

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

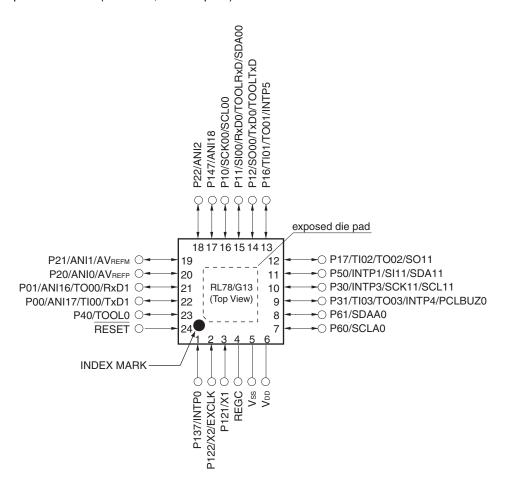
Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100ljdfb-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

(7/12)

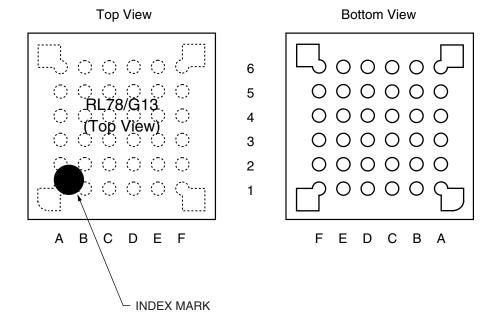

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
52 pins	52-pin plastic	Mounted	A	R5F100JCAFA#V0, R5F100JDAFA#V0, R5F100JEAFA#V0,
	LQFP (10 × 10			R5F100JFAFA#V0, R5F100JGAFA#V0, R5F100JHAFA#V0,
	mm, 0.65 mm			R5F100JJAFA#V0, R5F100JKAFA#V0, R5F100JLAFA#V0
	pitch)			R5F100JCAFA#X0, R5F100JDAFA#X0, R5F100JEAFA#X0,
				R5F100JFAFA#X0, R5F100JGAFA#X0, R5F100JHAFA#X0,
				R5F100JJAFA#X0, R5F100JKAFA#X0, R5F100JLAFA#X0
			D	R5F100JCDFA#V0, R5F100JDDFA#V0, R5F100JEDFA#V0,
				R5F100JFDFA#V0, R5F100JGDFA#V0, R5F100JHDFA#V0,
				R5F100JJDFA#V0, R5F100JKDFA#V0, R5F100JLDFA#V0
				R5F100JCDFA#X0, R5F100JDDFA#X0, R5F100JEDFA#X0,
				R5F100JFDFA#X0, R5F100JGDFA#X0, R5F100JHDFA#X0,
				R5F100JJDFA#X0, R5F100JKDFA#X0, R5F100JLDFA#X0
			G	R5F100JCGFA#V0, R5F100JDGFA#V0, R5F100JEGFA#V0,
				R5F100JFGFA#V0,R5F100JGGFA#V0, R5F100JHGFA#V0,
				R5F100JJGFA#V0
				R5F100JCGFA#X0, R5F100JDGFA#X0, R5F100JEGFA#X0,
				R5F100JFGFA#X0,R5F100JGGFA#X0, R5F100JHGFA#X0,
				R5F100JJGFA#X0
		Not	Α	R5F101JCAFA#V0, R5F101JDAFA#V0, R5F101JEAFA#V0,
		mounted		R5F101JFAFA#V0, R5F101JGAFA#V0, R5F101JHAFA#V0,
				R5F101JJAFA#V0, R5F101JKAFA#V0, R5F101JLAFA#V0
				R5F101JCAFA#X0, R5F101JDAFA#X0, R5F101JEAFA#X0,
				R5F101JFAFA#X0, R5F101JGAFA#X0, R5F101JHAFA#X0,
				R5F101JJAFA#X0, R5F101JKAFA#X0, R5F101JLAFA#X0
			D	R5F101JCDFA#V0, R5F101JDDFA#V0, R5F101JEDFA#V0,
				R5F101JFDFA#V0, R5F101JGDFA#V0, R5F101JHDFA#V0,
				R5F101JJDFA#V0, R5F101JKDFA#V0, R5F101JLDFA#V0
				R5F101JCDFA#X0, R5F101JDDFA#X0, R5F101JEDFA#X0,
				R5F101JFDFA#X0, R5F101JGDFA#X0, R5F101JHDFA#X0,
				R5F101JJDFA#X0, R5F101JKDFA#X0, R5F101JLDFA#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.2 24-pin products

• 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)

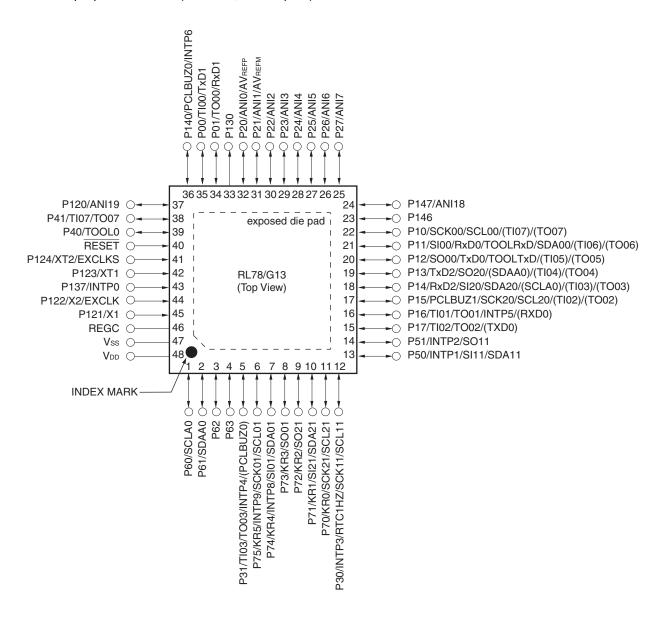

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. It is recommended to connect an exposed die pad to $V_{\mbox{\scriptsize ss}}.$

1.3.6 36-pin products

• 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)


	Α	В	С	D	E	F	
6	P60/SCLA0	V _{DD}	P121/X1	P122/X2/EXCLK	P137/INTP0	P40/TOOL0	6
5	P62	P61/SDAA0	Vss	REGC	RESET	P120/ANI19	5
4	P72/SO21	P71/SI21/ SDA21	P14/RxD2/SI20/ SDA20/(SCLA0) /(TI03)/(TO03)	P31/TI03/TO03/ INTP4/ PCLBUZ0	P00/TI00/TxD1	P01/TO00/RxD1	4
3	P50/INTP1/ SI11/SDA11	P70/SCK21/ SCL21	P15/PCLBUZ1/ SCK20/SCL20/ (TI02)/(TO02)	P22/ANI2	P20/ANI0/ AV _{REFP}	P21/ANI1/ AVREFM	3
2	P30/INTP3/ SCK11/SCL11	P16/TI01/TO01/ INTP5/(RxD0)	P12/SO00/ TxD0/TOOLTxD /(TI05)/(TO05)	P11/SI00/RxD0/ TOOLRxD/ SDA00/(TI06)/ (TO06)	P24/ANI4	P23/ANI3	2
1	P51/INTP2/ SO11	P17/Tl02/TO02/ (TxD0)	P13/TxD2/ SO20/(SDAA0)/ (TI04)/(TO04)	P10/SCK00/ SCL00/(TI07)/ (T007)	P147/ANI18	P25/ANI5	1
	Α	В	С	D	F	F	

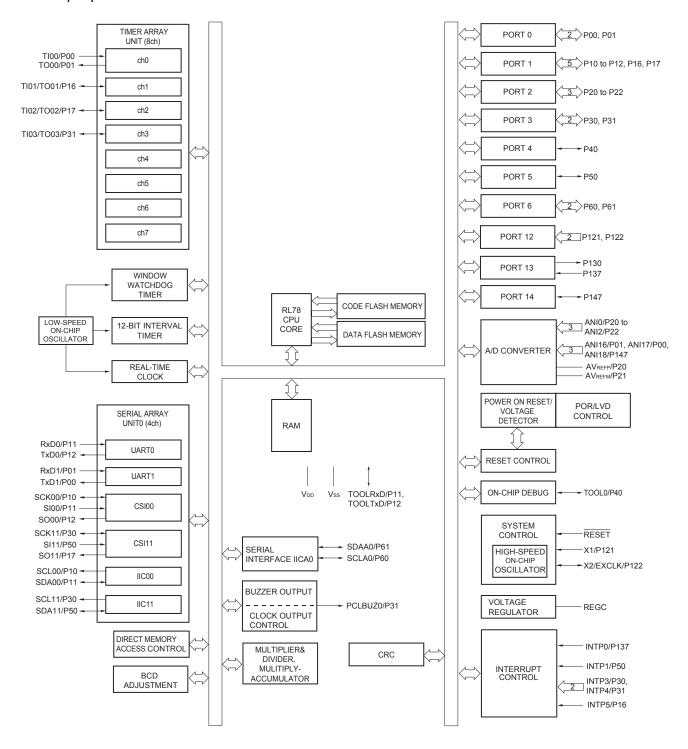
Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

• 48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to $V_{\rm ss.}$

1.4 Pin Identification

ANI0 to ANI14, REGC: Regulator capacitance RESET: ANI16 to ANI26: Reset Analog input AVREFM: A/D converter reference RTC1HZ: Real-time clock correction clock potential (- side) input (1 Hz) output AVREFP: A/D converter reference RxD0 to RxD3: Receive data potential (+ side) input SCK00, SCK01, SCK10, EVDD0, EVDD1: Power supply for port SCK11, SCK20, SCK21, EVsso, EVss1: Ground for port SCLA0, SCLA1: Serial clock input/output EXCLK: External clock input (Main SCLA0, SCLA1, SCL00, SCL01, SCL10, SCL11, system clock) **EXCLKS**: External clock input SCL20, SCL21, SCL30, (Subsystem clock) SCL31: Serial clock output INTP0 to INTP11: Interrupt request from SDAA0, SDAA1, SDA00, peripheral SDA01, SDA10, SDA11, KR0 to KR7: Key return SDA20,SDA21, SDA30, P00 to P07: Port 0 SDA31: Serial data input/output P10 to P17: Port 1 SI00, SI01, SI10, SI11, P20 to P27: Port 2 SI20, SI21, SI30, SI31: Serial data input P30 to P37: Port 3 SO00, SO01, SO10, P40 to P47: Port 4 SO11, SO20, SO21, P50 to P57: Port 5 SO30, SO31: Serial data output P60 to P67: Port 6 TI00 to TI07, P70 to P77: Port 7 TI10 to TI17: Timer input P80 to P87: Port 8 TO00 to TO07. P90 to P97: Port 9 TO10 to TO17: Timer output P100 to P106: Port 10 TOOL0: Data input/output for tool P110 to P117: Port 11 TOOLRxD, TOOLTxD: Data input/output for external device P120 to P127: Port 12 TxD0 to TxD3: Transmit data P130, P137: Port 13 V_{DD}: Power supply P140 to P147: Port 14 Vss: Ground P150 to P156: Port 15 X1, X2: Crystal oscillator (main system clock) PCLBUZ0, PCLBUZ1: Programmable clock XT1, XT2: Crystal oscillator (subsystem clock) output/buzzer output

1.5.3 25-pin products

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

(2/2)

							(2/2)	
Ite	m	80-	pin	100-pin		128-pin		
		R5F100Mx	R5F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx	
Clock output/buzz	er output	2 2 2						
		• 2.44 kHz, 4.8	• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz					
		(Main system clock: fmain = 20 MHz operation)						
				.048 kHz, 4.096 k		16.384 kHz, 32.76	68 kHz	
0/40 1 "	A /D		CIOCK: ISUB = 32.70	68 kHz operation)		I		
8/10-bit resolution	A/D converter	17 channels		20 channels		26 channels		
Serial interface			, 128-pin product					
			•	2 channels/UAR				
			•	2 channels/UAR 2 channels/UAR		tina I IN-hus): 1 (channel	
			•	2 channels/UAR		ang Ent baoj. T	onamo:	
	I ² C bus	2 channels	·	2 channels		2 channels		
Multiplier and divid	der/multiply-	• 16 bits × 16 bi	ts = 32 bits (Uns	igned or signed)				
accumulator		• 32 bits ÷ 32 bits = 32 bits (Unsigned)						
		• 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)						
DMA controller		4 channels						
Vectored	Internal		37 37		41			
interrupt sources	External		13	1	3	13		
Key interrupt			8	1	8		8	
Reset		Reset by RES						
			by watchdog tim					
			by power-on-res by voltage detec					
				tion execution Note				
			by RAM parity e					
			by illegal-memor					
Power-on-reset cir	rcuit	Power-on-res	et: 1.51 V (TY	P.)				
		Power-down-	reset: 1.50 V (TY	P.)				
Voltage detector		Rising edge :		.06 V (14 stages))			
		Falling edge: 1.63 V to 3.98 V (14 stages)						
On-chip debug fur	nction	Provided						
Power supply volta	age	$V_{DD} = 1.6 \text{ to } 5.5$	$V (T_A = -40 \text{ to } +8$	5°C)				
		$V_{DD} = 2.4 \text{ to } 5.5 \text{ V } (T_A = -40 \text{ to } +105^{\circ}\text{C})$						
Operating ambien	t temperature	$T_A = 40 \text{ to } +85^\circ$	C (A: Consumer	applications, D: Ir	ndustrial applicat	ions)		
		$T_A = 40 \text{ to } +105$	°C (G: Industrial	applications)				
		1						

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (1/2)

Parameter	Symbol			Conditions	,	_	MIN.	TYP.	MAX.	Unit
Supply current Note 1	I _{DD1}	, ,	HS (high-	fih = 32 MHz Note 3	Basic	V _{DD} = 5.0 V		2.6		mA
current		mode	speed main) mode Note 5		operation	$V_{DD} = 3.0 \text{ V}$		2.6		mA
					Normal	$V_{DD} = 5.0 \text{ V}$		6.1	9.5	mA
					operation	$V_{DD} = 3.0 \text{ V}$		6.1	9.5	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 \text{ V}$		4.8	7.4	mA
					operation	$V_{DD} = 3.0 \text{ V}$		4.8	7.4	mA
				$f_{IH} = 16 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 \text{ V}$		3.5	5.3	mA
					operation	$V_{DD} = 3.0 \text{ V}$		3.5	5.3	mA
		LS (low-	$f_{IH} = 8 \text{ MHz}^{Note 3}$	Nomal	$V_{DD} = 3.0 \text{ V}$		1.5	2.3	mA	
			speed main) mode Note 5		operation	V _{DD} = 2.0 V		1.5	2.3	mA
			LV (low-	$f_{IH} = 4 \text{ MHz}^{\text{Note 3}}$	Normal	V _{DD} = 3.0 V		1.5	2.0	mA
		voltage main) mode		operation	V _{DD} = 2.0 V		1.5	2.0	mA	
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.9	6.1	mA
		speed main) mode Note 5	$V_{DD} = 5.0 \text{ V}$	operation	Resonator connection		4.1	6.3	mA	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input		3.9	6.1	mA
				$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		4.1	6.3	mA
			$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.5	3.7	mA	
		$V_{DD} = 5.0 \text{ V}$	operation	Resonator connection		2.5	3.7	mA		
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input		2.5	3.7	mA
			LS (low-	$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		2.5	3.7	mA
				f _{MX} = 8 MHz ^{Note 2} , Normal	Square wave input		1.4	2.2	mA	
				$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		1.4	2.2	mA
				$f_{MX} = 8 MHz^{Note 2}$	Nomal	Square wave input		1.4	2.2	mA
				V _{DD} = 2.0 V operation		Resonator connection		1.4	2.2	mA
			Subsystem	fsub = 32.768 kHz	Nomal	Square wave input		5.4	6.5	μΑ
			clock operation	T _A = -40°C	operation	Resonator connection		5.5	6.6	μΑ
				fsub = 32.768 kHz	Nomal	Square wave input		5.5	6.5	μΑ
				T _A = +25°C	operation	Resonator connection		5.6	6.6	μΑ
				fsub = 32.768 kHz	Nomal	Square wave input		5.6	9.4	μΑ
			TA = +50°C	operation	Resonator connection		5.7	9.5	μΑ	
				fsuB = 32.768 kHz No	Normal	Square wave input		5.9	12.0	μΑ
		Note	Note 4 $T_A = +70^{\circ}C$	operation	Resonator connection		6.0	12.1	μΑ	
				fsuB = 32.768 kHz Norma		Square wave input		6.6	16.3	μΑ
				Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		6.7	16.4	μΑ

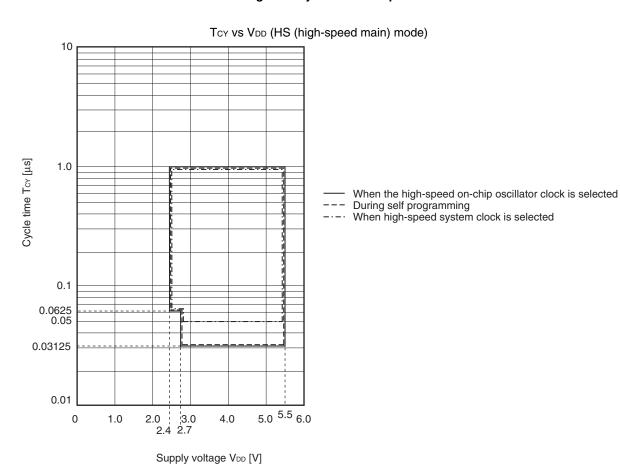
(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVSSD, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - **4.** When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$ $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 16 \text{ MHz}$ LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 8 \text{ MHz}$ LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 4 \text{ MHz}$

- **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Note The following conditions are required for low voltage interface when EVDDO < VDD


 $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V} : \text{MIN. } 125 \text{ ns}$ $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V} : \text{MIN. } 250 \text{ ns}$

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn).

m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	, 0	h-speed Mode	`	/-speed Mode	,	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) Note 1	tsıĸı	$ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, $	44		110		110		ns
		$C_b = 30$ pF, $R_b = 1.4$ k Ω							
			44		110		110		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$							
		$ \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array} $	110		110		110		ns
		$C_b = 30$ pF, $R_b = 5.5$ k Ω							
SIp hold time (from SCKp↓) Note 1	t KSI1	$ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, $	19		19		19		ns
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$							
		$ 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, $	19		19		19		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$							
		$ \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array} $	19		19		19		ns
		$C_b = 30$ pF, $R_b = 5.5$ k Ω							
Delay time from SCKp↑ to	tkso1	$ \begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array} $		25		25		25	ns
SOp output Note 1		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$							
		$ \begin{array}{c} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \end{array} $		25		25		25	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$							
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array}$		25		25		25	ns
		$C_b = 30$ pF, $R_b = 5.5$ k Ω							

Notes

- 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 2. Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (2/2)

Parameter	Symbol	bol Conditions		HS (high- speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp high-/low-level width	tкн2, tкL2	$ 4.0 \ V \le EV_{DD0} \le 5.5 \ V, $ $ 2.7 \ V \le V_b \le 4.0 \ V $	tксу2/2 - 12		tксүз/2 - 50		tkcy2/2 - 50		ns
		$ 2.7 \ V \le EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \le V_b \le 2.7 \ V $	tксу2/2 - 18		tксу2/2 - 50		tксү2/2 - 50		ns
		$\begin{aligned} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{aligned}$	tkcy2/2 - 50		tксу2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) Note 3	tsık2	$\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V \end{aligned}$	1/fмcк + 20		1/fмск + 30		1/fмск + 30		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{aligned} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{aligned}$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) Note 4	tksi2		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output	tkso2	$4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0$ $V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$		2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \\ \text{V}, \\ \text{C}_{\text{b}} = 30 \text{ pF}, \ \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

This chapter describes the following electrical specifications.

Target products G: Industrial applications $T_A = -40$ to +105°C R5F100xxGxx

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product.
 - 4. Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to $+105^{\circ}C$. Derating is the systematic reduction of load for the sake of improved reliability.

Remark When RL78/G13 is used in the range of $T_A = -40$ to +85°C, see CHAPTER 2 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C).

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	Aŗ	oplication
	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode Operating voltage range	HS (high-speed main) mode: $2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0}1 \text{ MHz to } 32 \text{ MHz}$ $2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0}1 \text{ MHz to } 16 \text{ MHz}$ $LS \text{ (low-speed main) mode:}$ $1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0}1 \text{ MHz to } 8 \text{ MHz}$ $LV \text{ (low-voltage main) mode:}$ $1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0}1 \text{ MHz to } 4 \text{ MHz}$	HS (high-speed main) mode only: $2.7~V \le V_{DD} \le 5.5~V @ 1~MHz~to~32~MHz$ $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz~to~16~MHz$
High-speed on-chip oscillator clock accuracy	1.8 V \leq V _{DD} \leq 5.5 V \pm 1.0%@ T _A = -20 to +85°C \pm 1.5%@ T _A = -40 to -20°C 1.6 V \leq V _{DD} $<$ 1.8 V \pm 5.0%@ T _A = -20 to +85°C \pm 5.5%@ T _A = -40 to -20°C	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ $\pm 2.0\%$ \bigcirc T _A = +85 to +105°C $\pm 1.0\%$ \bigcirc T _A = -20 to +85°C $\pm 1.5\%$ \bigcirc T _A = -40 to -20°C
Serial array unit	UART CSI: fclk/2 (supporting 16 Mbps), fclk/4 Simplified I ² C communication	UART CSI: fclk/4 Simplified I ² C communication
IICA	Normal mode Fast mode Fast mode plus	Normal mode Fast mode
Voltage detector	Rise detection voltage: 1.67 V to 4.06 V (14 levels) Fall detection voltage: 1.63 V to 3.98 V (14 levels)	Rise detection voltage: 2.61 V to 4.06 V (8 levels) Fall detection voltage: 2.55 V to 3.98 V (8 levels)

(Remark is listed on the next page.)

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	250		ns
			$2.4~V \leq EV_{DD0} \leq 5.5~V$	500		ns
SCKp high-/low-level width	t кн1,	4.0 V ≤ EV _{DD}	₀₀ ≤ 5.5 V	tkcy1/2 - 24		ns
	t _{KL1}	2.7 V ≤ EV _{DD0} ≤ 5.5 V		tkcy1/2 - 36		ns
		2.4 V ≤ EV _{DD}	₀₀ ≤ 5.5 V	tkcy1/2 - 76		ns
SIp setup time (to SCKp↑) Note 1	tsıĸ1	4.0 V ≤ EV _{DD}	₀₀ ≤ 5.5 V	66		ns
		2.7 V ≤ EV _{DD}	₀₀ ≤ 5.5 V	66		ns
		2.4 V ≤ EV _{DD}	₀₀ ≤ 5.5 V	113		ns
SIp hold time (from SCKp↑) Note 2	t KSI1			38		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF Note	o 4		50	ns

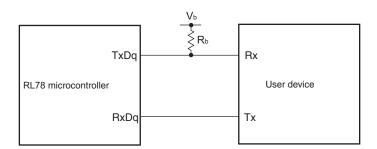
- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

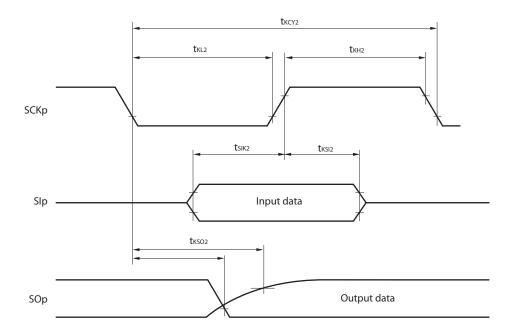
- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3).
 - g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)
 - 2. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 - n: Channel number (mn = 00 to 03, 10 to 13))

5. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

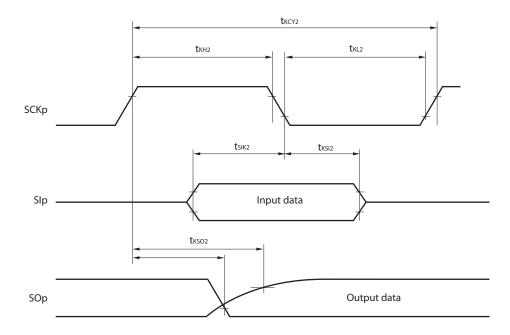
Expression for calculating the transfer rate when 2.4 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{1.5}{V_b})}\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


UART mode connection diagram (during communication at different potential)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

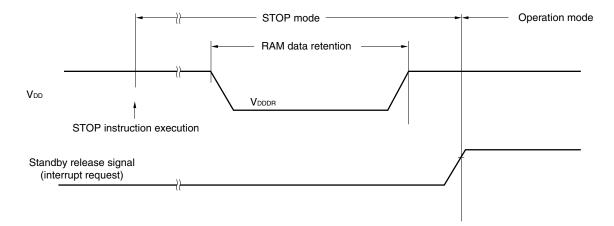
Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

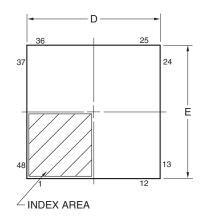
3.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

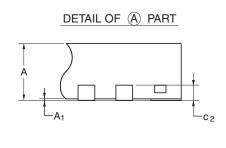
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	V _{DDDR}		1.44 ^{Note}		5.5	٧

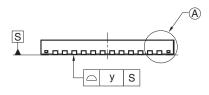
Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

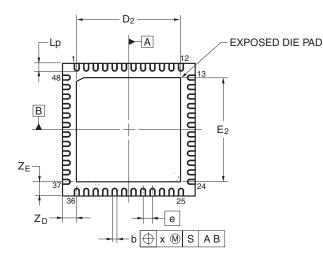
R5F100GAANA, R5F100GCANA, R5F100GDANA, R5F100GEANA, R5F100GFANA, R5F100GHANA, R5F100GHANA, R5F100GKANA, R5F100GKANA, R5F100GKANA, R5F100GKANA

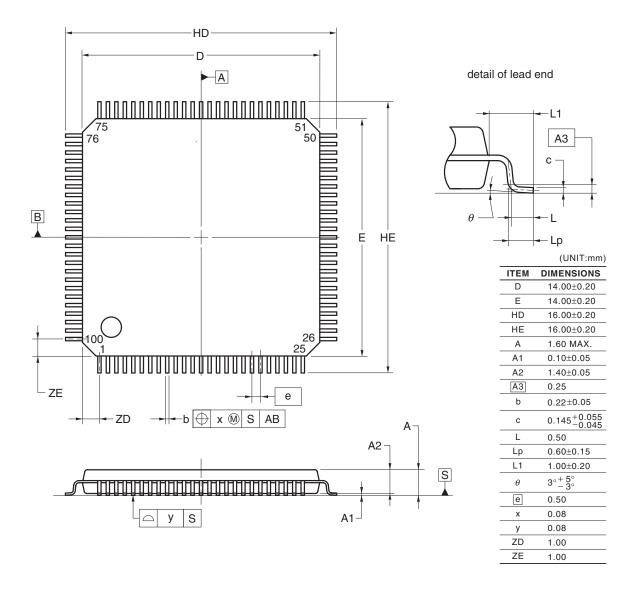

R5F101GAANA, R5F101GCANA, R5F101GDANA, R5F101GEANA, R5F101GFANA, R5F101GHANA, R5F101GHANA, R5F101GHANA, R5F101GKANA, R5F101GKANA, R5F101GLANA

R5F100GADNA, R5F100GCDNA, R5F100GDDNA, R5F100GEDNA, R5F100GFDNA, R5F100GDNA, R5F100GHDNA, R5F100GJDNA, R5F100GKDNA, R5F100GLDNA


R5F101GADNA, R5F101GCDNA, R5F101GDDNA, R5F101GEDNA, R5F101GFDNA, R5F101GGDNA, R5F101GHDNA, R5F101GJDNA, R5F101GKDNA, R5F101GLDNA


R5F100GAGNA, R5F100GCGNA, R5F100GDGNA, R5F100GEGNA, R5F100GFGNA, R5F100GHGNA, R5F100GJGNA


JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HWQFN48-7x7-0.50	PWQN0048KB-A	48PJN-A P48K8-50-5B4-6	0.13


Referance	Dimension in Millimeters		
Symbol	Min	Nom	Max
D	6.95	7.00	7.05
Е	6.95	7.00	7.05
Α			0.80
A ₁	0.00		_
b	0.18	0.25	0.30
е		0.50	_
Lp	0.30	0.40	0.50
Х			0.05
у			0.05
Z _D		0.75	
Z _E		0.75	
C ₂	0.15	0.20	0.25
D ₂		5.50	_
E ₂		5.50	_

©2013 Renesas Electronics Corporation. All rights reserved.

4.13 100-pin Products

R5F100PFAFB, R5F100PGAFB, R5F100PHAFB, R5F100PJAFB, R5F100PKAFB, R5F100PLAFB R5F101PFAFB, R5F101PGAFB, R5F101PHAFB, R5F101PJAFB, R5F101PKAFB, R5F101PLAFB R5F100PFDFB, R5F100PGDFB, R5F100PHDFB, R5F100PJDFB, R5F100PKDFB, R5F101PGDFB, R5F101PGDFB, R5F101PJDFB, R5F101PJDFB, R5F101PLDFB R5F100PFGFB, R5F100PGGFB, R5F100PHGFB, R5F100PJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP100-14x14-0.50	PLQP0100KE-A	P100GC-50-GBR-1	0.69

 \bigcirc 2012 Renesas Electronics Corporation. All rights reserved.

Revision History

RL78/G13 Data Sheet

			Description		
Rev.	Date	Page	Summary		
1.00	Feb 29, 2012	-	First Edition issued		
2.00	2.00 Oct 12, 2012	7	Figure 1-1. Part Number, Memory Size, and Package of RL78/G13: Pin count corrected.		
		25	1.4 Pin Identification: Description of pins INTP0 to INTP11 corrected.		
		40, 42, 44	1.6 Outline of Functions: Descriptions of Subsystem clock, Low-speed on-chip oscillator, and General-purpose register corrected.		
		41, 43, 45	1.6 Outline of Functions: Lists of Descriptions changed.		
		59, 63, 67	Descriptions of Note 8 in a table corrected.		
		68	(4) Common to RL78/G13 all products: Descriptions of Notes corrected.		
		69	2.4 AC Characteristics: Symbol of external system clock frequency corrected.		
		96 to 98	2.6.1 A/D converter characteristics: Notes of overall error corrected.		
		100	2.6.2 Temperature sensor characteristics: Parameter name corrected.		
		104	2.8 Flash Memory Programming Characteristics: Incorrect descriptions corrected.		
		116	3.10 52-pin products: Package drawings of 52-pin products corrected.		
		120	3.12 80-pin products: Package drawings of 80-pin products corrected.		
3.00	Aug 02, 2013	1	Modification of 1.1 Features		
		3	Modification of 1.2 List of Part Numbers		
		4 to 15	Modification of Table 1-1. List of Ordering Part Numbers, note, and caution		
		16 to 32	Modification of package type in 1.3.1 to 1.3.14		
		33	Modification of description in 1.4 Pin Identification		
		48, 50, 52	Modification of caution, table, and note in 1.6 Outline of Functions		
		55	Modification of description in table of Absolute Maximum Ratings (T _A = 25°C)		
		57	Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics		
		57	Modification of table in 2.2.2 On-chip oscillator characteristics		
		58	Modification of note 3 of table (1/5) in 2.3.1 Pin characteristics		
		59	Modification of note 3 of table (2/5) in 2.3.1 Pin characteristics		
		63			
		64	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products		
			Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products		
		65	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products		
		66	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products		
		68	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products		
		70	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products		
		72	Modification of notes 1 and 4 in (3) Flash ROM: 384 to 512 KB of 44- to 100-pin products		
		74	Modification of notes 1, 5, and 6 in (3) Flash ROM: 384 to 512 KB of 44- to 100-pin products		
		75	Modification of (4) Peripheral Functions (Common to all products)		
		77	Modification of table in 2.4 AC Characteristics		
		78, 79	Addition of Minimum Instruction Execution Time during Main System Clock Operation		
		80	Modification of figures of AC Timing Test Points and External System Clock Timing		