	
		167	Addition of table in 3.6.1 A/D converter characteristics	
		167, 168	Modification of table and notes 3 and 4 in 3.6.1 (1)	
		169	Modification of description in 3.6.1 (2)	
		170	Modification of description and note 3 in 3.6.1 (3)	
		171	Modification of description and notes 3 and 4 in 3.6.1 (4)	
		172	Modification of table and note in 3.6.3 POR circuit characteristics	
		173	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode	
		173	Modification from Supply Voltage Rise Time to 3.6.5 Power supply voltage rising slope characteristics	
		174	Modification of 3.9 Dedicated Flash Memory Programmer Communication (UART)	
		175	Modification of table, figure, and remark in 3.10 Timing Specs for Switching Flash Memory Programming Modes	
3.10	Nov 15, 2013	123	Caution 4 added.	
		125	Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted.	
3.30	Mar 31, 2016		Modification of the position of the index mark in 25-pin plastic WFLGA (3 \times 3 mm, 0.50 mm pitch) of 1.3.3 25-pin products	
			Modification of power supply voltage in 1.6 Outline of Functions [20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products]	
			Modification of power supply voltage in 1.6 Outline of Functions [40-pin, 44-pin, 48-pin, 52-pin, 64-pin products]	
			Modification of power supply voltage in 1.6 Outline of Functions [80-pin, 100-pin, 128-pin products]	
			ACK corrected to ACK	
			ACK corrected to ACK	

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.