

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

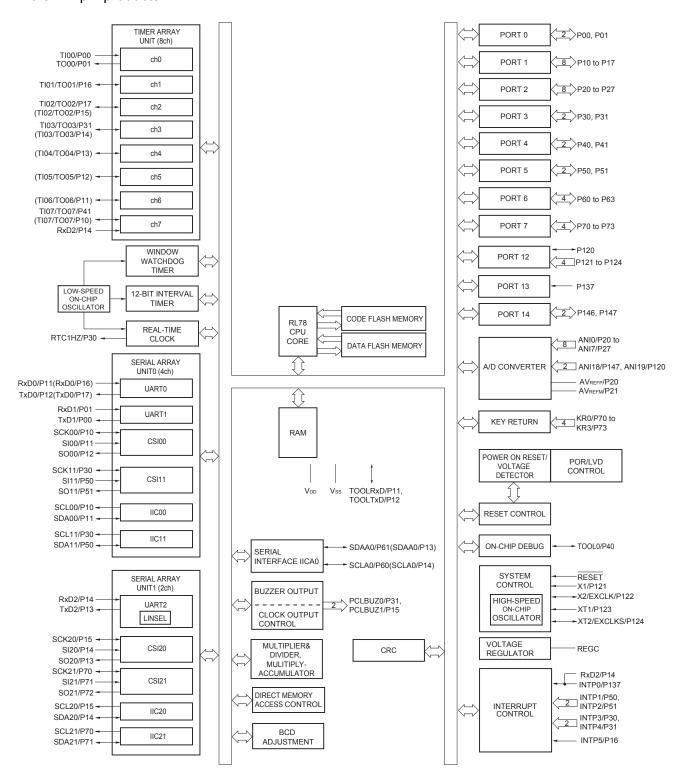
Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100lhafb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

(3/12)


Pin count	Package	Data flash	Fields of Application	Ordering Part Number
			Note	
36 pins	36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)	Mounted	A G	R5F100CAALA#U0, R5F100CCALA#U0, R5F100CDALA#U0, R5F100CEALA#U0, R5F100CFALA#U0, R5F100CGALA#U0 R5F100CAALA#W0, R5F100CAALA#W0, R5F100CAALA#W0, R5F100CEALA#W0, R5F100CGALA#W0 R5F100CAGLA#W0 R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#U0 R5F100CAGLA#U0 R5F100CAGLA#W0 R5F100CAGLA#W0 R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0
		Not mounted	A	R5F101CAALA#U0, R5F101CCALA#U0, R5F101CDALA#U0, R5F101CEALA#U0, R5F101CFALA#U0, R5F101CGALA#U0 R5F101CAALA#W0, R5F101CAALA#W0, R5F101CDALA#W0,
40 pins	40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch)	Mounted	A	R5F101CEALA#W0, R5F101CFALA#W0, R5F101CGALA#W0 R5F100EAANA#U0, R5F100ECANA#U0, R5F100EDANA#U0, R5F100EEANA#U0, R5F100EFANA#U0, R5F100EGANA#U0, R5F100EHANA#U0 R5F100EAANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100EEANA#W0, R5F100EFANA#W0, R5F100EGANA#W0, R5F100EHANA#W0
			D	R5F100EADNA#U0, R5F100ECDNA#U0, R5F100EDDNA#U0, R5F100EEDNA#U0, R5F100EEDNA#U0, R5F100EGDNA#U0, R5F100EHDNA#U0 R5F100EADNA#W0, R5F100ECDNA#W0, R5F100EDDNA#W0, R5F100EEDNA#W0, R5F100EFDNA#W0, R5F100EGDNA#W0, R5F100EHDNA#W0
			G	R5F100EAGNA#U0, R5F100ECGNA#U0, R5F100EDGNA#U0, R5F100EEGNA#U0, R5F100EEGNA#U0, R5F100EGGNA#U0, R5F100EHGNA#U0 R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100EDGNA#W0, R5F100EEGNA#W0, R5F100EFGNA#W0, R5F100EHGNA#W0
		Not mounted	A D	R5F101EAANA#U0, R5F101ECANA#U0, R5F101EDANA#U0, R5F101EEANA#U0, R5F101EFANA#U0, R5F101EGANA#U0, R5F101EHANA#U0 R5F101EAANA#W0, R5F101ECANA#W0, R5F101EDANA#W0, R5F101EEANA#W0, R5F101EFANA#W0, R5F101EGANA#W0, R5F101EHANA#W0 R5F101EHANA#W0 R5F101EADNA#U0, R5F101ECDNA#U0, R5F101EDDNA#U0, R5F101EDNA#U0, R5F101EDNA#U0, R5F101EDNA#W0, R5F101
				R5F101EDDNA#W0, R5F101EEDNA#W0, R5F101EFDNA#W R5F101EGDNA#W0, R5F101EHDNA#W0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.5.8 44-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

3. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see **6.9.3 Operation as multiple PWM output function** in the RL78/G13 User's Manual).

4. When setting to PIOR = 1

11	n	n	١
14	ر2	_	ı

Ite	m	20-pin		24-pin		25-pin		30-	-pin	32	-pin	36	pin
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	R5F101Cx
Clock output/buzze	er output		_		1		1		2		2		2
		• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation)											
8/10-bit resolution	A/D converter	6 channels 6 channels 6 channels 8 channels 8 channels 8 channels											
Serial interface		[20-pin,	24-pin,	25-pin p	roducts]								
		• CSI:	1 chann	el/simpli	fied I ² C:	1 channe	el/UART	: 1 chanı	nel				
		• CSI:	1 chann	el/simpli	fied I ² C:	1 channe	el/UART	: 1 chanı	nel				
		[30-pin,	32-pin	products]								
		 CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART (UART supporting LIN-bus): 1 channel 											
		[36-pin	products	s]									
		 CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel 											
	I ² C bus			1 chanı		1 chanı		1 chan		1 chan		1 chan	nel
Multiplier and divid	der/multiply-	 16 bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) 											
DMA controller		2 channels											
Vectored interrupt	Internal	2	23	2	24	2	24	2	27	2	27	2	27
sources	External	;	3		5		5		6		6		6
Key interrupt													
Reset		InterrInterrInterrInterrInterr	nal reset nal reset nal reset nal reset	SET pin by watc by power by volta by illega by illega by illega	er-on-res ge detec al instruc I parity e	set ctor tion exec rror		e					
Power-on-reset cir	cuit		er-on-res er-down-	set: 1	I.51 V (T I.50 V (T	,							
Voltage detector		• Rising edge: 1.67 V to 4.06 V (14 stages) • Falling edge: 1.63 V to 3.98 V (14 stages)											
On-chip debug fun	ection	Provide	ed										
Power supply volta	age	V _{DD} = 1	.6 to 5.5	V (T _A =	-40 to +8	35°C)							
		$V_{DD} = 2$	4 to 5.5	V (T _A = -	40 to +1	05°C)							
Operating ambient	t temperature			C (A: Co i°C (G: Ir				ndustria	l applica	tions)			
		14 - 40	.∪ ⊤ 100	. o (a. 11	idudilidi	αργιισατι	0110)						

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

[40-pin, 44-pin, 48-pin, 52-pin, 64-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(1/2)

	Item	40	40-pin 44-pin 48-pin 52-pin 64-pin								
	item		<u> </u>	44	i			52-	-piri		İ
		R5F100Ex	R5F101Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx
		100	101	100	101	100	101	100	101	100	101
		Ex	Ex	×	×	χ Ω	ωx	×	×	Ž	Ž
Code flash me	emory (KB)	16 to	o 192	16 t	o 512	16 t	512	32 to	o 512	32 to	o 512
Data flash me	emory (KB)	4 to 8	-	4 to 8	_	4 to 8	-	4 to 8	_	4 to 8	_
RAM (KB)		2 to 1	16 ^{Note1}	2 to :	32 ^{Note1}	2 to 3	32 ^{Note1}	2 to 3	32 ^{Note1}	2 to 3	32 ^{Note1}
Address space	e	1 MB									
Main system clock	High-speed system clock	HS (High HS (High LS (Low-	n-speed ma n-speed ma speed ma	ain) mode ain) mode in) mode:	on, externa : 1 to 20 l : 1 to 16 l 1 to 8 M e: 1 to 4 M	MHz (V _{DD} : MHz (V _{DD} : IHz (V _{DD} =	= 2.7 to 5. = 2.4 to 5. 1.8 to 5.5	5 V), 5 V), V),	CLK)		
	High-speed on-chip oscillator	HS (High LS (Low-	speed ma	ain) mode in) mode:	: 1 to 32 M : 1 to 16 M : 1 to 8 M e: 1 to 4 M	MHz (Vdd = Hz (Vdd =	= 2.4 to 5.5 1.8 to 5.5	5 V), V),			
Subsystem cl	ock	XT1 (crys 32.768 k		ation, exte	ernal subsy	stem cloc	k input (E	XCLKS)			
Low-speed or	n-chip oscillator	15 kHz (TYP.)								
General-purp	ose registers	(8-bit register × 8) × 4 banks									
Minimum insti	ruction execution time	0.03125	μs (High-s	speed on-	chip oscilla	tor: fin = 3	2 MHz op	eration)			
		0.05 <i>μ</i> s (High-spee	ed system	clock: fmx	= 20 MHz	operation)			
		30.5 μs (Subsyster	n clock: fs	ыв = 32.76	8 kHz ope	ration)				
Instruction se	t	AdderMultipl	ication (8	actor/logic bits × 8 bit	al operation ts) t manipula			and Book	ean opera	tion), etc.	
I/O port	Total	3	36	4	40	2	14	4	18	5	58
	CMOS I/O	(N-ch (28 O.D. I/O ithstand ge]: 10)	(N-ch [V _{DD} w	31 O.D. I/O rithstand ge]: 10)	(N-ch (34 O.D. I/O ithstand je]: 11)	(N-ch (38 O.D. I/O ithstand ge]: 13)	(N-ch (18 O.D. I/O ithstand ge]: 15)
	CMOS input		5		5		5		5		5
	CMOS output		=		=		1		1		1
	N-ch O.D. I/O (withstand voltage: 6 V)		3		4		4		4		4
Timer	16-bit timer					8 cha	nnels				
	Watchdog timer					1 cha	annel				
	Real-time clock (RTC)					1 cha	annel				
	12-bit interval timer (IT)				-		annel				
	Timer output	4 channels outputs: 3 8 channels outputs: 7	Note 2), s (PWM	5 channe 8 channe	els (PWM o els (PWM o	utputs: 4 Note that utputs: 7 Note that utputs: 7 Note that utputs: 7 Note that utputs: 4 Note that utputs	ote ²), ote ²) Note ³			8 channe outputs:	
	RTC output	1 channe • 1 Hz (s		ı clock: fsu	ıв = 32.768	3 kHz)					

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = E to G, J, L): Start address FF300H R5F100xE, R5F101xE (x = E to G, J, L): Start address FEF00H R5F100xJ, R5F101xJ (x = F, G, J, L): Start address F7F00H Start address F7F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

Absolute Maximum Ratings (TA = 25°C) (2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins -170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	І ОН2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lo _{L1}	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	lo _{L2}	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +85	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2}	HALT	HS (high-	f _{IH} = 32 MHz ^{Note 4}	V _{DD} = 5.0 V		0.62	1.89	mA
current Note 1	Note 2	mode	speed main) mode Note 7		V _{DD} = 3.0 V		0.62	1.89	mA
			mode	fih = 24 MHz Note 4	V _{DD} = 5.0 V		0.50	1.48	mA
					V _{DD} = 3.0 V		0.50	1.48	mA
				fih = 16 MHz Note 4	V _{DD} = 5.0 V		0.44	1.12	mA
					V _{DD} = 3.0 V		0.44	1.12	mA
			LS (low-	fih = 8 MHz Note 4	V _{DD} = 3.0 V		290	620	μΑ
			speed main) mode Note 7		V _{DD} = 2.0 V		290	620	μΑ
			LV (low- voltage	fih = 4 MHz Note 4	V _{DD} = 3.0 V		460	700	μΑ
			main) mode		V _{DD} = 2.0 V		460	700	μΑ
			HS (high-	fmx = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.14	mA
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.48	1.34	mA
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		0.31	1.14	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	1.34	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.21	0.68	mA
				V _{DD} = 5.0 V	Resonator connection		0.28	0.76	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.21	0.68	mA
			LS (low-	V _{DD} = 3.0 V	Resonator connection		0.28	0.76	mA
				$f_{MX} = 8 MHz^{Note 3}$	Square wave input		110	390	μΑ
			speed main) mode Note 7	V _{DD} = 3.0 V	Resonator connection		160	450	μΑ
				$f_{MX} = 8 MHz^{Note 3},$	Square wave input		110	390	μΑ
				V _{DD} = 2.0 V	Resonator connection		160	450	μΑ
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.66	μΑ
			clock operation	T _A = -40°C	Resonator connection		0.50	0.85	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.38	0.66	μΑ
				T _A = +25°C	Resonator connection		0.57	0.85	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.47	3.49	μΑ
				T _A = +50°C	Resonator connection		0.66	3.68	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.80	6.10	μΑ
				T _A = +70°C	Resonator connection		0.99	6.29	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		1.52	10.46	μΑ
				T _A = +85°C	Resonator connection		1.71	10.65	μΑ
	IDD3 Note 6	STOP mode ^{Note 8}	T _A = -40°C				0.19	0.54	μΑ
		mode	T _A = +25°C				0.26	0.54	μΑ
			T _A = +50°C			0.35	3.37	μΑ	
			T _A = +70°C			0.68	5.98	μA	
			T _A = +85°C				1.40	10.34	μΑ

(Notes and Remarks are listed on the next page.)

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	(Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t KCY1	tkcy1 ≥ 2/fclk	$4.0~V \leq EV_{DD0} \leq 5.5~V$	62.5		250		500		ns
			$2.7~V \leq EV_{DD0} \leq 5.5~V$	83.3		250		500		ns
SCKp high-/low-level width	tкн1, tкL1	4.0 V ≤ EV _{DI}	oo ≤ 5.5 V	tксү1/2 — 7		tксү1/2 – 50		tксү1/2 — 50		ns
		2.7 V ≤ EV _{DI}	00 ≤ 5.5 V	tксү1/2 – 10		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑)	tsıĸı	4.0 V ≤ EV _{DI}	00 ≤ 5.5 V	23		110		110		ns
Note 1		2.7 V ≤ EV _{DI}	00 ≤ 5.5 V	33		110		110		ns
SIp hold time (from SCKp [↑]) Note 2	tksı1	2.7 V ≤ EV _{DI}	00 ≤ 5.5 V	10		10		10		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 20 pF No	te 4		10		10		10	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- Remarks 1. This value is valid only when CSI00's peripheral I/O redirect function is not used.
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),g: PIM and POM numbers (g = 1)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00))

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{DD}}, \text{Reference voltage (-)} = \text{V}_{\text{SS}})$

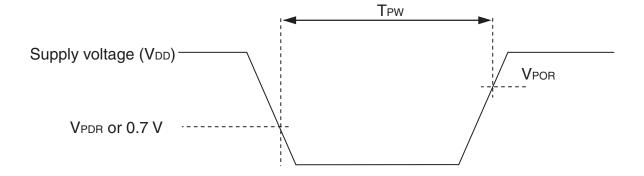
Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI0 to ANI14,	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		ANI16 to ANI26	$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μS
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μS
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±0.85	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
			$1.6~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$ Note 3			±2.5	LSB
Analog input voltage	Vain	ANI0 to ANI14		0		V _{DD}	٧
		ANI16 to ANI26		0		EV _{DD0}	٧
		Internal reference voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (hi	gh-speed main) mode)		V _{BGR} Note 4		V
		Temperature sensor output (2.4 V ≤ VDD ≤ 5.5 V, HS (hi	-		VTMPS25 Note 4	1	V

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

2.6.2 Temperature sensor/internal reference voltage characteristics

(TA = -40 to $+85^{\circ}$ C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, Ta = +25°C		1.05		V
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μS

2.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	V _{PDR}	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	T _{PW}		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (4/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ loh1 = -3.0 mA	EV _{DD0} – 0.7			V
		P90 to P97, P100 to P106, P110 to	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -2.0 \text{ mA}$	EV _{DD0} – 0.6			V
V _{OH2}	P117, P120, P125 to P127, P130, P140 to P147	$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -1.5 \text{ mA}$	EV _{DD0} – 0.5			V	
	P20 to P27, P150 to P156	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH2} = -100 \ \mu \text{ A}$	V _{DD} – 0.5			V	
Output voltage, low	V _{OL1}	P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 8.5~mA$			0.7	V
			$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 3.0~mA$			0.6	V
			$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$			0.4	V
			$2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 0.6~mA$			0.4	٧
	V _{OL2}	P20 to P27, P150 to P156	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$ $\text{Io}_{L2} = 400 \ \mu \text{ A}$			0.4	V
	Vоьз	P60 to P63	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 15.0~mA$			2.0	V
			$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 5.0~mA$			0.4	V
			$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 3.0~mA$			0.4	V
			$2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 2.0~mA$			0.4	V

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

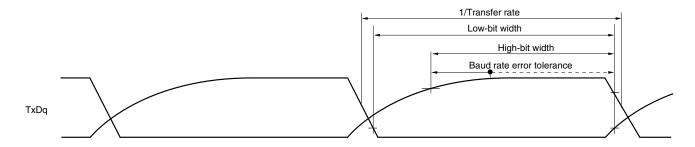
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz

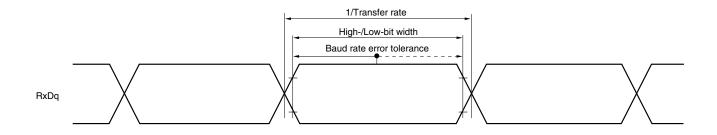
- 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

3.4 AC Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Items	Symbol		Condition	3	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Tcy	Main system clock (fmain) operation	HS (high-speed main) mode	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.03125		1	μS
				$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
		Subsystem of operation	clock (fsua)	$2.4~V \le V_{DD} \le 5.5~V$	28.5	30.5	31.3	μS
		In the self	HS (high-speed	2.7 V ≤ V _{DD} ≤ 5.5 V	0.03125		1	μS
		programming mode	main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
External system clock frequency	fex	$2.7 \text{ V} \leq \text{V}_{DD} \leq$	5.5 V		1.0		20.0	MHz
		2.4 V ≤ V _{DD} <	< 2.7 V		1.0		16.0	MHz
	fexs				32		35	kHz
External system clock input high-	texh, texl	$2.7~V \leq V_{DD} \leq 5.5~V$		24			ns	
level width, low-level width		$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$		30			ns	
	texhs, texhs				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтін, tті∟				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	f то	HS (high-spe	eed 4.0 V	≤ EV _{DD0} ≤ 5.5 V			16	MHz
output frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			2.4 V	≤ EV _{DD0} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	fpcL	HS (high-speed 4.0 V ≤ EV		\leq EV _{DD0} \leq 5.5 V			16	MHz
frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			2.4 V	≤ EV _{DD0} < 2.7 V			4	MHz
Interrupt input high-level width,	tinth,	INTP0	2.4 V	$\leq V_{DD} \leq 5.5 \text{ V}$	1			μS
low-level width	tintl	INTP1 to INT	TP11 2.4 V	\leq EV _{DD0} \leq 5.5 V	1			μS
Key interrupt input low-level width	t KR	KR0 to KR7 2.4 V ≤ EV _{DD0} ≤ 5.5 V		250			ns	
RESET low-level width	trsl				10			μS


Note The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$ $2.4V \le EV_{DD0} < 2.7 \text{ V}$: MIN. 125 ns


Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn).

m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))

UART mode bit width (during communication at different potential) (reference)

- $\begin{tabular}{ll} \textbf{Remarks 1.} & R_b[\Omega]: Communication line (TxDq) pull-up resistance, \\ & C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage \\ \end{tabular}$
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))
 - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-spe	ed main) Mode	Unit
			MIN.	MAX.	
SIp setup time	tsıĸı	$4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	162		ns
(to SCKp↑) Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	354		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \ V \le EV_{DD0} < 3.3 \ V, \ 1.6 \ V \le V_b \le 2.0 \ V,$	958		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
SIp hold time	t _{KSI1}	$4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	38		ns
(from SCKp↑) Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \ V \le EV_{DD0} < 3.3 \ V, \ 1.6 \ V \le V_b \le 2.0 \ V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
Delay time from SCKp↓ to	tkso1	$\label{eq:4.0} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$		200	ns
SOp output Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$		390	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$		966	ns
		$C_b=30~pF,~R_b=5.5~k\Omega$			

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spe	Unit	
				MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0~V \le EV_{DD0} \le 5.5$	24 MHz < fмск	28/fмск		ns
		V,	20 MHz < fмcк ≤ 24 MHz	24/fмск		ns
		$2.7 \ V \leq V_b \leq 4.0 \ V$	8 MHz < fмcк ≤ 20 MHz	20/fмск		ns
			4 MHz < fmck ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0$	24 MHz < fmck	40/fмск		ns
		V,	20 MHz < fмcк ≤ 24 MHz	32/fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмск ≤ 20 MHz	28/fмск		ns
			8 MHz < fмск ≤ 16 MHz	24/fмск		ns
			4 MHz < fmck ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3$	24 MHz < fмск	96/fмск		ns
		V,	20 MHz < fмск ≤ 24 MHz	72/fмск		ns
		$1.6 \ V \le V_b \le 2.0 \ V$	16 MHz < fмcк ≤ 20 MHz	64/ƒмск		ns
			8 MHz < fмск ≤ 16 MHz	52/fмск		ns
			4 MHz < fmck ≤ 8 MHz	32/fмск		ns
			fмcк ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tkH2,	$4.0 \ V \le EV_{DD0} \le 5.$ $2.7 \ V \le V_b \le 4.0 \ V$		tксу2/2 - 24		ns
		$ 2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V} $		tkcy2/2 - 36		ns
		$ 2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 2}} $		tkcy2/2 - 100		ns
SIp setup time (to SCKp↑) Note2	tsık2	$ 4.0 \ V \leq EV_{DD0} \leq 5. $ $ 2.7 \ V \leq V_b \leq 4.0 \ V $	•	1/fмск + 40		ns
		$ 2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V} $		1/fмск + 40		ns
		$2.4 \ V \le EV_{DD0} < 3.$ $1.6 \ V \le V_b \le 2.0 \ V$		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 3	tksi2			1/fmck + 62		ns
Delay time from SCKp↓ to SOp output Note 4	t KSO2	$4.0~V \leq EV_{DD0} \leq 5.$ $C_b = 30~pF,~R_b = 1$	$0.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ $0.4 \text{ k}Ω$		2/fмск + 240	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.$ $C_b = 30 \text{ pF}, R_b = 2$	0 V, 2.3 V \leq V _b \leq 2.7 V, 2.7 kΩ		2/fмск + 428	ns
		$2.4 \text{ V} \le \text{EV}_{\text{DDO}} < 3.$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5$	3 V, 1.6 V ≤ V _b ≤ 2.0 V 5.5 kΩ		2/fмск + 1146	ns

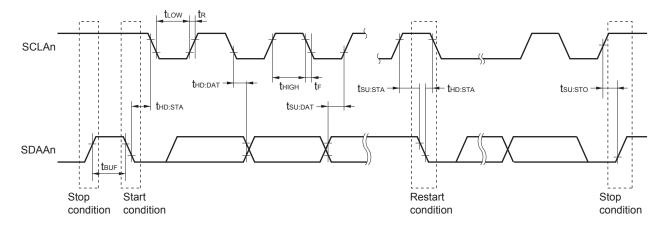
(Notes, Caution and Remarks are listed on the next page.)

3.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed ma		ed main)	main) Mode	
			Standard Fa		Fast	Fast Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fclk ≥ 3.5 MHz	-	_	0	400	kHz
		Standard mode: fclk ≥ 1 MHz	0	100	-	-	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μS
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	t BUF		4.7		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

Remark n = 0, 1

<R>

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

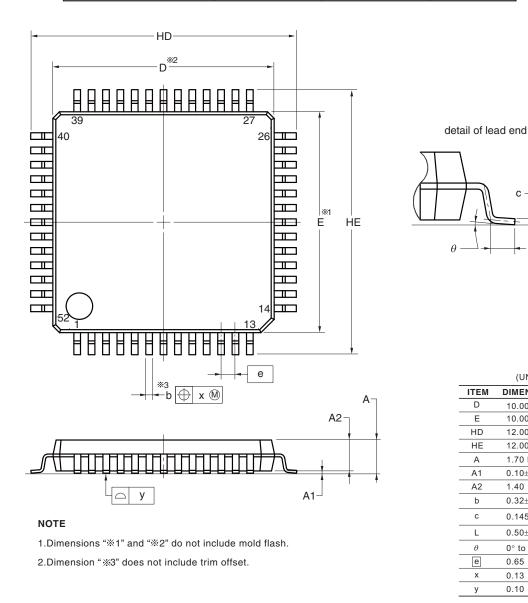
Parameter	Symbol	Conditions	s	MIN.	TYP.	MAX.	Unit
Resolution	RES					10	bit
Overall errorNote 1	AINL	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANIO to ANI14,	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		ANI16 to ANI26	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal reference voltage, and temperature sensor output voltage (HS	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
		(high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Full-scale errorNotes 1, 2	Ers	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
Differential linearity error	DLE	10-bit resolution	$2.4~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI14		0		V _{DD}	V
		ANI16 to ANI26		0		EV _{DD0}	V
		Internal reference voltage output $(2.4~V \le V \text{DD} \le 5.5~V,~HS~(\text{high-speed main})~\text{mode})$		V _{BGR} Note 3			V
		Temperature sensor output vo $(2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, HS (high-$,	VTMPS25 Note 3	3	V	

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

4.10 52-pin Products

R5F100JCAFA, R5F100JDAFA, R5F100JEAFA, R5F100JFAFA, R5F100JGAFA, R5F100JHAFA, R5F100JJAFA, R5F100JKAFA, R5F100JLAFA


R5F101JCAFA, R5F101JDAFA, R5F101JEAFA, R5F101JFAFA, R5F101JGAFA, R5F101JJAFA, R5F101JJAFA, R5F101JAFA, R5F101JKAFA, R5F101JLAFA

R5F100JCDFA, R5F100JDDFA, R5F100JEDFA, R5F100JFDFA, R5F100JDFA, R5F100JPA, R R5F100JKDFA, R5F100JLDFA

R5F101JCDFA, R5F101JDDFA, R5F101JEDFA, R5F101JFDFA, R5F101JDFA, R5 R5F101JKDFA, R5F101JLDFA

R5F100JCGFA, R5F100JDGFA, R5F100JEGFA, R5F100JFGFA, R5F100JGGFA, R5F100JHGFA, R5F100JJGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

© 2012 Renesas Electronics Corporation. All rights reserved.

(UNIT:mm)

DIMENSIONS

10.00±0.10

10.00±0.10

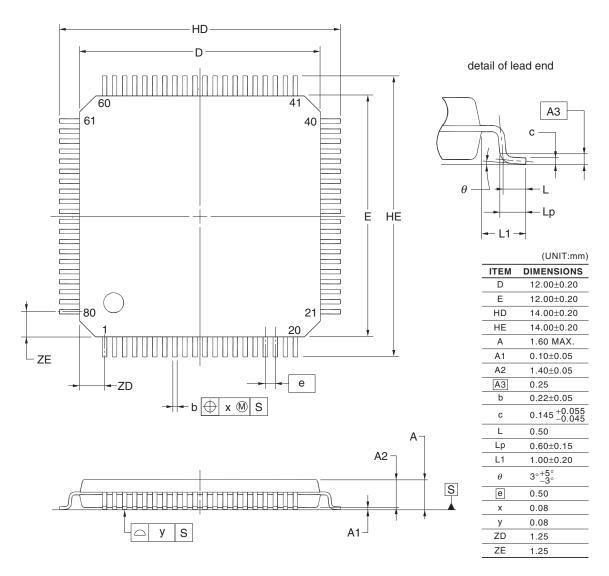
12.00±0.20

12.00±0.20 1.70 MAX.

 0.10 ± 0.05 1.40

0.32±0.05

 $0.50 {\pm} 0.15$


 0° to 8° 0.65

0.13 0.10

0.145±0.055

R5F100MFAFB, R5F100MGAFB, R5F100MHAFB, R5F100MJAFB, R5F100MKAFB, R5F100MLAFB R5F101MFAFB, R5F101MGAFB, R5F101MHAFB, R5F101MJAFB, R5F101MKAFB, R5F101MLAFB R5F100MFDFB, R5F100MGDFB, R5F100MHDFB, R5F100MJDFB, R5F100MKDFB, R5F100MLDFB R5F101MFDFB, R5F101MGDFB, R5F101MHDFB, R5F101MJDFB, R5F101MKDFB, R5F101MLDFB R5F100MFGFB, R5F100MGGFB, R5F100MHGFB, R5F100MJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP80-12x12-0.50	PLQP0080KE-A	P80GK-50-8EU-2	0.53

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

			Description
Rev.	Date	Page	Summary
3.00	Aug 02, 2013	118	Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics
		118	Modification of table and note in 2.6.3 POR circuit characteristics
		119	Modification of table in 2.6.4 LVD circuit characteristics
		120	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode
		120	Renamed to 2.6.5 Power supply voltage rising slope characteristics
		122	Modification of table, figure, and remark in 2.10 Timing Specs for Switching Flash Memory Programming Modes
		123	Modification of caution 1 and description
		124	Modification of table and remark 3 in Absolute Maximum Ratings (T _A = 25°C)
		126	Modification of table, note, caution, and remark in 3.2.1 X1, XT1 oscillator characteristics
		126	Modification of table in 3.2.2 On-chip oscillator characteristics
		127	Modification of note 3 in 3.3.1 Pin characteristics (1/5)
		128	Modification of note 3 in 3.3.1 Pin characteristics (2/5)
		133	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (1/2)
		135	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (2/2)
		137	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (1/2)
		139	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (2/2)
		140	Modification of (3) Peripheral Functions (Common to all products)
		142	Modification of table in 3.4 AC Characteristics
		143	Addition of Minimum Instruction Execution Time during Main System Clock Operation
		143	Modification of figure of AC Timing Test Points
		143	Modification of figure of External System Clock Timing
		145	Modification of figure of AC Timing Test Points
		145	Modification of description, note 1, and caution in (1) During communication at same potential (UART mode)
		146	Modification of description in (2) During communication at same potential (CSI mode)
		147	Modification of description in (3) During communication at same potential (CSI mode)
		149	Modification of table, note 1, and caution in (4) During communication at same potential (simplified I ² C mode)
		151	Modification of table, note 1, and caution in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)
		152 to 154	Modification of table, notes 2 to 6, caution, and remarks 1 to 4 in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)
		155	Modification of table in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)
		156	Modification of table and caution in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)
		157, 158	Modification of table, caution, and remarks 3 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)
		160, 161	Modification of table and caution in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode)